research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyridine-3-carboxamide–telluric acid (1/1)

CROSSMARK_Color_square_no_text.svg

aInst. of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 21 Praha 8, Czech Republic
*Correspondence e-mail: fabry@fzu.cz

Edited by E. V. Boldyreva, Russian Academy of Sciences, Russia (Received 6 August 2018; accepted 24 September 2018; online 28 September 2018)

In the title structure, C6H6N2O·H6O6Te, the pyridine-3-carboxamide and telluric acid mol­ecules are inter­connected by conventional O—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds of moderate strength as well as by ππ inter­actions between the pyridine rings. The strongest hydrogen bond in the structure is formed between a hydroxyl group of the H6TeO6 mol­ecule and the N-pyrimidine N atom. The structure is unusual because of presence of the alternating sheets, which contain H6TeO6 and pyridine-3-carboxamide mol­ecules, respectively. These sheets are aligned parallel to (001).

1. Chemical context

The motivation for the title structure determination follows from the fact that there are relatively a few structure determinations of mol­ecular crystals containing the telluric acid mol­ecule H6TeO6 (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). These structure determinations are summarized in Table 1[link].

Table 1
Overview of the known structure determinations of mol­ecular crystals containing the H6TeO6 mol­ecule

Refcode Reference Important functional groups present in the structure
BINFAF Tran Qui et al. (1982[Tran Qui, D., Vicat, J. & Durif, A. (1982). Proceedings of the Seventh European Crystallographic Meeting, 228.])a H3N+, COO
BINFAF01 Andersen et al. (1983[Andersen, L., Lindqvist, O. & Moret, J. (1983). Acta Cryst. C39, 57-58.])a H3N+, COO
BINFAF02 Tran Qui et al. (1987[Tran Qui, D., Lambert-Andron, B. & Boucherle, J. X. (1987). Acta Cryst. C43, 907-909.])a H3N+, COO
BINFAF10 Tran Qui et al. (1984[Tran Qui, D., Vicat, J. & Durif, A. (1984). Acta Cryst. C40, 181-184.])a H3N+, COO
GUNQUB Driess et al. (2001[Driess, M., Merz, K. & Rowlings, R. B. (2001). Z. Anorg. Allg. Chem. 627, 213-217.])b N, NH, NH2
KUTBUW Ilczyszyn et al. (1992[Ilczyszyn, M. M., Lis, T., Baran, J. & Ratajczak, H. (1992). J. Mol. Struct. 265, 293-310.])c (H3C)N+, COO
UREATE Loub et al. (1979[Loub, J., Haase, W. & Mergehenn, R. (1979). Acta Cryst. B35, 3039-3041.])d NH2, CO
UREATE01 Loub & Dušek (1986[Loub, J. & Dušek, M. (1986). J. Appl. Cryst. 19, 202.])d NH2, CO
UREATE02 Averbuch-Pouchot & Durif (1989[Averbuch-Pouchot, M.-T. & Durif, A. (1989). C. R. Seances Acad. Sci. Ser. II, 309, 25.])d NH2, CO
VALTUX Averbuch-Pouchot (1988[Averbuch-Pouchot, M.-T. (1988). Z. Kristallogr. 183, 285.])e R2H2N+, COO
ZARGII Císařová et al. (1995[Císařová, I., Podlahová, J. & Podlaha, J. (1995). Collect. Czech. Chem. Commun. 60, 820-828.])f R3NH, COO
Notes: (a) bis­(glycine) hexa­hydroxy­tellurium monohydrate; (b) bis­(adenine) hexa­hydroxy­tellurium tetra­hydrate; (c) bis­(betaine) telluric acid; (d) bis­(urea) orthotelluric acid; (e) sarcosine telluric acid; (f) disodium hexa­hydro­telluric acid di­hydrogenethyl­enedi­amine­tetra­acetate dihydrate.

H6TeO6 is a weak acid with pKa = 7.68 (1st degree; CRC Handbook, 2017[CRC Handbook (2017). CRC Handbook of Chemistry and Physics, 97th ed., edited by W. M. Haynes, pp. 5-87. Boca Raton, London, New York: CRC Press.]) at room temperature. At the same time, the pKa value for pyridine-3-carboxamide is 3.3 (CRC Handbook, 2009[CRC Handbook (2009). CRC Handbook of Chemistry and Physics, 90th ed., edited by D. R. Lidl, pp. 8-45. Boca Raton, London, New York: CRC Press.]). ΔpKa = pKa(base) − pKa(acid) − 4.4, which indicates that the crystalline product would rather be a co-crystal (Childs et al., 2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]). In all the cases listed in Table 1[link], the H6TeO6 mol­ecules are fully protonated. All of these known structures are co-crystals except for ZARGII where H6TeO6 is an additive mol­ecule in the salt structure.

In most of the listed structures, the mol­ecules of H6TeO6 form columns which are inter­connected by O—H⋯O hydrogen bonds. Such a situation takes place in KUTBUW (the columns are parallel to the a axis), UREATE, UREATE01, UREATE02 (parallel to the c axis) and VALTUX (parallel to the c axis). Analogous columns parallel to the a axis are present in GUNQUB; however, these columns are formed together with water mol­ecules. In the other two structures, the constituent mol­ecules are surrounded by each other. None of the structures in Table 1[link] contains a hydrogen bond with disordered hydrogen atoms in which the hydroxyl groups of the telluric acid are involved. Inter­estingly, neutron diffraction experiments revealed that the cubic form of H6TeO6 (Cohen-Addad, 1971[Cohen-Addad, C. (1971). Bull. Soc. Franc. Miner. Crist. 94, 172-174.]) possesses disordered hydrogen atoms, in contrast to the monoclinic form (Lindqvist & Lehmann, 1973[Lindqvist, O. & Lehmann, M. S. (1973). Acta Chem. Scand. 27, 85-95.]). The H6TeO6 mol­ecule can be considered as an inter­esting building block for crystal engineering because it can offer each of its six hydroxyl groups for the formation of hydrogen bonds with neighbouring mol­ecules.

3-Pyridine­carboxamide (nicotinamide) is a biologically important mol­ecule which is an active part of the vitamin B3 and nicotinamide adenine dinucleotide (NAD) [see for example Wald (1991[Wald, N. (1991). Lancet 338, 131-137.]) and Williamson et al. (1967[Williamson, D. H., Lund, P. & Krebs, H. A. (1967). Biochem. J. 103, 514-527.])]. The inter­planar angles ANG between the pyridine and the amide groups in the 3-pyridine­carboxamide or 3-carbamoylpyridin-1-ium mol­ecules span a large angle because these two moieties are connected by a single C—C bond (bond D, Fig. 1[link]). (This single bond corresponds to the bond C1—C6 in the title structure.) Thus 3-pyridine­carboxamide as well as 3-carbamoylpyridin-1-ium mol­ecules can easily accommodate to the environment for optimization of the amide inter­actions. It seems that the bond length D tends to be longer in the 3-carbamoylpyridin-1-ium mol­ecules than in 3-pyridine­carboxamide mol­ecules. This phenomenon can easily be explained by the elongation of the C—NH+ bonds in comparison to the the C—N bonds in the conjugated bonds system present in the pyridine rings, and thus by a tendency to a slight elongation of bond D.

[Scheme 1]
[Figure 1]
Figure 1
Dependence of the C—C bond distance D, which inter­connects the pyridine and the amide groups, on the inter­planar angle (ANG) between these groups in 3-pyridine­carboxamide mol­ecules (black squares) or 3-carbamoylpyridin-1-ium mol­ecules (red circles). The inter­planar angle has been calculated from the non-hydrogen atoms of these groups. The title structure, which belongs among 3-pyridine­carboxamide mol­ecules, is depicted by a green triangle.

2. Structural commentary

The title mol­ecules are shown in Fig. 2[link]. The inter­planar angle between the pyridine non-hydrogen atoms and the non-hydrogen amide atoms is 15.25 (8)°.

[Figure 2]
Figure 2
The title mol­ecule with anisotropic atomic displacements shown at the 50% probability level (PLATON; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Table 2[link] lists the hydrogen bonds present in the title structure. The parameters of these hydrogen bonds place them in the category of moderate hydrogen bonds (Gilli & Gilli, 2009[Gilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press.]). The sheets composed of the telluric acid mol­ecules only are held together by O—H⋯O hydrogen bonds (Fig. 3[link]). These sheets alternate with the 3-pyridine­carboxamide mol­ecules, which are inter­connected by hydrogen bonds as well as by π-electron⋯π-electron ring inter­actions (Figs. 3[link]–5[link][link]). These sheets are parallel to (001). The presence of these sheets is so far unique among the known structures of mol­ecular crystals with H6TeO6 (see also the Chemical context section).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.83 (2) 2.11 (2) 2.9359 (18) 174.8 (19)
N2—H2N2⋯O4ii 0.81 (2) 2.26 (2) 2.9847 (17) 149.2 (18)
O2—H1O2⋯O6iii 0.81 (2) 1.92 (2) 2.7215 (15) 170 (2)
O3—H1O3⋯O7iv 0.78 (2) 1.93 (2) 2.6988 (15) 168 (2)
O4—H1O4⋯O2v 0.80 (2) 1.97 (2) 2.7621 (15) 171 (2)
O5—H1O5⋯O3vi 0.81 (2) 1.92 (2) 2.7237 (15) 170 (2)
O6—H1O6⋯O1v 0.79 (2) 2.02 (2) 2.7548 (15) 156 (2)
O7—H1O7⋯N1 0.82 (1) 1.79 (2) 2.6038 (16) 175 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z+1; (iii) -x, -y+1, -z; (iv) -x+1, -y, -z; (v) -x+1, -y+1, -z; (vi) -x, -y, -z.
[Figure 3]
Figure 3
View (DIAMOND; Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) of a sheet composed of H6TeO6 mol­ecules only. H, O and Te atoms are represented by small grey, red and green circles, respectively. Hydrogen bonds are shown as yellow dashed lines. Symmetry codes as in Table 2[link].
[Figure 4]
Figure 4
View (DIAMOND; Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) of the title structure along the b axis. C, H, N, O and Te atoms are represented by grey, small grey, blue, red and green circles, respectively. Hydrogen bonds are shown as yellow dashed lines. Symmetry codes as in Table 2[link]
[Figure 5]
Figure 5
View (DIAMOND; Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) of the title structure along the a axis. C, H, N, O and Te atoms are represented by grey, small grey, blue, red and green circles, respectively. Hydrogen bonds are shown as yellow dashed lines. The ππ electron-ring interactions are indicated by black dashed lines.

The secondary amine nitro­gen is the acceptor of the strongest hydrogen bond present in the structure (O7—H1O7⋯N1; Table 2[link]). The primary amine hydrogen H1N2 is donated to one of the hydroxyl oxygen atoms of the telluric acid while H2N2 is donated to the oxygen atom of the amide group (O4).

The most important piece of knowledge derived from the study of the title structure is the functionality of the telluric acid mol­ecule, which can become a constitutional part of the hydrogen-bonding pattern. This property of the telluric acid mol­ecule has not been so far studied in depth in mol­ecular crystals because of scarcity of relevant structural data.

3. Supra­molecular features

The telluric acid mol­ecules H6TeO6 form sheets (Fig. 3[link]) parallel to (001). Each telluric acid mol­ecule donates four hydrogen atoms to four symmetry-equivalent telluric acid mol­ecules and accepts four hydrogen atoms from these mol­ecules. These hydrogen bonds are arranged in centrosymmetric graph-set motifs R22(8) (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]): Te1/O3/⋯H1O5vi/O5vi/Te1vi/O3vi⋯H1O5/O5; Te1/O7/⋯H1O3iv/O3iv/Te1iv/O7iv⋯H1O3/O3; Te1/O6/⋯H1O2iii/O2iii/Te1iii/O6iii⋯H1O2/O2; Te1/O2/⋯H1O2/O4v/Te1v/O2v⋯H1O4/O4 (symmetry codes as in Table 2[link]).

Another hydrogen atom of the telluric acid is donated to atom N1, thus forming a chain with graph-set motif C(3). The chain is composed of the atoms O7—H1O7⋯N1 (Figs. 4[link] and 5[link]) and this hydrogen bond is the strongest of all the hydrogen bonds present in the title structure (Table 2[link]).

The primary amine hydrogen atom H1N2 is involved in the hydrogen bond N2—H1N2⋯O4ii (symmetry codes as in Table 2[link]). The other primary amine hydrogen atom, H2N2, takes part in the centrosymmetric pair with an R22(8) graph-set motif composed of the the atoms O1/C6/N2/H2N2⋯O2i/C6i/N2i/H2N2i (symmetry codes as in Table 2[link]; Figs. 4[link] and 5[link]).

The closest centroid–centroid distance [3.4101 (9) Å] indicates the presence of ππ inter­actions between adjacent pyridine rings (at x, y, z and −x + 1, −y, −z + 1) (Fig. 5[link]).

4. Synthesis and crystallization

Equimolar amounts of 3-pyridine­carboxamide (0.40 g) and telluric acid (0.75 g) were dissolved in water (10 ml). Colourless crystals of the title compound were obtained by slow evaporation over the course of three weeks.

5. Database survey

The applied crystallographic databases were the Cambridge Crystallographic Database (version 5.39 with updates up to May 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and the Inorganic Crystal Structure Database (ICSD-Web, June 2018; FIZ Karlsruhe, 2018).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All hydrogen atoms were discernible in the difference electron-density map. The constraints Car­yl—Har­yl = 0.95 Å and Uiso(Har­yl) = 1.2Ueq(Car­yl) were applied to the aryl H atoms. The positional parameters of the primary amine hydrogens H1N2 and H2N2 were refined freely, Uiso(H) = 1.5Ueq(N2). The positional parameters of the hydroxyl groups of H6TeO6 were refined with the distance restraints 0.84 Å with elasticities 0.02 Å (Müller, 2009[Müller, P. (2009). Crystallogr. Rev. 15, 57-83.]); Uiso(H) = 1.5Ueq(Otelluric acid). The reason for these restraints follows from quite short O—H distances, which spanned the inter­val 0.66 (2)–0.75 (2) Å if no restraint was applied. Reflection 011 was masked by the backstop and omitted from the refinement.

Table 3
Experimental details

Crystal data
Chemical formula C6H6N2O·H6O6Te
Mr 351.8
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 120
a, b, c (Å) 7.0094 (3), 7.5750 (3), 10.6149 (5)
α, β, γ (°) 70.945 (4), 78.748 (4), 89.901 (4)
V3) 521.32 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 2.88
Crystal size (mm) 0.31 × 0.21 × 0.09
 
Data collection
Diffractometer Rigaku Oxford Diffraction Xcalibur, AtlasS2, Gemini ultra
Absorption correction Analytical CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.618, 0.816
No. of measured, independent and observed [I > 2σ(I)] reflections 6995, 2408, 2254
Rint 0.019
(sin θ/λ)max−1) 0.671
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.012, 0.032, 1.08
No. of reflections 2408
No. of parameters 170
No. of restraints 6
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.42, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SIR2014 (Burla et al., 2015[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306-309.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: SIR2014 (Burla et al., 2015); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL (Sheldrick, 2015).

Pyridine-3-carboxamide–telluric acid (1/1) top
Crystal data top
C6H6N2O·H6O6TeZ = 2
Mr = 351.8F(000) = 340
Triclinic, P1Dx = 2.241 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0094 (3) ÅCell parameters from 5013 reflections
b = 7.5750 (3) Åθ = 3.3–28.4°
c = 10.6149 (5) ŵ = 2.88 mm1
α = 70.945 (4)°T = 120 K
β = 78.748 (4)°Prism, colourless
γ = 89.901 (4)°0.31 × 0.21 × 0.09 mm
V = 521.32 (4) Å3
Data collection top
Rigaku Oxford Diffraction Xcalibur, AtlasS2, Gemini ultra
diffractometer
2408 independent reflections
Radiation source: X-ray tube2254 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.3567 pixels mm-1θmax = 28.5°, θmin = 2.9°
ω scansh = 98
Absorption correction: analytical
CrysAlisPro (Rigaku OD, 2018)
k = 109
Tmin = 0.618, Tmax = 0.816l = 1413
6995 measured reflections
Refinement top
Refinement on F224 constraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.012 w = 1/[σ2(Fo2) + (0.0117P)2 + 0.2806P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.032(Δ/σ)max = 0.003
S = 1.08Δρmax = 0.42 e Å3
2408 reflectionsΔρmin = 0.35 e Å3
170 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
6 restraintsExtinction coefficient: 0.0185 (6)
Special details top

Refinement. The unrestrained refinement of the H atoms of the OH groups of the telluric acid resulted in too short O—H distances: O2 H1O2 0.70 (2) Å, O3 H1O3 0.66 (2) Å, O4 H1O4 0.70 (2) Å, O5 H1O5 0.72 (2) Å, O6 H1O6 0.70 (2) Å, O7 H1O7 0.75 (2) Å.

Therefore the restrained refinement has been applied. The O—H distances were retrained as 0.84 Å with elasticity 0.02 Å.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.87715 (15)0.43054 (16)0.38915 (10)0.0154 (2)
N10.39465 (19)0.18273 (18)0.33548 (12)0.0137 (3)
N20.7726 (2)0.3530 (2)0.61605 (13)0.0159 (3)
H1N20.872 (3)0.409 (3)0.6196 (19)0.019*
H2N20.687 (3)0.314 (3)0.683 (2)0.019*
C10.5627 (2)0.2754 (2)0.48208 (14)0.0115 (3)
C20.5568 (2)0.2446 (2)0.36022 (14)0.0125 (3)
H1C20.67290.26860.29220.015*
C30.2306 (2)0.1498 (2)0.43111 (16)0.0147 (3)
H1C30.11350.11240.41150.018*
C40.2249 (2)0.1682 (2)0.55750 (15)0.0148 (3)
H1C40.10800.13790.62500.018*
C50.3941 (2)0.2320 (2)0.58308 (15)0.0132 (3)
H1C50.39450.24590.66880.016*
C60.7492 (2)0.3584 (2)0.49361 (15)0.0121 (3)
Te10.24981 (2)0.25172 (2)0.00312 (2)0.00795 (5)
O20.26677 (16)0.45520 (15)0.06561 (11)0.0126 (2)
H1O20.164 (2)0.503 (3)0.072 (2)0.019*
O30.24036 (16)0.05185 (15)0.07618 (11)0.0118 (2)
H1O30.335 (2)0.002 (3)0.073 (2)0.018*
O40.46392 (15)0.36909 (16)0.15123 (11)0.0122 (2)
H1O40.533 (3)0.429 (3)0.127 (2)0.018*
O50.02924 (16)0.14607 (16)0.13902 (11)0.0135 (2)
H1O50.040 (3)0.081 (3)0.117 (2)0.020*
O60.07017 (15)0.37675 (16)0.11412 (11)0.0122 (2)
H1O60.119 (3)0.429 (3)0.1913 (15)0.018*
O70.42559 (16)0.12206 (16)0.10483 (11)0.0131 (2)
H1O70.409 (3)0.141 (3)0.1777 (16)0.020*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0120 (5)0.0219 (6)0.0120 (5)0.0006 (4)0.0017 (4)0.0055 (4)
N10.0173 (7)0.0122 (6)0.0135 (6)0.0022 (5)0.0058 (5)0.0053 (5)
N20.0112 (6)0.0252 (7)0.0113 (6)0.0033 (5)0.0013 (5)0.0066 (5)
C10.0125 (7)0.0114 (7)0.0113 (6)0.0030 (5)0.0046 (5)0.0035 (5)
C20.0135 (7)0.0121 (7)0.0117 (7)0.0019 (5)0.0022 (5)0.0039 (6)
C30.0141 (7)0.0126 (7)0.0185 (7)0.0014 (6)0.0058 (6)0.0052 (6)
C40.0126 (7)0.0145 (7)0.0159 (7)0.0015 (6)0.0014 (6)0.0040 (6)
C50.0161 (7)0.0133 (7)0.0113 (7)0.0028 (6)0.0038 (6)0.0051 (6)
C60.0116 (7)0.0130 (7)0.0127 (7)0.0040 (5)0.0038 (5)0.0052 (6)
Te10.00632 (6)0.01029 (6)0.00892 (6)0.00042 (3)0.00173 (4)0.00533 (4)
O20.0086 (5)0.0145 (5)0.0193 (5)0.0023 (4)0.0034 (4)0.0117 (4)
O30.0098 (5)0.0137 (5)0.0164 (5)0.0022 (4)0.0040 (4)0.0100 (4)
O40.0081 (5)0.0171 (6)0.0124 (5)0.0035 (4)0.0006 (4)0.0079 (4)
O50.0104 (5)0.0189 (6)0.0117 (5)0.0047 (4)0.0006 (4)0.0075 (4)
O60.0085 (5)0.0168 (5)0.0106 (5)0.0021 (4)0.0023 (4)0.0036 (4)
O70.0132 (5)0.0181 (6)0.0134 (5)0.0066 (4)0.0071 (4)0.0100 (4)
Geometric parameters (Å, º) top
O1—C61.2450 (18)C5—H1C50.9500
N1—C21.3337 (19)Te1—O71.8994 (11)
N1—C31.340 (2)Te1—O51.9007 (11)
N2—C61.3290 (19)Te1—O31.9197 (10)
N2—H1N20.83 (2)Te1—O41.9198 (11)
N2—H2N20.81 (2)Te1—O21.9212 (10)
C1—C51.390 (2)Te1—O61.9279 (11)
C1—C21.3955 (19)O2—H1O20.806 (15)
C1—C61.495 (2)O3—H1O30.781 (15)
C2—H1C20.9500O4—H1O40.796 (15)
C3—C41.387 (2)O5—H1O50.812 (15)
C3—H1C30.9500O6—H1O60.789 (15)
C4—C51.388 (2)O7—H1O70.818 (14)
C4—H1C40.9500
C2—N1—C3118.72 (13)O7—Te1—O592.47 (5)
C6—N2—H1N2117.2 (13)O7—Te1—O390.08 (5)
C6—N2—H2N2122.0 (14)O5—Te1—O392.84 (5)
H1N2—N2—H2N2120.0 (18)O7—Te1—O490.50 (5)
C5—C1—C2118.11 (14)O5—Te1—O4176.85 (4)
C5—C1—C6124.29 (13)O3—Te1—O488.21 (5)
C2—C1—C6117.58 (13)O7—Te1—O289.74 (5)
N1—C2—C1122.63 (14)O5—Te1—O289.02 (5)
N1—C2—H1C2118.7O3—Te1—O2178.14 (4)
C1—C2—H1C2118.7O4—Te1—O289.94 (5)
N1—C3—C4122.59 (14)O7—Te1—O6178.29 (4)
N1—C3—H1C3118.7O5—Te1—O687.35 (5)
C4—C3—H1C3118.7O3—Te1—O688.22 (5)
C3—C4—C5118.47 (14)O4—Te1—O689.72 (5)
C3—C4—H1C4120.8O2—Te1—O691.96 (5)
C5—C4—H1C4120.8Te1—O2—H1O2110.5 (15)
C4—C5—C1119.35 (13)Te1—O3—H1O3110.6 (15)
C4—C5—H1C5120.3Te1—O4—H1O4109.1 (15)
C1—C5—H1C5120.3Te1—O5—H1O5110.4 (15)
O1—C6—N2122.04 (14)Te1—O6—H1O6114.5 (15)
O1—C6—C1119.44 (13)Te1—O7—H1O7111.3 (14)
N2—C6—C1118.52 (13)
C3—N1—C2—C10.4 (2)C2—C1—C5—C42.8 (2)
C5—C1—C2—N12.7 (2)C6—C1—C5—C4175.27 (14)
C6—C1—C2—N1175.51 (13)C5—C1—C6—O1164.04 (14)
C2—N1—C3—C43.4 (2)C2—C1—C6—O114.1 (2)
N1—C3—C4—C53.2 (2)C5—C1—C6—N215.8 (2)
C3—C4—C5—C10.0 (2)C2—C1—C6—N2166.14 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.83 (2)2.11 (2)2.9359 (18)174.8 (19)
N2—H2N2···O4ii0.81 (2)2.26 (2)2.9847 (17)149.2 (18)
O2—H1O2···O6iii0.81 (2)1.92 (2)2.7215 (15)170 (2)
O3—H1O3···O7iv0.78 (2)1.93 (2)2.6988 (15)168 (2)
O4—H1O4···O2v0.80 (2)1.97 (2)2.7621 (15)171 (2)
O5—H1O5···O3vi0.81 (2)1.92 (2)2.7237 (15)170 (2)
O6—H1O6···O1v0.79 (2)2.02 (2)2.7548 (15)156 (2)
O7—H1O7···N10.82 (1)1.79 (2)2.6038 (16)175 (2)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y, z+1; (iii) x, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y, z.
Overview of the known structure determinations of molecular crystals containing the H6TeO6 molecule top
RefcodeReferenceImportant functional groups present in the structure
BINFAFTran Qui et al. (1982)aH3N+, COO-
BINFAF01Andersen et al. (1983)aH3N+, COO-
BINFAF02Tran Qui et al. (1987)aH3N+, COO-
BINFAF10Tran Qui et al. (1984)aH3N+, COO-
GUNQUBDriess et al. (2001)bN, NH, NH2
KUTBUWIlczyszyn et al. (1992)c(H3C)N+, COO-
UREATELoub et al. (1979)dNH2, CO
UREATE01Loub & Dušek (1986)dNH2, CO
UREATE02Averbuch-Pouchot & Durif (1989)dNH2, CO
VALTUXAverbuch-Pouchot (1988)eR2H2N+, COO-
ZARGIICísařová et al. (1995)fR3NH, COO-
Notes: (a) bis(glycine) hexahydroxytellurium monohydrate; (b) bis(adenine) hexahydroxytellurium tetrahydrate; (c) bis(betaine) telluric acid; (d) bis(urea) orthotelluric acid; (e) sarcosine telluric acid; (f) disodium hexahydrotelluric acid dihydrogenethylenediaminetetraacetate dihydrate.
 

Acknowledgements

Dr Michal Dušek from the Institute of Physics is thanked for the careful data collection.

Funding information

The author expresses his gratitude for support under Project NPU I - LO1603 of the Ministry of Education of the Czech Republic.

References

First citationAndersen, L., Lindqvist, O. & Moret, J. (1983). Acta Cryst. C39, 57–58.  CrossRef IUCr Journals Google Scholar
First citationAverbuch-Pouchot, M.-T. (1988). Z. Kristallogr. 183, 285.  Google Scholar
First citationAverbuch-Pouchot, M.-T. & Durif, A. (1989). C. R. Seances Acad. Sci. Ser. II, 309, 25.  Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChilds, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323–338.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCísařová, I., Podlahová, J. & Podlaha, J. (1995). Collect. Czech. Chem. Commun. 60, 820–828.  Google Scholar
First citationCohen-Addad, C. (1971). Bull. Soc. Franc. Miner. Crist. 94, 172–174.  Google Scholar
First citationCRC Handbook (2009). CRC Handbook of Chemistry and Physics, 90th ed., edited by D. R. Lidl, pp. 8–45. Boca Raton, London, New York: CRC Press.  Google Scholar
First citationCRC Handbook (2017). CRC Handbook of Chemistry and Physics, 97th ed., edited by W. M. Haynes, pp. 5–87. Boca Raton, London, New York: CRC Press.  Google Scholar
First citationDriess, M., Merz, K. & Rowlings, R. B. (2001). Z. Anorg. Allg. Chem. 627, 213–217.  CrossRef Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilli, G. & Gilli, P. (2009). The Nature of the Hydrogen Bond, p. 61. New York: Oxford University Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIlczyszyn, M. M., Lis, T., Baran, J. & Ratajczak, H. (1992). J. Mol. Struct. 265, 293–310.  CrossRef Google Scholar
First citationLindqvist, O. & Lehmann, M. S. (1973). Acta Chem. Scand. 27, 85–95.  CrossRef Google Scholar
First citationLoub, J. & Dušek, M. (1986). J. Appl. Cryst. 19, 202.  CrossRef IUCr Journals Google Scholar
First citationLoub, J., Haase, W. & Mergehenn, R. (1979). Acta Cryst. B35, 3039–3041.  CrossRef IUCr Journals Google Scholar
First citationMüller, P. (2009). Crystallogr. Rev. 15, 57–83.  Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTran Qui, D., Lambert-Andron, B. & Boucherle, J. X. (1987). Acta Cryst. C43, 907–909.  CrossRef IUCr Journals Google Scholar
First citationTran Qui, D., Vicat, J. & Durif, A. (1982). Proceedings of the Seventh European Crystallographic Meeting, 228.  Google Scholar
First citationTran Qui, D., Vicat, J. & Durif, A. (1984). Acta Cryst. C40, 181–184.  CSD CrossRef IUCr Journals Google Scholar
First citationWald, N. (1991). Lancet 338, 131-137.  CrossRef PubMed Google Scholar
First citationWilliamson, D. H., Lund, P. & Krebs, H. A. (1967). Biochem. J. 103, 514–527.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds