research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-[(1R,2S,5R)-2-iso­propyl-5-methyl­cyclo­hex­yl] 2-methyl (2S,4S,5R)-1-[(2S,3R,5R)-5-meth­­oxy­carbonyl-2-(2-methyl­phen­yl)pyrrolidine-3-carbon­yl]-5-(2-methyl­phen­yl)pyrrolidine-2,4-di­carboxyl­ate

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, M.V. Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow 119991, Russian Federation, and bInstitute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii prosp. 31, Moscow 119991, Russian Federation
*Correspondence e-mail: kudr@med.chem.msu.ru

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 24 December 2018; accepted 26 March 2019; online 2 April 2019)

The title compound, C38H50N2O7, represents a chiral β-proline dipeptide. Corresponding stereogenic centres of constituting pyrrolidine units have opposite absolute configurations. The central amide fragment is planar within 0.1 Å and adopts a Z configuration along the N—CO bond. In the crystal, the hydrogen atoms of the methyl­ene groups form several short inter­molecular C—H⋯O contacts with the carbonyl oxygen atoms of an adjacent mol­ecule. The only active amino hydrogen atom is not involved in hydrogen bonding.

1. Chemical context

We have developed an asymmetric protecting-group-free method for the efficient synthesis of alternating β-proline oligopeptides utilizing the stereospecific cyclo­addition of non-racemic homochiral acryl­amides to azomethine ylides (Kudryavtsev et al., 2013[Kudryavtsev, K. V., Ivantcova, P. M., Churakov, A. V., Wiedmann, S., Luy, B., Muhle-Goll, C., Zefirov, N. S. & Bräse, S. (2013). Angew. Chem. Int. Ed. 52, 12736-12740.], 2015b[Kudryavtsev, K. V., Ivantcova, P. M., Muhle-Goll, C., Churakov, A. V., Sokolov, M. N., Dyuba, A. V., Arutyunyan, A. M., Howard, J. A. K., Yu, C. C., Guh, J. H., Zefirov, N. S. & Bräse, S. (2015b). Org. Lett. 17, 6178-6181.]). Several members of this novel β-peptide class display cell-cycle-directed anti­proliferative activity in hormone-refractory prostate cancer cells (Kudryavtsev et al., 2015a[Kudryavtsev, K. V., Yu, C. C., Ivantcova, P. M., Polshakov, V. I., Churakov, A. V., Bräse, S., Zefirov, N. S. & Guh, J. H. (2015a). Chem. Asian J. 10, 383-389.],b[Kudryavtsev, K. V., Ivantcova, P. M., Muhle-Goll, C., Churakov, A. V., Sokolov, M. N., Dyuba, A. V., Arutyunyan, A. M., Howard, J. A. K., Yu, C. C., Guh, J. H., Zefirov, N. S. & Bräse, S. (2015b). Org. Lett. 17, 6178-6181.]; 2016[Kudryavtsev, K. V., Mantsyzov, A. B., Ivantcova, P. M., Sokolov, M. N., Churakov, A. V., Bräse, S., Zefirov, N. S. & Polshakov, V. I. (2016). Org. Lett. 18, 4698-4701.]). The preference for the Z configuration of β-amide bonds in alternating β-proline oligopeptides was explained by inter­action between a lone pair of the carbonyl oxygen atom of the β-amide group and a vacant π* orbital of C of the meth­oxy­carbonyl groups (Kudryavtsev et al., 2015b[Kudryavtsev, K. V., Ivantcova, P. M., Muhle-Goll, C., Churakov, A. V., Sokolov, M. N., Dyuba, A. V., Arutyunyan, A. M., Howard, J. A. K., Yu, C. C., Guh, J. H., Zefirov, N. S. & Bräse, S. (2015b). Org. Lett. 17, 6178-6181.]).

[Scheme 1]

2. Structural commentary

The title compound (Fig. 1[link]) is a chiral dimeric β-proline derivative. The central amide fragment C4,C1,N1,C18,O5,C20 is planar within 0.1 Å and adopts a Z configuration along the N—CO bond. The Z/E or trans/cis configuration of a peptide bond is assigned by IUPAC rules due to its partial double-bond character (IUPAC–IUB, 1970[IUPAC-IUB (1970). Biochemistry, 9, 3471-3479.]). The amino N2 atom is clearly trigonal–pyramidal with C—N—C and C—N—H bond angles varying from 104.4 (4) to 112 (4)°. Both pyrrolidine rings possess envelope conformations with flap atoms C3 and C19. These atoms deviate from the basal planes of the envelopes by 0.582 (7) and 0.524 Å, respectively. In contrast to the previously reported structures of β-proline oligomers, the flap atoms C3 and C19 are not connected to the amide or carboxyl­ate substituents (see below). Both tolyl groups are almost perpendicular to the pyrrolidine fragments, subtending dihedral angles equal to 84.0 (1) and 75.8 (2)°.

[Figure 1]
Figure 1
Labelling scheme for the title compound. Displacement ellipsoids are shown at 50% probability level. Hydrogen atoms (except amino H11) were omitted for clarity.

3. Supra­molecular features

The title mol­ecule contains seven oxygen atoms suitable for hydrogen bonding. Surprisingly, the only active amino hydrogen atom H11 is not involved in hydrogen bonding. This is the result of steric hindrance by the two bulky β-substituents on pyrrolidine ring atom N1. In the crystal, the hydrogen atoms of the methyl­ene groups C3 and C49 form several short inter­molecular C—H⋯O contacts (Table 1[link], Fig. 2[link]) with the carbonyl oxygen atoms O4, O5 and O7 of an adjacent mol­ecule ([{1\over 2}] + x, [{3\over 2}] − y, 1 − z) with H⋯O separations of 2.52, 2.58 and 2.63 Å, respectively. A similar absence of hydrogen bonding has been observed in the structures of closely related β-proline trimers and tetra­mers (Kudryavtsev et al., 2013[Kudryavtsev, K. V., Ivantcova, P. M., Churakov, A. V., Wiedmann, S., Luy, B., Muhle-Goll, C., Zefirov, N. S. & Bräse, S. (2013). Angew. Chem. Int. Ed. 52, 12736-12740.], 2015a[Kudryavtsev, K. V., Yu, C. C., Ivantcova, P. M., Polshakov, V. I., Churakov, A. V., Bräse, S., Zefirov, N. S. & Guh, J. H. (2015a). Chem. Asian J. 10, 383-389.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯O4i 0.99 2.52 3.254 (6) 131
C3—H3B⋯O5i 0.99 2.58 3.462 (6) 149
C49—H49A⋯O7i 0.99 2.63 3.511 (7) 149
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
Fragment of the crystal packing showing the shortest inter­molecular C—H⋯O contacts (Table 1[link]) as dashed lines.

4. Database survey

The Cambridge database (version 5.39, Aug 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains 11 structures of β-proline oligomers. Among these, three are dimeric (CIKHOV, ILOZOY, and ZUYBUS), three are trimeric [CIKHEL and CIKHIP (Kudryavtsev et al., 2013[Kudryavtsev, K. V., Ivantcova, P. M., Churakov, A. V., Wiedmann, S., Luy, B., Muhle-Goll, C., Zefirov, N. S. & Bräse, S. (2013). Angew. Chem. Int. Ed. 52, 12736-12740.]) and OWALEF (Kudryavtsev et al., 2016[Kudryavtsev, K. V., Mantsyzov, A. B., Ivantcova, P. M., Sokolov, M. N., Churakov, A. V., Bräse, S., Zefirov, N. S. & Polshakov, V. I. (2016). Org. Lett. 18, 4698-4701.])] and five are tetra­meric (XOQDOY and XOQDUE (Kudryavtsev et al., 2015a[Kudryavtsev, K. V., Yu, C. C., Ivantcova, P. M., Polshakov, V. I., Churakov, A. V., Bräse, S., Zefirov, N. S. & Guh, J. H. (2015a). Chem. Asian J. 10, 383-389.]), ZUYGUX, ZUYHAE, and ZUYHEI (Kudryavtsev et al., 2015b[Kudryavtsev, K. V., Ivantcova, P. M., Muhle-Goll, C., Churakov, A. V., Sokolov, M. N., Dyuba, A. V., Arutyunyan, A. M., Howard, J. A. K., Yu, C. C., Guh, J. H., Zefirov, N. S. & Bräse, S. (2015b). Org. Lett. 17, 6178-6181.])]. In total, these structures comprises 25 pyrrolidine fragments. Inter­estingly, all 25 pyrrolidine rings adopt envelope conformations with the flap carbon atom bearing linking amide –C(=O)N=or terminal –CO2R groups. Endocyclic carbon atoms with aryl substituents and nitro­gen atoms always lie in the basal planes of the proline moieties.

5. Synthesis and crystallization

The synthesis and spectroscopic data for the title compound have been reported by Kudryavtsev et al. (2016[Kudryavtsev, K. V., Mantsyzov, A. B., Ivantcova, P. M., Sokolov, M. N., Churakov, A. V., Bräse, S., Zefirov, N. S. & Polshakov, V. I. (2016). Org. Lett. 18, 4698-4701.]). The crystal studied was grown by slow evaporation of a methanol solution of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Aromatic H atoms were placed in calculated positions with C—H = 0.95 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C). Methyl H atoms were also placed in calculated positions with C—H = 0.98 Å and refined as riding atoms with Uiso(H) = 1.5Ueq(C) and free rotation about the C—Me bonds. The amino H atom was found from the difference-Fourier synthesis and refined with both positional and thermal parameters. As the oxygen atoms are the heaviest in the structure, the absolute configuration could not be determined reliably from the diffraction data. The absolute configuration of the pyrrolidine stereogenic centres was assigned on the base of known chirality of the L-menthol precursor (Kudryavtsev et al., 2016[Kudryavtsev, K. V., Mantsyzov, A. B., Ivantcova, P. M., Sokolov, M. N., Churakov, A. V., Bräse, S., Zefirov, N. S. & Polshakov, V. I. (2016). Org. Lett. 18, 4698-4701.]).

Table 2
Experimental details

Crystal data
Chemical formula C38H50N2O7
Mr 646.80
Crystal system, space group Orthorhombic, P212121
Temperature (K) 150
a, b, c (Å) 10.993 (8), 13.198 (10), 23.799 (19)
V3) 3453 (5)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.10 × 0.04
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.959, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 19713, 3438, 1990
Rint 0.169
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.113, 1.03
No. of reflections 3438
No. of parameters 436
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.19, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2008[Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

4-[(1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl] 2-methyl (2S,4S,5R)-1-[(2S,3R,5R)-5-methoxycarbonyl-2-(2-methylphenyl)pyrrolidine-3-carbonyl]-5-(2-methylphenyl)pyrrolidine-2,4-dicarboxylate top
Crystal data top
C38H50N2O7F(000) = 1392
Mr = 646.80Dx = 1.244 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2257 reflections
a = 10.993 (8) Åθ = 2.4–20.4°
b = 13.198 (10) ŵ = 0.09 mm1
c = 23.799 (19) ÅT = 150 K
V = 3453 (5) Å3Needle, colourless
Z = 40.50 × 0.10 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
3438 independent reflections
Radiation source: fine-focus sealed tube1990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.169
ω scansθmax = 25.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1313
Tmin = 0.959, Tmax = 0.997k = 1515
19713 measured reflectionsl = 2728
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.060H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3438 reflectionsΔρmax = 0.19 e Å3
436 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (7)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3110 (4)0.8167 (3)0.43708 (16)0.0312 (10)
N20.4319 (4)1.1224 (3)0.4206 (2)0.0436 (12)
H110.407 (6)1.116 (5)0.457 (3)0.10 (3)*
O10.1121 (3)0.5592 (3)0.37321 (14)0.0422 (9)
O20.0621 (4)0.6760 (3)0.30922 (16)0.0501 (11)
O30.2308 (3)0.7761 (3)0.58012 (14)0.0464 (10)
O40.3899 (3)0.7031 (3)0.53704 (15)0.0442 (9)
O50.4036 (3)0.9273 (2)0.49501 (14)0.0403 (9)
O60.7399 (3)1.1224 (3)0.47147 (16)0.0510 (10)
O70.5675 (3)1.1762 (3)0.51165 (17)0.0573 (12)
C10.2786 (4)0.7736 (4)0.3819 (2)0.0334 (12)
H10.27070.82930.35370.040*
C20.1512 (4)0.7294 (4)0.3953 (2)0.0349 (13)
H20.09310.78770.39430.042*
C30.1600 (4)0.6968 (4)0.4560 (2)0.0358 (13)
H3A0.20420.63180.45960.043*
H3B0.07840.68970.47310.043*
C40.2309 (4)0.7833 (4)0.48281 (19)0.0341 (13)
H40.17330.83930.49230.041*
C50.3734 (4)0.6966 (4)0.3617 (2)0.0325 (12)
C60.3970 (5)0.6843 (4)0.3047 (2)0.0378 (13)
C70.4838 (5)0.6134 (4)0.2886 (2)0.0454 (15)
H70.50100.60460.24980.054*
C80.5454 (5)0.5555 (5)0.3274 (2)0.0482 (15)
H80.60470.50780.31540.058*
C90.5203 (5)0.5676 (4)0.3839 (2)0.0469 (15)
H90.56080.52720.41110.056*
C100.4355 (4)0.6392 (4)0.4004 (2)0.0393 (13)
H100.41990.64880.43930.047*
C110.1050 (5)0.6535 (4)0.3537 (2)0.0347 (13)
C120.2549 (5)0.4131 (4)0.3088 (2)0.0519 (16)
H120.29460.46810.33120.062*
C130.3418 (6)0.3231 (5)0.3088 (3)0.074 (2)
H13A0.34230.29170.34610.111*
H13B0.42400.34640.29950.111*
H13C0.31500.27340.28090.111*
C140.2384 (6)0.4538 (5)0.2488 (2)0.0645 (18)
H14A0.31820.46970.23270.097*
H14B0.18860.51540.24980.097*
H14C0.19810.40240.22570.097*
C150.2423 (5)0.3419 (4)0.3906 (3)0.0611 (18)
H15A0.28950.28580.37480.092*
H15B0.29430.40190.39400.092*
H15C0.21180.32270.42780.092*
C160.2962 (5)0.7515 (4)0.5349 (2)0.0357 (13)
C170.2759 (5)0.7423 (5)0.6340 (2)0.0579 (17)
H17A0.21060.74630.66190.087*
H17B0.34370.78570.64570.087*
H17C0.30410.67210.63100.087*
C180.3889 (5)0.8945 (4)0.4471 (2)0.0334 (12)
C190.3782 (4)1.0456 (4)0.3845 (2)0.0376 (13)
H190.39821.06470.34490.045*
C200.4485 (4)0.9445 (4)0.3976 (2)0.0378 (13)
H200.45060.89860.36420.045*
C210.5763 (4)0.9835 (4)0.4127 (2)0.0437 (15)
H21A0.63460.96900.38200.052*
H21B0.60600.95130.44760.052*
C220.5611 (5)1.0986 (4)0.4208 (2)0.0412 (14)
H220.59951.13350.38800.049*
C230.6197 (5)1.1381 (4)0.4736 (3)0.0430 (14)
C240.8099 (5)1.1593 (5)0.5196 (3)0.0618 (18)
H24A0.89201.17790.50730.093*
H24B0.81521.10590.54810.093*
H24C0.76951.21880.53560.093*
C250.2412 (4)1.0401 (3)0.3886 (2)0.0349 (13)
C260.1694 (5)1.0283 (4)0.3403 (2)0.0381 (13)
C270.0444 (5)1.0164 (4)0.3473 (3)0.0551 (17)
H270.00511.00710.31500.066*
C280.0096 (6)1.0178 (4)0.3992 (4)0.066 (2)
H280.09511.00910.40250.080*
C290.0595 (6)1.0314 (5)0.4460 (3)0.0619 (19)
H290.02231.03220.48210.074*
C300.1839 (5)1.0443 (4)0.4410 (2)0.0478 (15)
H300.23131.05620.47380.057*
C310.2218 (5)1.0293 (4)0.2826 (2)0.0540 (17)
H31A0.15691.01820.25510.081*
H31B0.28270.97540.27920.081*
H31C0.26041.09510.27550.081*
C320.3347 (5)0.7466 (4)0.2601 (2)0.0518 (16)
H32A0.24680.74720.26710.078*
H32B0.35090.71700.22310.078*
H32C0.36590.81610.26120.078*
C440.0484 (5)0.4778 (4)0.3427 (2)0.0407 (14)
H44A0.02580.50200.30430.049*
C450.1339 (5)0.3885 (4)0.3380 (2)0.0451 (14)
H450.15380.36640.37710.054*
C460.0616 (5)0.3019 (4)0.3104 (2)0.0557 (17)
H46A0.03710.32200.27200.067*
H46B0.11370.24090.30750.067*
C470.0515 (5)0.2770 (4)0.3450 (3)0.0550 (16)
H47A0.09640.22130.32640.066*
H47B0.02600.25280.38250.066*
C480.1351 (5)0.3657 (4)0.3520 (2)0.0468 (15)
H480.16760.38490.31420.056*
C490.0645 (5)0.4561 (4)0.3758 (2)0.0426 (14)
H49C0.11750.51680.37550.051*
H49A0.04210.44180.41530.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.032 (2)0.026 (3)0.035 (2)0.003 (2)0.002 (2)0.0005 (19)
N20.036 (3)0.038 (3)0.056 (3)0.003 (2)0.008 (3)0.002 (3)
O10.050 (2)0.028 (2)0.048 (2)0.0019 (18)0.012 (2)0.0016 (17)
O20.064 (3)0.035 (2)0.051 (2)0.006 (2)0.018 (2)0.0069 (19)
O30.044 (2)0.060 (3)0.036 (2)0.0077 (19)0.006 (2)0.0026 (18)
O40.042 (2)0.040 (2)0.050 (2)0.0087 (19)0.005 (2)0.0033 (17)
O50.047 (2)0.033 (2)0.041 (2)0.0036 (17)0.002 (2)0.0061 (17)
O60.044 (2)0.051 (3)0.058 (3)0.0057 (19)0.005 (2)0.011 (2)
O70.045 (3)0.068 (3)0.059 (3)0.001 (2)0.002 (2)0.018 (2)
C10.032 (3)0.033 (3)0.036 (3)0.006 (2)0.001 (3)0.002 (2)
C20.031 (3)0.035 (3)0.039 (3)0.004 (2)0.001 (3)0.000 (3)
C30.029 (3)0.036 (3)0.043 (3)0.005 (2)0.002 (3)0.001 (3)
C40.026 (3)0.036 (3)0.040 (3)0.002 (2)0.001 (3)0.002 (2)
C50.031 (3)0.030 (3)0.036 (3)0.005 (2)0.001 (3)0.000 (2)
C60.034 (3)0.041 (4)0.039 (3)0.007 (3)0.000 (3)0.001 (3)
C70.040 (3)0.054 (4)0.042 (3)0.004 (3)0.009 (3)0.004 (3)
C80.037 (3)0.053 (4)0.055 (4)0.009 (3)0.001 (3)0.010 (3)
C90.039 (3)0.047 (4)0.055 (4)0.007 (3)0.003 (3)0.001 (3)
C100.028 (3)0.044 (4)0.045 (3)0.002 (3)0.004 (3)0.006 (3)
C110.024 (3)0.031 (4)0.049 (3)0.003 (2)0.003 (3)0.006 (3)
C120.055 (4)0.049 (4)0.052 (4)0.004 (3)0.005 (3)0.014 (3)
C130.069 (5)0.056 (5)0.097 (5)0.013 (4)0.018 (4)0.013 (4)
C140.063 (4)0.079 (5)0.052 (4)0.006 (4)0.009 (4)0.013 (3)
C150.062 (4)0.045 (4)0.076 (4)0.012 (3)0.008 (4)0.008 (3)
C160.033 (3)0.034 (3)0.041 (3)0.004 (3)0.003 (3)0.006 (3)
C170.061 (4)0.079 (5)0.034 (3)0.007 (3)0.000 (3)0.005 (3)
C180.031 (3)0.029 (3)0.040 (3)0.004 (3)0.001 (3)0.001 (3)
C190.038 (3)0.036 (4)0.039 (3)0.001 (3)0.001 (3)0.002 (3)
C200.034 (3)0.033 (3)0.047 (3)0.002 (2)0.009 (3)0.010 (3)
C210.035 (3)0.040 (4)0.056 (4)0.010 (2)0.006 (3)0.008 (3)
C220.045 (3)0.031 (4)0.047 (3)0.014 (3)0.001 (3)0.001 (3)
C230.036 (3)0.036 (4)0.057 (4)0.004 (3)0.002 (3)0.002 (3)
C240.043 (4)0.076 (5)0.066 (4)0.000 (3)0.007 (4)0.019 (3)
C250.035 (3)0.022 (3)0.048 (3)0.002 (2)0.004 (3)0.003 (2)
C260.031 (3)0.028 (3)0.055 (4)0.001 (2)0.001 (3)0.001 (3)
C270.040 (4)0.042 (4)0.084 (5)0.001 (3)0.002 (4)0.002 (3)
C280.033 (4)0.042 (4)0.124 (7)0.007 (3)0.015 (5)0.019 (4)
C290.048 (4)0.055 (5)0.083 (5)0.021 (3)0.018 (4)0.019 (4)
C300.047 (4)0.040 (4)0.056 (4)0.012 (3)0.007 (3)0.010 (3)
C310.050 (4)0.052 (4)0.060 (4)0.005 (3)0.011 (3)0.016 (3)
C320.054 (4)0.053 (4)0.048 (3)0.009 (3)0.009 (3)0.002 (3)
C440.049 (4)0.028 (3)0.044 (3)0.004 (3)0.011 (3)0.005 (3)
C450.044 (3)0.040 (4)0.051 (3)0.003 (3)0.004 (3)0.007 (3)
C460.063 (4)0.038 (4)0.066 (4)0.002 (3)0.000 (4)0.013 (3)
C470.066 (4)0.034 (4)0.065 (4)0.011 (3)0.015 (4)0.004 (3)
C480.044 (4)0.038 (4)0.058 (4)0.003 (3)0.010 (3)0.010 (3)
C490.048 (3)0.030 (3)0.050 (3)0.002 (3)0.006 (3)0.005 (3)
Geometric parameters (Å, º) top
N1—C181.357 (6)C15—H15C0.9800
N1—C41.468 (6)C17—H17A0.9800
N1—C11.475 (6)C17—H17B0.9800
N2—C191.453 (6)C17—H17C0.9800
N2—C221.455 (7)C18—C201.501 (7)
N2—H110.91 (6)C19—C251.511 (7)
O1—C111.331 (6)C19—C201.573 (7)
O1—C441.473 (6)C19—H191.0000
O2—C111.196 (6)C20—C211.538 (7)
O3—C161.333 (6)C20—H201.0000
O3—C171.446 (6)C21—C221.540 (7)
O4—C161.213 (6)C21—H21A0.9900
O5—C181.231 (5)C21—H21B0.9900
O6—C231.339 (6)C22—C231.505 (7)
O6—C241.464 (6)C22—H221.0000
O7—C231.185 (6)C24—H24A0.9800
C1—C51.533 (7)C24—H24B0.9800
C1—C21.550 (6)C24—H24C0.9800
C1—H11.0000C25—C301.399 (7)
C2—C111.497 (7)C25—C261.403 (7)
C2—C31.511 (7)C26—C271.393 (7)
C2—H21.0000C26—C311.489 (8)
C3—C41.523 (7)C27—C281.370 (9)
C3—H3A0.9900C27—H270.9500
C3—H3B0.9900C28—C291.360 (9)
C4—C161.493 (7)C28—H280.9500
C4—H41.0000C29—C301.384 (8)
C5—C101.376 (7)C29—H290.9500
C5—C61.389 (6)C30—H300.9500
C6—C71.391 (7)C31—H31A0.9800
C6—C321.507 (7)C31—H31B0.9800
C7—C81.376 (7)C31—H31C0.9800
C7—H70.9500C32—H32A0.9800
C8—C91.382 (7)C32—H32B0.9800
C8—H80.9500C32—H32C0.9800
C9—C101.384 (7)C44—C491.498 (7)
C9—H90.9500C44—C451.512 (7)
C10—H100.9500C44—H44A1.0000
C12—C131.524 (8)C45—C461.539 (7)
C12—C451.536 (7)C45—H451.0000
C12—C141.537 (7)C46—C471.525 (7)
C12—H121.0000C46—H46A0.9900
C13—H13A0.9800C46—H46B0.9900
C13—H13B0.9800C47—C481.498 (8)
C13—H13C0.9800C47—H47A0.9900
C14—H14A0.9800C47—H47B0.9900
C14—H14B0.9800C48—C491.532 (7)
C14—H14C0.9800C48—H481.0000
C15—C481.527 (7)C49—H49C0.9900
C15—H15A0.9800C49—H49A0.9900
C15—H15B0.9800
C18—N1—C4118.4 (4)C20—C19—H19107.0
C18—N1—C1126.9 (4)C18—C20—C21111.3 (5)
C4—N1—C1113.5 (4)C18—C20—C19108.3 (4)
C19—N2—C22104.4 (4)C21—C20—C19102.2 (4)
C19—N2—H11112 (4)C18—C20—H20111.6
C22—N2—H11106 (4)C21—C20—H20111.6
C11—O1—C44118.8 (4)C19—C20—H20111.6
C16—O3—C17117.1 (4)C20—C21—C22105.1 (4)
C23—O6—C24116.0 (5)C20—C21—H21A110.7
N1—C1—C5111.8 (4)C22—C21—H21A110.7
N1—C1—C2100.4 (4)C20—C21—H21B110.7
C5—C1—C2115.4 (4)C22—C21—H21B110.7
N1—C1—H1109.6H21A—C21—H21B108.8
C5—C1—H1109.6N2—C22—C23110.2 (5)
C2—C1—H1109.6N2—C22—C21108.5 (4)
C11—C2—C3117.6 (4)C23—C22—C21113.6 (5)
C11—C2—C1115.0 (4)N2—C22—H22108.1
C3—C2—C1104.2 (4)C23—C22—H22108.1
C11—C2—H2106.4C21—C22—H22108.1
C3—C2—H2106.4O7—C23—O6124.9 (5)
C1—C2—H2106.4O7—C23—C22125.3 (5)
C2—C3—C4102.7 (4)O6—C23—C22109.7 (5)
C2—C3—H3A111.2O6—C24—H24A109.5
C4—C3—H3A111.2O6—C24—H24B109.5
C2—C3—H3B111.2H24A—C24—H24B109.5
C4—C3—H3B111.2O6—C24—H24C109.5
H3A—C3—H3B109.1H24A—C24—H24C109.5
N1—C4—C16114.4 (4)H24B—C24—H24C109.5
N1—C4—C3102.8 (4)C30—C25—C26118.8 (5)
C16—C4—C3112.6 (4)C30—C25—C19120.3 (5)
N1—C4—H4109.0C26—C25—C19120.9 (5)
C16—C4—H4109.0C27—C26—C25118.0 (6)
C3—C4—H4109.0C27—C26—C31119.6 (6)
C10—C5—C6119.8 (5)C25—C26—C31122.5 (5)
C10—C5—C1119.4 (4)C28—C27—C26122.3 (6)
C6—C5—C1120.7 (5)C28—C27—H27118.9
C5—C6—C7118.4 (5)C26—C27—H27118.9
C5—C6—C32122.6 (5)C29—C28—C27119.9 (6)
C7—C6—C32119.0 (5)C29—C28—H28120.0
C8—C7—C6121.8 (5)C27—C28—H28120.0
C8—C7—H7119.1C28—C29—C30119.8 (7)
C6—C7—H7119.1C28—C29—H29120.1
C7—C8—C9119.4 (5)C30—C29—H29120.1
C7—C8—H8120.3C29—C30—C25121.1 (6)
C9—C8—H8120.3C29—C30—H30119.4
C8—C9—C10119.3 (5)C25—C30—H30119.4
C8—C9—H9120.3C26—C31—H31A109.5
C10—C9—H9120.3C26—C31—H31B109.5
C5—C10—C9121.3 (5)H31A—C31—H31B109.5
C5—C10—H10119.4C26—C31—H31C109.5
C9—C10—H10119.4H31A—C31—H31C109.5
O2—C11—O1124.3 (5)H31B—C31—H31C109.5
O2—C11—C2123.6 (5)C6—C32—H32A109.5
O1—C11—C2112.0 (5)C6—C32—H32B109.5
C13—C12—C45112.2 (5)H32A—C32—H32B109.5
C13—C12—C14110.3 (5)C6—C32—H32C109.5
C45—C12—C14113.1 (5)H32A—C32—H32C109.5
C13—C12—H12107.0H32B—C32—H32C109.5
C45—C12—H12107.0O1—C44—C49105.9 (4)
C14—C12—H12107.0O1—C44—C45108.1 (4)
C12—C13—H13A109.5C49—C44—C45113.9 (4)
C12—C13—H13B109.5O1—C44—H44A109.6
H13A—C13—H13B109.5C49—C44—H44A109.6
C12—C13—H13C109.5C45—C44—H44A109.6
H13A—C13—H13C109.5C44—C45—C12114.0 (5)
H13B—C13—H13C109.5C44—C45—C46106.9 (4)
C12—C14—H14A109.5C12—C45—C46114.3 (5)
C12—C14—H14B109.5C44—C45—H45107.1
H14A—C14—H14B109.5C12—C45—H45107.1
C12—C14—H14C109.5C46—C45—H45107.1
H14A—C14—H14C109.5C47—C46—C45110.5 (5)
H14B—C14—H14C109.5C47—C46—H46A109.5
C48—C15—H15A109.5C45—C46—H46A109.5
C48—C15—H15B109.5C47—C46—H46B109.5
H15A—C15—H15B109.5C45—C46—H46B109.5
C48—C15—H15C109.5H46A—C46—H46B108.1
H15A—C15—H15C109.5C48—C47—C46113.1 (5)
H15B—C15—H15C109.5C48—C47—H47A109.0
O4—C16—O3123.5 (5)C46—C47—H47A109.0
O4—C16—C4126.2 (5)C48—C47—H47B109.0
O3—C16—C4110.1 (4)C46—C47—H47B109.0
O3—C17—H17A109.5H47A—C47—H47B107.8
O3—C17—H17B109.5C47—C48—C15112.3 (5)
H17A—C17—H17B109.5C47—C48—C49109.8 (4)
O3—C17—H17C109.5C15—C48—C49109.2 (5)
H17A—C17—H17C109.5C47—C48—H48108.5
H17B—C17—H17C109.5C15—C48—H48108.5
O5—C18—N1120.7 (5)C49—C48—H48108.5
O5—C18—C20121.0 (5)C44—C49—C48112.0 (4)
N1—C18—C20118.1 (4)C44—C49—H49C109.2
N2—C19—C25113.6 (4)C48—C49—H49C109.2
N2—C19—C20106.0 (4)C44—C49—H49A109.2
C25—C19—C20115.9 (4)C48—C49—H49A109.2
N2—C19—H19107.0H49C—C49—H49A107.9
C25—C19—H19107.0
C18—N1—C1—C582.6 (6)N1—C18—C20—C19100.2 (5)
C4—N1—C1—C5110.1 (4)N2—C19—C20—C1885.9 (5)
C18—N1—C1—C2154.5 (4)C25—C19—C20—C1841.1 (6)
C4—N1—C1—C212.8 (5)N2—C19—C20—C2131.7 (5)
N1—C1—C2—C11163.0 (4)C25—C19—C20—C21158.6 (5)
C5—C1—C2—C1142.6 (6)C18—C20—C21—C22102.5 (5)
N1—C1—C2—C332.9 (5)C19—C20—C21—C2212.9 (5)
C5—C1—C2—C387.5 (5)C19—N2—C22—C23154.8 (4)
C11—C2—C3—C4169.7 (4)C19—N2—C22—C2129.9 (6)
C1—C2—C3—C441.1 (5)C20—C21—C22—N29.5 (6)
C18—N1—C4—C1657.3 (6)C20—C21—C22—C23132.5 (5)
C1—N1—C4—C16134.2 (4)C24—O6—C23—O72.5 (8)
C18—N1—C4—C3179.7 (4)C24—O6—C23—C22178.5 (4)
C1—N1—C4—C311.9 (5)N2—C22—C23—O75.4 (8)
C2—C3—C4—N132.2 (5)C21—C22—C23—O7116.6 (6)
C2—C3—C4—C16155.7 (4)N2—C22—C23—O6175.6 (4)
N1—C1—C5—C1031.8 (6)C21—C22—C23—O662.4 (6)
C2—C1—C5—C1082.1 (6)N2—C19—C25—C3043.5 (6)
N1—C1—C5—C6148.2 (4)C20—C19—C25—C3079.5 (6)
C2—C1—C5—C697.8 (6)N2—C19—C25—C26138.0 (5)
C10—C5—C6—C70.0 (8)C20—C19—C25—C2699.0 (6)
C1—C5—C6—C7179.9 (5)C30—C25—C26—C273.1 (7)
C10—C5—C6—C32178.4 (5)C19—C25—C26—C27175.4 (5)
C1—C5—C6—C321.7 (8)C30—C25—C26—C31176.2 (5)
C5—C6—C7—C80.4 (8)C19—C25—C26—C315.3 (7)
C32—C6—C7—C8178.8 (5)C25—C26—C27—C281.2 (8)
C6—C7—C8—C90.3 (9)C31—C26—C27—C28178.1 (5)
C7—C8—C9—C101.4 (9)C26—C27—C28—C290.3 (9)
C6—C5—C10—C91.1 (8)C27—C28—C29—C300.2 (9)
C1—C5—C10—C9178.9 (4)C28—C29—C30—C252.2 (9)
C8—C9—C10—C51.8 (8)C26—C25—C30—C293.6 (7)
C44—O1—C11—O29.1 (7)C19—C25—C30—C29174.9 (5)
C44—O1—C11—C2167.9 (4)C11—O1—C44—C49102.4 (5)
C3—C2—C11—O2158.3 (5)C11—O1—C44—C45135.1 (5)
C1—C2—C11—O278.4 (6)O1—C44—C45—C1257.3 (6)
C3—C2—C11—O118.7 (6)C49—C44—C45—C12174.7 (4)
C1—C2—C11—O1104.6 (5)O1—C44—C45—C46175.4 (4)
C17—O3—C16—O40.1 (7)C49—C44—C45—C4658.0 (6)
C17—O3—C16—C4174.5 (4)C13—C12—C45—C44175.8 (5)
N1—C4—C16—O439.9 (7)C14—C12—C45—C4458.7 (6)
C3—C4—C16—O476.9 (6)C13—C12—C45—C4660.9 (6)
N1—C4—C16—O3145.6 (4)C14—C12—C45—C4664.6 (6)
C3—C4—C16—O397.5 (5)C44—C45—C46—C4757.6 (6)
C4—N1—C18—O59.4 (7)C12—C45—C46—C47175.3 (5)
C1—N1—C18—O5176.1 (5)C45—C46—C47—C4858.6 (6)
C4—N1—C18—C20165.7 (4)C46—C47—C48—C15175.3 (4)
C1—N1—C18—C201.0 (7)C46—C47—C48—C4953.6 (6)
C22—N2—C19—C25166.6 (4)O1—C44—C49—C48174.8 (4)
C22—N2—C19—C2038.2 (5)C45—C44—C49—C4856.2 (6)
O5—C18—C20—C2136.7 (7)C47—C48—C49—C4451.4 (6)
N1—C18—C20—C21148.3 (4)C15—C48—C49—C44174.9 (4)
O5—C18—C20—C1974.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···O4i0.992.523.254 (6)131
C3—H3B···O5i0.992.583.462 (6)149
C49—H49A···O7i0.992.633.511 (7)149
Symmetry code: (i) x1/2, y+3/2, z+1.
 

Funding information

PMI was supported by a scholarship of the President of the Russian Federation (grant No. SP-1278.2018.4). MNS was supported by the Russian Foundation for Basic Research (grant No. 18–33-01260 mol_a). X-ray diffraction studies were performed at the Centre of Shared Equipment of IGIC RAS.

References

First citationBruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIUPAC–IUB (1970). Biochemistry, 9, 3471–3479.  CrossRef PubMed Google Scholar
First citationKudryavtsev, K. V., Ivantcova, P. M., Churakov, A. V., Wiedmann, S., Luy, B., Muhle-Goll, C., Zefirov, N. S. & Bräse, S. (2013). Angew. Chem. Int. Ed. 52, 12736–12740.  Web of Science CSD CrossRef CAS Google Scholar
First citationKudryavtsev, K. V., Ivantcova, P. M., Muhle-Goll, C., Churakov, A. V., Sokolov, M. N., Dyuba, A. V., Arutyunyan, A. M., Howard, J. A. K., Yu, C. C., Guh, J. H., Zefirov, N. S. & Bräse, S. (2015b). Org. Lett. 17, 6178–6181.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKudryavtsev, K. V., Mantsyzov, A. B., Ivantcova, P. M., Sokolov, M. N., Churakov, A. V., Bräse, S., Zefirov, N. S. & Polshakov, V. I. (2016). Org. Lett. 18, 4698–4701.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKudryavtsev, K. V., Yu, C. C., Ivantcova, P. M., Polshakov, V. I., Churakov, A. V., Bräse, S., Zefirov, N. S. & Guh, J. H. (2015a). Chem. Asian J. 10, 383–389.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds