Download citation
Download citation
link to html
The CH2 (CH3 for IgM and IgE) domain of an antibody plays an important role in mediating effector functions and preserving antibody stability. It is the only domain in human immunoglobulins (Igs) which is involved in weak interchain protein–protein interactions with another CH2 domain solely through sugar moieties. The N-linked glycosylation at Asn297 is conserved in mammalian IgGs as well as in homologous regions of other antibody isotypes. To examine the structural details of the CH2 domain in the absence of glycosylation and other antibody domains, the crystal structure of an isolated unglycosylated antibody γ1 CH2 domain was determined at 1.7 Å resolution and compared with corresponding CH2 structures from intact Fc, IgG and Fc receptor complexes. Furthermore, the oligomeric state of the protein in solution was studied using size-exclusion chromatography. The results suggested that the unglycosylated human antibody CH2 domain is a monomer and that its structure is similar to that found in the intact Fc, IgG and Fc receptor complex structures. However, certain structural variations were observed in the Fc receptor-binding sites. Owing to its small size, stability and non-immunogenic Ig template, the CH2-domain structure could be useful for the development by protein design of antibody domains exerting effector functions and/or antigen specificity and as a robust scaffold in protein-engineering applications.

Supporting information

PDB reference: antibody CH2 domain, 3dj9, r3dj9sf


Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds