research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of a bis­­(3-hy­dr­oxy-cyclo­hex-2-en-1-one) and two hexa­hydro­quinoline derivatives

CROSSMARK_Color_square_no_text.svg

aDepartment of Biomedical and Pharmaceutical Sciences, The University of Montana, 32 Campus Drive, Missoula, MT 59812, USA, and bDepartment of Chemistry, Ithaca College, 953 Danby Road, Ithaca, NY 14850, USA
*Correspondence e-mail: nicholas.natale@mso.umt.edu

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 1 November 2019; accepted 19 December 2019; online 3 January 2020)

The title compound I, 2,2′-[(2-nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone), C23H27NO6, features a 1,3-ketone–enol conformation which is stabilized by two intra­molecular hydrogen bonds. The most prominent inter­molecular inter­actions in compound I are C—H⋯O hydrogen bonds, which link mol­ecules into a two-dimensional network parallel to the (001) plane and a chain perpendicular to (1[\overline{1}]1). Both title compounds II, ethyl 4-(4-hy­droxy-3,5-di­meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carb­oxyl­ate, C23H29NO6, and III, ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate, C29H29NO3, share the same structural features, such as a shallow boat conformation of the di­hydro­pyridine group and an orthogonal aryl group attached to the di­hydro­pyridine. Inter­molecular N—H⋯O bonding is present in the crystal packing of both compound II and III.

1. Chemical context

4-Aryl-1,4-di­hydro­pyridines (DHPs) that bind the L-type voltage-gated calcium channels (VGCC) have been applied in general medical practice for over three decades. (Zamponi, 2016[Zamponi, G. (2016). Nat. Rev. Drug Discov. 15, 19-34.]). Many modifications on 1,4-DHP have been performed to obtain active compounds such as calcium-channel agonists or antagonists. (Martín et al., 1995[Martín, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. & Bosque, J. (1995). J. Heterocycl. Chem. 32, 235-238.]; Rose, 1990[Rose, U. (1990). Arch. Pharm. Pharm. Med. Chem. 323, 281-286.]; Rose & Dräger, 1992[Rose, U. & Dräger, M. (1992). J. Med. Chem. 35, 2238-2243.]; Trippier et al. 2013[Trippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121-3147.]) One such modification is fusing a cyclo­hexa­none ring to form hexa­hydro­quinolone (HHQ), in which the orientation of the carbonyl group of the ester substituent at the 5-position in the 1,4-DHP ring has been fixed. This class of compounds has been shown to have calcium-channel antagonistic activity (Aygün Cevher et al., 2019[Aygün Cevher, H., Schaller, D., Gandini, M. A., Kaplan, O., Gambeta, E., Zhang, F. X., Çelebier, M., Tahir, M. N., Zamponi, G. W., Wolber, G. & Gündüz, M. G. (2019). Bioorg. Chem. 91, 103187.]), inhibit the multidrug-resistance transporter (MDR) (Shahraki et al., 2017[Shahraki, O., Edraki, N., Khoshneviszadeh, M., Zargari, F., Ranjbar, S., Saso, L., Firuzi, O. & Miri, R. (2017). Drug. Des. Dev. Ther. 11, 407-418.]), as well as possess anti-inflammatory and stem-cell differentiation properties, and has been implicated in slowing neurodegenerative disorders. (Trippier et al., 2013[Trippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121-3147.]). In the HHQ literature, specific substitution of the cyclo­hexenone ring can confer sub-type selectivity at the voltage-gated calcium channel (Schaller et al., 2018[Schaller, D., Gündüz, M. G., Zhang, F. X., Zamponi, G. W. & Wolber, G. (2018). Eur. J. Med. Chem. 155, 1-12.]). Our group has been inter­ested in bioisosteric 4-isoxazolyl-di­hydro­pyridines at the VGCC (Schauer et al., 1986[Schauer, C. K., Anderson, O. P., Natale, N. R. & Quincy, D. A. (1986). Acta Cryst. C42, 884-886.]; Zamponi et al., 2003[Zamponi, G., Stotz, S. C., Staples, R. J., Andro, T. M., Nelson, J. K., Hulubei, V., Blumenfeld, A. & Natale, N. R. (2003). J. Med. Chem. 46, 87-96.]; Natale et al., 2014[Natale, N. R. & Steiger, S. A. (2014). Future Med. Chem. 6, 923-943.]) and MDR (Steiger et al., 2017[Steiger, S. A., Li, C., Backos, D. S., Reigan, P. & Natale, N. R. (2017). Bioorg. Med. Chem. 25, 3223-3234.]), and continue our studies towards understanding stereoelectronic effects, which define selectivity, as well as to explore the scope and limitations of our synthetic methodologies (Steiger et al., 2016[Steiger, S. A., Li, C., Campana, C. F. & Natale, N. R. (2016). Tetrahedron Lett. 57, 423-425.]). These inter­ests led us to continue our pursuit of crystallographic studies in this area (Steiger et al., 2014a[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014a). Acta Cryst. C70, 790-795.],b[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014b). Acta Cryst. E70, o791-o792.]; 2018[Steiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417-1420.]).

[Scheme 1]

2. Structural commentary

Compound I crystallizes in the triclinic P[\overline{1}] space group with one independent mol­ecule in the asymmetric unit (Fig. 1[link]). As in other bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) compounds, in compound I the 1,3-ketone–enol conformation is stabilized by two inter­nal hydrogen bonds between two pairs of enols and ketones that bridge the two hy­droxy­cyclo­hexenones, in addition to the bridging carbon C7. The two hy­droxy­cyclo­hexenones are arranged along a pseudo-mirror plane formed by atoms C15, C11, C8, C7, C16, C19, and C22, which has a root-mean-square deviation (RMSD) of 0.025 Å. The phenyl ring attached to C7 flaps to one side of the above plane, with a plane normal angle of 44.34 (4)°.

[Figure 1]
Figure 1
The asymmetric unit of compound I showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate intra­molecular O—H⋯O hydrogen bonds.

Both 3-hy­droxy-5,5-dimethyl-cyclo­hex-2-en-1-one rings adopt an envelope conformation, with both methyl groups C14 and C23 having an axial orientation being trans to each other. As a result of the steric effect of the neighboring atoms and groups, instead of being on the same plane as the phenyl ring, the mean plane formed by the NO2 group is rotated out of the plane of the aromatic system with an angle of 52.85 (6)°. This may indicate a possible ππ inter­action between the NO2 group and the ketone–enol C=C bond, evidenced by a short-contact N1⋯C16 distance of 2.816 (2) Å and a short distance of 2.860 Å between N1 and the midpoint of the C16=C17 double bond. The inter­action of the NO2 group and the enol C16=C17 double bond were analyzed using Hirshfeld surface analysis and qu­anti­fied using the associated two-dimensional fingerprint plot (Fig. 2[link]), both performed with CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The electrostatic potentials were calculated using TONTO integrated within CrystalExplorer. Hirshfeld surfaces of the NO2 group and C16=C17 mapped over curvedness are shown in Fig. 2[link](c). The flat yellowish surfaces confirm that an intra­molecular ππ inter­action takes place between the NO2 group and the enol double bond. This is also evidence that the π-hole inter­action can stabilize conformers when the inter­acting atom is four or five bonds away from the N atom of a nitro aromatic compound (Franconetti et al., 2019[Franconetti, A., Frontera, A. & Mooibroek, T. J. (2019). CrystEngComm, 21, 5410-5417.]).

[Figure 2]
Figure 2
(a) View of the three-dimensional Hirshfeld surface of C16—C17 mapped over electrostatic potentials, over the range of −0.0221 to 0.9216 arbitrary units. (b) The two-dimensional fingerprint plot for the C=C⋯N inter­action. (c) The Hirshfeld surfaces of NO2 and C16—C17 mapped over curvedness.

Compounds II and III both crystallized racemically in the monoclinic space group P21/n. The asymmetric unit of compound II contains two independent mol­ecules (A and B), both in the same enanti­omeric configuration. The overall unit cell is racemic with four pairs of racemates. Compound III has only one independent mol­ecule in the asymmetric unit. The displacement ellipsoid plots showing the atomic numbering of compounds II and III are presented in Figs. 3[link] and 4[link], respectively.

[Figure 3]
Figure 3
The asymmetric unit of compound II showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed lines indicate the C9B—H9B⋯O6A hydrogen bond and the C—H⋯ π inter­action between H7A and the C17A—C22A bond. Other hydrogen atoms have been omitted for clarity.
[Figure 4]
Figure 4
The asymmetric unit of compound III showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. The C—H⋯π inter­action is indicated by a dashed line.

As in the other 4-aryl-hexa­hydro­quinoline derivatives (Steiger et al., 2014a[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014a). Acta Cryst. C70, 790-795.],b[Steiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014b). Acta Cryst. E70, o791-o792.]; 2018[Steiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417-1420.]) that we have reported, compound II has a flattened boat conformation on the 1,4-DHP ring. The mean plane defined by atoms C2, C3, C5, and C10 is planar with an RMSD of 0.000 and 0.006 Å for A and B, respectively. Atoms N1 and C4 are displaced slightly from the mean plane at distances of 0.1696 (11) Å for N1A and 0.1867 (11) Å for N1B, and 0.3722 (13) Å for C4A and 0.3506 (13) Å for C4B, respectively. The 4-di­hydroxy­lmethoxyphenyl ring is almost orthogonal to the 1,4-DHP basal plane comprising atoms C2, C3, C5, and C10, making dihedral angles of 88.03 (3) and 81.05 (3)° in IIA and IIB, respectively. The ring puckering parameters for the cyclo­hexa­none ring (C5–C10) indicate that it adopts an envelope conformation: Q = 0.4631 Å, θ = 58.01°, and φ = 168.1681° for IIA and Q = 0.4592 Å, θ = 124.10°, and φ = 344.3794° for IIB.

In the mol­ecule of compound II, the orientations of the ethyl groups on the ester and of the meth­oxy groups on the phenyl rings are different in mol­ecules A and B. The hydroxyl and meth­oxy groups are mostly co-planar with the phenyl ring to which they are attached in both mol­ecules A and B. The exception is one of the methyl groups in mol­ecule A, C24A, which protrudes out of the phenyl plane with a displacement of 1.2802 (12) Å. The angle between the O6A—C24A bond and the normal to the phenyl plane is 154.38 (5)°. Similarly, the ethyl group on the ester group in mol­ecule B is co-planar with the ester atoms O2B, O3B, and C14B whereas in mol­ecule A, the ethyl group is folded with an angle of 14.94 (10)° between the C15A—C16A bond and the normal to the O2A/O3A/C14A plane with atom C16A displaced by 1.656 (3) Å from the plane. These orientations imply that these two functional groups are flexible in the structure.

Although compounds II and III share the same structural features, such as the envelope conformation of the cyclo­hexa­none ring and the pseudo-axial position of the 4-aryl group, they exhibit differences, especially in the conformation of the 1,4-DHP ring. In compound III, atoms N1 and C4 are only slightly displaced from C2/C3/C5/C10 mean plane at distances of 0.107 (2) and 0.092 (2) Å, respectively. There is a short contact of 1.88 Å between hydrogen atoms H4 and H27. A C—H⋯π contact of 2.47 Å also exists between C19—H19 and the C5—C10 bond.

In compound III, the anthracenyl group bis­ects the basal plane of the 1,4-DHP ring, with N1⋯C4—C17—C18 torsion angle of 2.09 (15)°. As a result of the elongated aromatic system, the ethyl group on the ester is stabilized in a folded position by a weak C—H⋯π inter­action between C16—H16B and C25–C30 ring, with an H16-to-plane distance of 2.82 Å. The O=C—O ester group is no longer co-planar with the 1,4-DHP basal plane and the O2—C14—C3—C2 torsion angle is −25.10 (19)°.

3. Supra­molecular features

In compound I, C15—H15B⋯O3i and C20—H20B⋯O5ii and hydrogen bonds (Table 1[link]) between the same enanti­omers form a two-dimensional network parallel to (001), with one chain running along the a-axis direction and the other along the b-axis direction (Fig. 5[link]). Other inter­molecular O—H inter­actions such as C10—H10B⋯O5ii and C2—H2⋯O1i between a pair of enanti­omers form a chain of alternating enanti­omers (Fig. 6[link])

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O5 0.97 (3) 1.62 (3) 2.5570 (16) 162 (3)
O6—H6⋯O4 1.08 (4) 1.58 (4) 2.6437 (19) 166 (3)
C2—H2⋯O1i 0.95 2.63 3.538 (2) 160
C10—H10B⋯O5ii 0.99 2.65 3.6138 (19) 165
C15—H15B⋯O3iii 0.98 2.58 3.505 (2) 157
C18—H18B⋯O1 1.04 (2) 2.67 (2) 3.381 (2) 125.5 (16)
C20—H20B⋯O5iv 0.99 2.43 3.332 (2) 152
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z; (iii) x, y+1, z; (iv) x+1, y, z.
[Figure 5]
Figure 5
The packing of compound I showing the two-dimensional network parallel to the (001) plane. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.
[Figure 6]
Figure 6
The packing of compound I showing a chain of alternating enanti­omers. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

In compound II, there is a C9B—H9B⋯O6A hydrogen bond between mol­ecules A and B, with distance of 2.59 Å and a C—H⋯ π inter­action between C7B—H7A and the C17A—C22A bond with a distance of 2.6715 (6) Å. Links alternating between the two independent mol­ecules form a column through hydrogen bonds N1A—H1A⋯O1Bii and N1B—H1⋯O1Ai, which run along the b-axis direction. This column branches out through the O4A—H4C⋯O1Ai and C24A—H24E⋯O4Bv hydrogen bonds to another parallel column, forming a sheet perpendicular to (101) (Fig. 7[link]). Weak C23B—H23B⋯O2Bvi and C15B—H15A⋯O5Biii inter­actions link the B mol­ecules into a chain along the a-axis direction. A similar chain of A mol­ecules is formed through weak C12A—H12D⋯O2A′ inter­actions (Fig. 8[link]). Other hydrogen bonds are listed in the Table 2[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O4A—H4C⋯O1Ai 0.848 (17) 1.937 (17) 2.6948 (9) 148.0 (16)
N1A—H1A⋯O1Bii 0.880 (15) 1.890 (15) 2.7666 (10) 174.1 (13)
C7A—H7C⋯O6Bii 0.99 2.67 3.4510 (12) 136
C12A—H12D⋯O2Aiii 0.98 2.60 3.5237 (12) 157
C13A—H13D⋯O1Bii 0.98 2.59 3.3590 (12) 136
C16A—H16D⋯O4Aiv 0.98 2.65 3.3136 (13) 126
C24A—H24E⋯O4Bv 0.98 2.43 3.3105 (13) 149
N1B—H1⋯O1Ai 0.888 (15) 2.166 (15) 2.9479 (10) 146.6 (12)
C7B—H7B⋯O2A 0.99 2.69 3.4992 (11) 139
C9B—H9B⋯O6A 0.99 2.59 3.5751 (11) 172
C15B—H15A⋯O5Biii 0.99 2.60 3.4993 (12) 151
C23B—H23B⋯O2Bvi 0.98 2.55 3.4277 (13) 149
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) x-1, y, z; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (v) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (vi) x+1, y, z.
[Figure 7]
Figure 7
The packing of compound II showing an array of columns along the b axis formed by hydrogen bonds. Atoms involved in hydrogen bonds are labeled. H atoms not involved in hydrogen bonds are omitted for clarity. Mol­ecules A and B are colored in orange and lime, respectively. Mol­ecules colored in magenta are the enanti­omers of mol­ecule A, and those colored in teal are the enanti­omers of mol­ecule B.
[Figure 8]
Figure 8
The packing of compound II showing the chains formed by A and B mol­ecules along the a axis. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

In compound III, an N1—H1⋯O1i hydrogen bond (Table 3[link]) alternating between two enanti­omers results in a zigzag chain of racemic mol­ecules running perpendicular to the (101) plane. The C13—H13B⋯O2ii hydrogen bond cross-links a pair of enanti­omers from different chains and forms a sheet of mol­ecules parallel to (10[\overline1]) (Fig. 9[link]). As a consequence of close packing, several short contacts are observed, i.e. an edge-to-edge ππ contact of 2.7636 (15) Å between C21 and C21ii, H4⋯C29i = 2.76 Å and H7A⋯H24i = 2.60 Å (symmetry codes as in Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.90 (2) 1.94 (2) 2.7776 (16) 154.2 (18)
C13—H13B⋯O2ii 0.98 2.65 3.409 (2) 134
C19—H19⋯N1 0.95 2.48 3.4148 (19) 168
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.
[Figure 9]
Figure 9
The packing of compound III. Cross-linked zigzag chains of alternating enanti­omers form a sheet. For clarity, H atoms not participating in hydrogen bonds are omitted, and participating atoms are labeled once.

4. Database survey

A search for aryl­bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) compounds in the Cambridge Structural Database (CSD Version 5.40, update of August 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 29 hits, among which are two NO2-phenyl­bis­(3-hy­droxy-5,5-di­methyl­cyclo­hex-2-enone) compounds. One is NO2 substituted at the para position (CSD refcode IRODID; Yao et al., 2005[Yao, C. S., Zhu, S. L., Yu, C. X. & Tu, S. J. (2005). J. Xuzhou Normal Univ. (Nat. Sci.) 233, 65-67.]) while the other is NO2 substituted at the meta position (VUZYIZ; Palakshi Reddy et al., 2010[Palakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806-o2807.]) and both exhibit a similar structural configuration to that of compound I. However, with less steric effects surrounding the nitro group, both the p- and m-NO2 groups are tilted only slightly from the aromatic ring with torsion angles between the N=O and C=C bonds of ca 8.25 and 4.58°, respectively. In contrast, in compound I (an o-NO2 group), the torsion angle is 49.68 (6)°. The database search also found 20 4-aryl-hexa­hydro­quinoline-3-carboxyl­ate derivatives. All of them display the same common structural features as compounds II and III in this report, such as the flat-boat conformation of the 1,4-DHP ring, the envelope conformation of the fused cyclo­hexa­none ring, and the substituted phenyl ring at the pseudo-axial position and orthogonal to the 1,4-DHP ring.

5. Synthesis and crystallization

The synthesis was performed as outlined in the scheme. An oven-dried 100 ml round-bottom flask equipped with a magnetic stir bar was charged with 10 mmol of dimedone, 10 mmol of ethyl aceto­acetate and 5 mol% of ytterbium(III) tri­fluoro­methane­sulfonate (Wang et al., 2005[Wang, L.-M., Sheng, J., Zhang, L., Han, J.-W., Fan, Z.-Y., Tian, H. & Qian, C.-T. (2005). Tetrahedron, 61, 1539-1543.]). The mixture was then taken up in 30 ml of absolute ethanol, capped and placed under an inert atmosphere of argon, after which the solution was allowed to stir at room temperature for 20 min. The appropriate corresponding benzaldehyde (10 mmol) and 10 mmol of ammonium acetate were added to the stirring solution, the solution was allowed to stir at room temperature for 48 h. Reaction progress was monitored via TLC. Once the reaction was complete, excess solvent was removed via rotary evaporation. The solution was then purified via silica column chromatography. The title compound was recrystallized by slow evaporation from hexane and ethyl acetate (v:v = 3:1).

2,2′-[(2-Nitro­phen­yl)methyl­ene]bis­(3-hy­droxy-5,5-di­meth­yl­cyclo­hex-2-enone) (I). 1H NMR (CDCl3) δ ppm 7.99 (d, J = 7.8 Hz, 1H); 7.39 (ddd, J = 1.37, 6.88 & 8 Hz, 1H); 7.35 (dd, J = 1.83 & 8.24 Hz, 1H); 7.30 (ddd, J = 1.37, 1.83 & 7.58 Hz, 1H), 5.01 (s, 1H); 3.35 (s, 1H); 2. 82 (s, 1H); 2.45 (dd, J = 4.35 & 14.76 Hz, 2H); 2.25 (m, 4H); 2.10 (dd, J = 1.83 & 14.20 Hz, 1 Hz); 2.04 (d, J =14.20 Hz, 1H); 1.14 (s, 3H); 1.11 (s, 3H); 1.04 (s, 3H); 0.95 (s, 3H). 13C NMR δ ppm 190.99, 189.51, 149.79, 132.16, 131.46, 129.67, 127.27, 124.44, 114.73, 46.93, 46.35, 32.00, 30.14, 28.62, 28.25. LC–MS calculated for C23H27NO6, observed m/z 414 ([M+1]+, 100% rel. intensity).

Ethyl 4-(4-hy­droxy-3,5-di­meth­oxy­phen­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (II)[link]. Spec­tra are similar to those for the product of the synthesis previously reported by Yang et al. (2011[Yang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, x, 327-337.]). 1H NMR (CDCl3) δ ppm 6.56 (s, 2H, Ar-H); 5.69 (br.s, 1H); 5.33 (s, 1H); 5.01 (s, 1H); 4.10 (q, 2H, J = 6Hz); 3.83 (s, 6H); 2.39 (s, 3H); 2.36, s, 1H); 2.225 (q, 2H, J = 16 Hz); 2.18 (s, 1H); 1.24 (t, 3H, J = 6Hz); 1.10(s, 3H); 0.99 (s, 3H). 13C NMR δ ppm 195.47, 167.42, 147.49, 146.49, 133.15, 112.33, 106.26, 104.98, 59.82, 56.23, 50.69, 36.34, 32.69, 29.58, 26.84, 19.53, 14.33. LC–MS calculated for C23H29NO6, observed m/z 831 ([M2+1]+, 100% rel. intensity), 416 ([M+1]+, 74), 262 ([M-4-Ar-H]+, 81).

Ethyl 4-(9′-Anthr­yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexa­hydro­quinoline-3-carboxyl­ate (III). 1H NMR (CDCl3) δ ppm 9.09 (d, 1H); 8.29 (s, 2H); 7.93 (m, 2H); 7.57 (m, 1H); 7.43 (m, 1H); 7.33 (m, 2H); 6.68 (s, 1H); 5.92 (br. s, 1H); 3.7 (m, 2H, OCH2CH3), 2.06 (d, 1H, J = 16 Hz); 1.97 (d, 1H, J = 16 Hz); 0.5 (t, 3H, OCH2CH3, J = 8 Hz). 13C NMR δppm 195.69, 167.41, 159.11, 147.37, 112.69, 111.72, 107.7, 59.39, 50.49, 32.27, 30.93, 29.11, 27.38, 19.11, 13.44. C29H29NO3, observed m/z 440 [M+1]+, 11.5% rel. intensity), 262 ([M-4-Ar-H]+, 100).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 A) and refined with isotropic displacement parameters 1.2–1.5 times those of the parent atoms. Hydrogen atoms attached to nitro­gen and oxygen were found in difference-Fourier maps and refined freely. In compound III, three reflections ([\overline{1}]01, 110, and 020) affected by the beam stop were omitted because of poor agreement between the observed and calculated intensities.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C23H27NO6 C23H29NO6 C29H29NO3
Mr 413.45 415.47 439.53
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100 100
a, b, c (Å) 8.7024 (3), 9.8709 (4), 13.1621 (5) 10.8854 (4), 25.2446 (10), 15.3665 (6) 11.6527 (3), 18.1986 (4), 12.3435 (3)
α, β, γ (°) 90.3822 (19), 108.9608 (18), 97.3571 (18) 90, 100.7606 (19), 90 90, 114.8758 (12), 90
V3) 1059.08 (7) 4148.4 (3) 2374.74 (10)
Z 2 8 4
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.09 0.10 0.08
Crystal size (mm) 0.39 × 0.25 × 0.13 0.48 × 0.43 × 0.31 0.45 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker SMART BREEZE CCD Bruker SMART BREEZE CCD Bruker SMART BREEZE CCD
No. of measured, independent and observed [I > 2σ(I)] reflections 29458, 5315, 4254 168826, 12707, 11044 72579, 5902, 4515
Rint 0.031 0.045 0.055
(sin θ/λ)max−1) 0.683 0.716 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.154, 1.04 0.039, 0.108, 1.04 0.048, 0.135, 1.04
No. of reflections 5315 12707 5902
No. of parameters 291 569 306
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.65, −0.25 0.52, −0.21 0.54, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For all structures, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2,2'-[(2-Nitrophenyl)methylene]bis(3-hydroxy-5,5-dimethylcyclohex-2-enone) (I) top
Crystal data top
C23H27NO6Z = 2
Mr = 413.45F(000) = 440
Triclinic, P1Dx = 1.297 Mg m3
a = 8.7024 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8709 (4) ÅCell parameters from 9400 reflections
c = 13.1621 (5) Åθ = 2.5–28.8°
α = 90.3822 (19)°µ = 0.09 mm1
β = 108.9608 (18)°T = 100 K
γ = 97.3571 (18)°Prism, yellow
V = 1059.08 (7) Å30.39 × 0.25 × 0.13 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
Rint = 0.031
φ and ω scansθmax = 29.1°, θmin = 2.5°
29458 measured reflectionsh = 1111
5315 independent reflectionsk = 1313
4254 reflections with I > 2σ(I)l = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0841P)2 + 0.5356P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5315 reflectionsΔρmax = 0.65 e Å3
291 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O50.04549 (13)0.40295 (11)0.15867 (9)0.0208 (2)
O30.21250 (13)0.20362 (12)0.17985 (9)0.0236 (3)
O40.68127 (15)0.53646 (13)0.29954 (11)0.0320 (3)
O60.50510 (15)0.73583 (13)0.29901 (10)0.0296 (3)
C90.11023 (18)0.52479 (16)0.18099 (11)0.0185 (3)
O20.61739 (15)0.30380 (15)0.47643 (10)0.0346 (3)
O10.50744 (18)0.09861 (14)0.41032 (11)0.0380 (3)
C160.44538 (19)0.37141 (16)0.25549 (12)0.0203 (3)
C80.27365 (18)0.56290 (16)0.25447 (11)0.0183 (3)
C70.37049 (18)0.45661 (15)0.31983 (11)0.0182 (3)
H70.4665540.5109010.3750980.022*
N10.49857 (19)0.21541 (16)0.43905 (11)0.0279 (3)
C100.0114 (2)0.63357 (17)0.12509 (13)0.0235 (3)
H10A0.1042250.6065430.1207250.028*
H10B0.0143140.6367670.0505740.028*
C170.36806 (18)0.25256 (16)0.19662 (12)0.0209 (3)
C130.34611 (19)0.69472 (17)0.25407 (12)0.0218 (3)
C60.28101 (18)0.36902 (16)0.38462 (11)0.0191 (3)
C210.61154 (19)0.42118 (18)0.26078 (13)0.0237 (3)
C180.4540 (2)0.15999 (18)0.14946 (14)0.0249 (3)
C120.2536 (2)0.80723 (17)0.20066 (13)0.0249 (3)
H12A0.2737240.8235720.1316420.030*
H12B0.2968540.8922380.2469280.030*
C110.0687 (2)0.77713 (16)0.17870 (13)0.0230 (3)
C10.3365 (2)0.25007 (17)0.43280 (12)0.0238 (3)
C20.2498 (2)0.16111 (18)0.48286 (13)0.0285 (4)
H20.2883040.0781280.5093120.034*
C40.0550 (2)0.31725 (19)0.45528 (13)0.0277 (4)
H40.0392750.3442840.4667570.033*
C190.6040 (2)0.23166 (18)0.12570 (14)0.0267 (4)
C140.0311 (2)0.78794 (18)0.28423 (14)0.0280 (4)
H14A0.0862460.7594170.2705620.042*
H14B0.0607340.8828210.3134480.042*
H14C0.0946980.7284980.3361440.042*
C50.13841 (19)0.40093 (17)0.40030 (12)0.0220 (3)
H50.0971290.4824170.3725020.026*
C200.7057 (2)0.3260 (2)0.22307 (15)0.0310 (4)
H20A0.7563930.2689570.2831960.037*
H20B0.7956690.3812630.2050320.037*
C30.1069 (2)0.19581 (19)0.49334 (14)0.0304 (4)
H3A0.0448320.1363390.5265470.036*
C220.7073 (2)0.1264 (2)0.10677 (18)0.0361 (4)
H22A0.7408860.0719410.1702620.054*
H22B0.8048720.1735970.0939040.054*
H22C0.6423130.0661010.0439890.054*
C150.0190 (2)0.87981 (19)0.10242 (15)0.0321 (4)
H15A0.0012190.8716200.0337630.048*
H15B0.0225490.9727260.1344280.048*
H15C0.1371910.8609840.0901110.048*
C230.5504 (3)0.3151 (2)0.02618 (16)0.0377 (4)
H23A0.4914400.2534000.0369190.057*
H23B0.6472920.3668410.0153460.057*
H23C0.4781640.3786620.0361900.057*
H30.160 (4)0.282 (3)0.187 (2)0.069 (9)*
H18A0.377 (3)0.114 (2)0.093 (2)0.042 (6)*
H18B0.486 (3)0.084 (2)0.2037 (19)0.042 (6)*
H60.569 (5)0.647 (4)0.307 (3)0.103 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0178 (5)0.0222 (6)0.0217 (5)0.0004 (4)0.0066 (4)0.0023 (4)
O30.0172 (5)0.0246 (6)0.0287 (6)0.0011 (4)0.0089 (4)0.0045 (5)
O40.0232 (6)0.0310 (7)0.0418 (7)0.0051 (5)0.0142 (5)0.0105 (5)
O60.0217 (6)0.0284 (6)0.0351 (7)0.0051 (5)0.0080 (5)0.0042 (5)
C90.0194 (7)0.0225 (7)0.0163 (7)0.0031 (6)0.0095 (6)0.0003 (5)
O20.0232 (6)0.0471 (8)0.0292 (6)0.0049 (6)0.0029 (5)0.0016 (6)
O10.0496 (8)0.0338 (7)0.0369 (7)0.0206 (6)0.0170 (6)0.0081 (6)
C160.0182 (7)0.0224 (7)0.0216 (7)0.0027 (6)0.0083 (6)0.0001 (6)
C80.0177 (7)0.0213 (7)0.0167 (6)0.0027 (5)0.0068 (5)0.0018 (5)
C70.0163 (7)0.0209 (7)0.0172 (7)0.0005 (5)0.0061 (5)0.0027 (5)
N10.0304 (8)0.0335 (8)0.0209 (7)0.0114 (6)0.0070 (6)0.0047 (6)
C100.0233 (8)0.0249 (8)0.0202 (7)0.0034 (6)0.0043 (6)0.0017 (6)
C170.0178 (7)0.0246 (8)0.0211 (7)0.0024 (6)0.0075 (6)0.0004 (6)
C130.0210 (7)0.0249 (8)0.0203 (7)0.0007 (6)0.0095 (6)0.0032 (6)
C60.0185 (7)0.0236 (7)0.0143 (6)0.0000 (6)0.0054 (5)0.0029 (5)
C210.0181 (7)0.0310 (9)0.0213 (7)0.0006 (6)0.0068 (6)0.0029 (6)
C180.0211 (8)0.0265 (8)0.0280 (8)0.0008 (6)0.0103 (7)0.0065 (7)
C120.0299 (8)0.0208 (8)0.0260 (8)0.0003 (6)0.0135 (7)0.0017 (6)
C110.0278 (8)0.0218 (8)0.0210 (7)0.0052 (6)0.0095 (6)0.0034 (6)
C10.0234 (8)0.0280 (8)0.0186 (7)0.0048 (6)0.0044 (6)0.0028 (6)
C20.0382 (10)0.0257 (8)0.0194 (7)0.0022 (7)0.0072 (7)0.0019 (6)
C40.0255 (8)0.0383 (10)0.0210 (7)0.0000 (7)0.0115 (6)0.0012 (7)
C190.0241 (8)0.0288 (9)0.0311 (8)0.0032 (6)0.0144 (7)0.0028 (7)
C140.0333 (9)0.0289 (9)0.0278 (8)0.0079 (7)0.0166 (7)0.0018 (7)
C50.0224 (8)0.0264 (8)0.0179 (7)0.0037 (6)0.0076 (6)0.0005 (6)
C200.0176 (7)0.0369 (10)0.0395 (10)0.0011 (7)0.0128 (7)0.0102 (8)
C30.0365 (9)0.0335 (9)0.0222 (8)0.0030 (7)0.0142 (7)0.0013 (7)
C220.0283 (9)0.0356 (10)0.0493 (11)0.0062 (7)0.0190 (8)0.0077 (8)
C150.0384 (10)0.0259 (9)0.0312 (9)0.0091 (7)0.0084 (8)0.0071 (7)
C230.0470 (11)0.0377 (11)0.0379 (10)0.0098 (9)0.0254 (9)0.0049 (8)
Geometric parameters (Å, º) top
O5—C91.2507 (19)C17—C181.499 (2)
O3—C171.3234 (19)C13—C121.499 (2)
O4—C211.240 (2)C6—C11.404 (2)
O6—C131.3228 (19)C6—C51.395 (2)
C9—C81.437 (2)C21—C201.502 (2)
C9—C101.507 (2)C18—C191.528 (2)
O2—N11.227 (2)C12—C111.528 (2)
O1—N11.231 (2)C11—C141.533 (2)
C16—C71.529 (2)C11—C151.527 (2)
C16—C171.370 (2)C1—C21.391 (2)
C16—C211.445 (2)C2—C31.380 (3)
C8—C71.523 (2)C4—C51.389 (2)
C8—C131.372 (2)C4—C31.375 (3)
C7—C61.533 (2)C19—C201.526 (2)
N1—C11.470 (2)C19—C221.526 (2)
C10—C111.527 (2)C19—C231.526 (3)
O5—C9—C8122.69 (14)O4—C21—C16122.67 (15)
O5—C9—C10117.37 (13)O4—C21—C20118.99 (14)
C8—C9—C10119.93 (13)C16—C21—C20118.26 (15)
C17—C16—C7124.87 (14)C17—C18—C19114.49 (14)
C17—C16—C21119.05 (14)C13—C12—C11113.81 (13)
C21—C16—C7116.07 (13)C10—C11—C12107.37 (13)
C9—C8—C7121.06 (13)C10—C11—C14111.47 (14)
C13—C8—C9117.49 (14)C10—C11—C15109.11 (14)
C13—C8—C7121.00 (13)C12—C11—C14110.01 (14)
C16—C7—C6112.82 (12)C15—C11—C12110.07 (14)
C8—C7—C16113.54 (12)C15—C11—C14108.80 (14)
C8—C7—C6114.51 (12)C6—C1—N1121.11 (15)
O2—N1—O1124.15 (16)C2—C1—N1114.97 (15)
O2—N1—C1117.60 (14)C2—C1—C6123.83 (15)
O1—N1—C1118.19 (15)C3—C2—C1118.67 (16)
C9—C10—C11115.19 (13)C3—C4—C5120.92 (16)
O3—C17—C16123.87 (14)C20—C19—C18107.98 (14)
O3—C17—C18112.79 (14)C20—C19—C22109.38 (15)
C16—C17—C18123.25 (14)C22—C19—C18110.18 (15)
O6—C13—C8123.82 (15)C23—C19—C18110.18 (15)
O6—C13—C12112.72 (14)C23—C19—C20109.85 (16)
C8—C13—C12123.46 (14)C23—C19—C22109.26 (15)
C1—C6—C7122.42 (13)C4—C5—C6122.05 (15)
C5—C6—C7122.82 (14)C21—C20—C19114.88 (14)
C5—C6—C1114.76 (14)C4—C3—C2119.41 (16)
O5—C9—C8—C77.3 (2)C7—C6—C1—C2173.36 (14)
O5—C9—C8—C13165.07 (14)C7—C6—C5—C4177.16 (14)
O5—C9—C10—C11161.40 (13)N1—C1—C2—C3171.47 (15)
O3—C17—C18—C19156.51 (14)C10—C9—C8—C7174.32 (13)
O4—C21—C20—C19146.42 (16)C10—C9—C8—C1313.3 (2)
O6—C13—C12—C11162.31 (13)C17—C16—C7—C888.49 (18)
C9—C8—C7—C1678.45 (17)C17—C16—C7—C643.9 (2)
C9—C8—C7—C653.11 (18)C17—C16—C21—O4169.75 (16)
C9—C8—C13—O6164.77 (14)C17—C16—C21—C2013.6 (2)
C9—C8—C13—C1214.0 (2)C17—C18—C19—C2045.7 (2)
C9—C10—C11—C1249.40 (17)C17—C18—C19—C22165.08 (15)
C9—C10—C11—C1471.15 (18)C17—C18—C19—C2374.29 (19)
C9—C10—C11—C15168.67 (14)C13—C8—C7—C1693.69 (17)
O2—N1—C1—C651.4 (2)C13—C8—C7—C6134.75 (14)
O2—N1—C1—C2125.14 (16)C13—C12—C11—C1048.40 (17)
O1—N1—C1—C6131.16 (16)C13—C12—C11—C1473.07 (17)
O1—N1—C1—C252.2 (2)C13—C12—C11—C15167.05 (14)
C16—C7—C6—C135.67 (19)C6—C1—C2—C35.0 (2)
C16—C7—C6—C5144.27 (14)C21—C16—C7—C892.93 (16)
C16—C17—C18—C1926.7 (2)C21—C16—C7—C6134.69 (14)
C16—C21—C20—C1936.8 (2)C21—C16—C17—O3174.70 (14)
C8—C9—C10—C1120.2 (2)C21—C16—C17—C188.9 (2)
C8—C7—C6—C1167.58 (13)C18—C19—C20—C2151.4 (2)
C8—C7—C6—C512.4 (2)C1—C6—C5—C42.8 (2)
C8—C13—C12—C1118.8 (2)C1—C2—C3—C40.7 (2)
C7—C16—C17—O36.8 (3)C5—C6—C1—N1169.69 (14)
C7—C16—C17—C18169.69 (15)C5—C6—C1—C26.6 (2)
C7—C16—C21—O411.6 (2)C5—C4—C3—C24.3 (3)
C7—C16—C21—C20165.04 (15)C3—C4—C5—C62.5 (2)
C7—C8—C13—O67.6 (2)C22—C19—C20—C21171.31 (16)
C7—C8—C13—C12173.56 (14)C23—C19—C20—C2168.8 (2)
C7—C6—C1—N110.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.97 (3)1.62 (3)2.5570 (16)162 (3)
O6—H6···O41.08 (4)1.58 (4)2.6437 (19)166 (3)
C2—H2···O1i0.952.633.538 (2)160
C10—H10B···O5ii0.992.653.6138 (19)165
C15—H15B···O3iii0.982.583.505 (2)157
C18—H18B···O11.04 (2)2.67 (2)3.381 (2)125.5 (16)
C20—H20B···O5iv0.992.433.332 (2)152
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y, z.
Ethyl 4-(4-hydroxy-3,5-dimethoxyphenyl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (II) top
Crystal data top
C23H29NO6F(000) = 1776
Mr = 415.47Dx = 1.330 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.8854 (4) ÅCell parameters from 9684 reflections
b = 25.2446 (10) Åθ = 2.7–30.5°
c = 15.3665 (6) ŵ = 0.10 mm1
β = 100.7606 (19)°T = 100 K
V = 4148.4 (3) Å3Prism, colourless
Z = 80.48 × 0.43 × 0.31 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
Rint = 0.045
φ and ω scansθmax = 30.6°, θmin = 1.6°
168826 measured reflectionsh = 1515
12707 independent reflectionsk = 3636
11044 reflections with I > 2σ(I)l = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.060P)2 + 1.3541P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
12707 reflectionsΔρmax = 0.52 e Å3
569 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.09761 (6)0.68726 (3)0.28219 (5)0.01536 (13)
O2A0.66193 (6)0.61973 (3)0.32843 (5)0.01652 (13)
O3A0.54423 (6)0.69363 (3)0.31163 (5)0.01527 (13)
O4A0.40914 (7)0.74895 (3)0.70657 (5)0.01676 (14)
H4C0.4593 (16)0.7750 (7)0.7112 (11)0.035 (4)*
O5A0.31079 (7)0.65461 (3)0.68643 (4)0.01866 (14)
O6A0.47618 (6)0.80349 (3)0.56333 (5)0.01668 (14)
N1A0.34484 (7)0.54131 (3)0.39339 (5)0.01093 (13)
H1A0.3460 (13)0.5068 (6)0.4013 (9)0.021 (3)*
C2A0.45480 (8)0.56515 (3)0.38033 (5)0.01037 (15)
C3A0.45444 (8)0.61775 (3)0.36062 (6)0.01007 (14)
C4A0.33953 (8)0.65156 (3)0.36544 (5)0.00946 (14)
H4B0.3325670.6794210.3185050.011*
C5A0.22391 (8)0.61725 (3)0.34576 (5)0.00925 (14)
C6A0.10568 (8)0.63990 (3)0.30421 (5)0.00999 (14)
C7A0.00768 (8)0.60412 (3)0.28469 (6)0.01162 (15)
H7C0.0135010.5889370.2246620.014*
H7D0.0837390.6256170.2847130.014*
C8A0.00446 (8)0.55865 (3)0.35161 (6)0.01072 (15)
C9A0.11952 (8)0.52866 (3)0.35798 (6)0.01071 (15)
H9C0.1308110.5049440.4101760.013*
H9D0.1152820.5062530.3046260.013*
C10A0.23072 (8)0.56462 (3)0.36583 (5)0.00927 (14)
C11A0.01825 (9)0.58146 (4)0.44184 (6)0.01572 (17)
H11D0.0499140.6064780.4621310.024*
H11E0.0148410.5526010.4848880.024*
H11F0.0986350.5998540.4361320.024*
C12A0.11296 (9)0.52050 (4)0.31995 (7)0.01625 (17)
H12D0.1924030.5395840.3147120.024*
H12E0.1106120.4915810.3627710.024*
H12F0.1053060.5059200.2620950.024*
C13A0.56241 (8)0.52727 (4)0.38723 (6)0.01339 (16)
H13D0.5435030.4949670.4175710.020*
H13E0.6380140.5438010.4209130.020*
H13F0.5759970.5182860.3277030.020*
C14A0.56421 (8)0.64179 (4)0.33347 (6)0.01162 (15)
C15A0.63909 (9)0.71842 (4)0.27011 (6)0.01674 (17)
H15C0.7232060.7076230.3014640.020*
H15D0.6327450.7574220.2742560.020*
C16A0.62173 (10)0.70211 (4)0.17397 (7)0.02087 (19)
H16D0.6743310.7243030.1435330.031*
H16E0.5338310.7065700.1458510.031*
H16F0.6457600.6648930.1701670.031*
C17A0.35248 (8)0.67935 (3)0.45549 (6)0.01023 (15)
C18A0.32110 (8)0.65290 (3)0.52864 (6)0.01201 (15)
H18A0.2868180.6182260.5213740.014*
C19A0.33951 (8)0.67677 (4)0.61162 (6)0.01263 (16)
C20A0.39194 (8)0.72784 (4)0.62385 (6)0.01266 (16)
C21A0.42098 (8)0.75402 (3)0.55069 (6)0.01235 (16)
C22A0.40129 (8)0.73027 (3)0.46704 (6)0.01162 (15)
H22A0.4213640.7490090.4179340.014*
C23A0.25765 (10)0.60304 (4)0.67836 (7)0.02005 (19)
H23D0.1793410.6036520.6348940.030*
H23E0.2407150.5916040.7359080.030*
H23F0.3162500.5782940.6586940.030*
C24A0.38733 (10)0.84600 (4)0.54853 (7)0.02017 (19)
H24D0.3374790.8431720.4886240.030*
H24E0.4317360.8799530.5548670.030*
H24F0.3320680.8439130.5919770.030*
O1B0.64618 (7)0.56795 (3)0.59302 (5)0.01898 (14)
O2B0.42404 (7)0.61173 (3)0.93863 (5)0.02210 (15)
O3B0.47350 (6)0.54093 (3)0.86392 (5)0.01724 (14)
O4B1.07150 (7)0.47496 (3)0.91945 (5)0.01745 (14)
H41.1277 (17)0.4973 (7)0.9396 (12)0.040 (5)*
O5B1.09254 (6)0.57723 (3)0.88846 (5)0.01832 (14)
O6B0.85544 (7)0.42479 (3)0.88741 (5)0.01802 (14)
N1B0.67195 (7)0.70086 (3)0.81054 (5)0.01272 (14)
H10.6769 (13)0.7356 (6)0.8200 (9)0.022 (3)*
C2B0.60016 (8)0.67286 (4)0.86093 (6)0.01315 (16)
C3B0.57467 (8)0.62086 (4)0.84315 (6)0.01213 (15)
C4B0.63347 (8)0.59179 (3)0.77391 (6)0.01085 (15)
H4A0.5703910.5661450.7424800.013*
C5B0.66228 (8)0.63135 (3)0.70649 (6)0.01071 (15)
C6B0.66639 (8)0.61434 (3)0.61710 (6)0.01161 (15)
C7B0.69106 (8)0.65543 (3)0.55138 (6)0.01271 (15)
H7A0.6106420.6718730.5237440.015*
H7B0.7258840.6376500.5039290.015*
C8B0.78141 (8)0.69911 (3)0.59211 (6)0.01258 (15)
C9B0.73133 (8)0.72350 (3)0.67009 (6)0.01263 (15)
H9A0.7981260.7451080.7059250.015*
H9B0.6608840.7474370.6466160.015*
C10B0.68745 (8)0.68288 (3)0.72894 (6)0.01098 (15)
C11B0.91219 (9)0.67533 (4)0.62358 (7)0.01783 (18)
H11A0.9066850.6459160.6642970.027*
H11B0.9682280.7026190.6541580.027*
H11C0.9450070.6623030.5723590.027*
C12B0.78685 (10)0.74186 (4)0.52223 (7)0.01908 (18)
H12A0.8179870.7263050.4720810.029*
H12B0.8431310.7703220.5482820.029*
H12C0.7028980.7563060.5016000.029*
C13B0.55601 (10)0.70687 (4)0.92881 (7)0.02043 (19)
H13A0.6171410.7350370.9476640.031*
H13B0.5468650.6851610.9800880.031*
H13C0.4751270.7226650.9030900.031*
C14B0.48511 (8)0.59282 (4)0.88766 (6)0.01479 (16)
C15B0.37849 (9)0.51189 (4)0.89925 (7)0.01923 (18)
H15A0.2944550.5257950.8737050.023*
H15B0.3920240.5160620.9644090.023*
C16B0.38731 (10)0.45419 (4)0.87558 (7)0.02153 (19)
H16A0.3767400.4505550.8111170.032*
H16B0.3215670.4342090.8968280.032*
H16C0.4693510.4403250.9034270.032*
C17B0.75057 (8)0.56042 (3)0.81518 (6)0.01136 (15)
C18B0.86636 (8)0.58599 (4)0.83344 (6)0.01318 (16)
H180.8719980.6227990.8219190.016*
C19B0.97326 (8)0.55741 (4)0.86850 (6)0.01334 (16)
C20B0.96602 (8)0.50345 (4)0.88589 (6)0.01323 (16)
C21B0.85061 (9)0.47788 (3)0.86888 (6)0.01301 (16)
C22B0.74257 (8)0.50638 (4)0.83344 (6)0.01278 (16)
H220.6637720.4890240.8217670.015*
C23B1.10806 (9)0.63320 (4)0.88435 (8)0.02108 (19)
H23A1.0771970.6454850.8237120.032*
H23B1.1968970.6420700.9017950.032*
H23C1.0607430.6505160.9247180.032*
C24B0.74049 (10)0.39706 (4)0.88304 (7)0.01957 (19)
H24A0.6899460.4006740.8234900.029*
H24B0.6947460.4119350.9265590.029*
H24C0.7576870.3594980.8960710.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0138 (3)0.0100 (3)0.0212 (3)0.0012 (2)0.0004 (2)0.0044 (2)
O2A0.0114 (3)0.0183 (3)0.0206 (3)0.0018 (2)0.0049 (2)0.0016 (3)
O3A0.0153 (3)0.0116 (3)0.0209 (3)0.0018 (2)0.0086 (3)0.0018 (2)
O4A0.0174 (3)0.0172 (3)0.0155 (3)0.0066 (3)0.0026 (2)0.0073 (2)
O5A0.0266 (4)0.0172 (3)0.0127 (3)0.0096 (3)0.0049 (3)0.0020 (2)
O6A0.0150 (3)0.0086 (3)0.0256 (3)0.0037 (2)0.0018 (3)0.0039 (2)
N1A0.0099 (3)0.0076 (3)0.0152 (3)0.0012 (2)0.0019 (3)0.0017 (3)
C2A0.0098 (3)0.0115 (4)0.0096 (3)0.0008 (3)0.0012 (3)0.0006 (3)
C3A0.0088 (3)0.0107 (3)0.0106 (3)0.0002 (3)0.0017 (3)0.0005 (3)
C4A0.0087 (3)0.0078 (3)0.0117 (3)0.0001 (3)0.0014 (3)0.0002 (3)
C5A0.0088 (3)0.0084 (3)0.0104 (3)0.0001 (3)0.0016 (3)0.0004 (3)
C6A0.0101 (3)0.0097 (3)0.0102 (3)0.0007 (3)0.0020 (3)0.0005 (3)
C7A0.0095 (3)0.0113 (4)0.0134 (4)0.0005 (3)0.0004 (3)0.0006 (3)
C8A0.0096 (3)0.0098 (3)0.0130 (4)0.0010 (3)0.0027 (3)0.0007 (3)
C9A0.0102 (3)0.0081 (3)0.0138 (4)0.0010 (3)0.0024 (3)0.0005 (3)
C10A0.0095 (3)0.0092 (3)0.0090 (3)0.0005 (3)0.0014 (3)0.0003 (3)
C11A0.0166 (4)0.0174 (4)0.0146 (4)0.0002 (3)0.0064 (3)0.0019 (3)
C12A0.0119 (4)0.0147 (4)0.0220 (4)0.0042 (3)0.0026 (3)0.0009 (3)
C13A0.0118 (4)0.0126 (4)0.0159 (4)0.0035 (3)0.0031 (3)0.0003 (3)
C14A0.0113 (4)0.0126 (4)0.0107 (3)0.0014 (3)0.0015 (3)0.0008 (3)
C15A0.0160 (4)0.0162 (4)0.0195 (4)0.0051 (3)0.0072 (3)0.0022 (3)
C16A0.0203 (5)0.0245 (5)0.0190 (4)0.0016 (4)0.0066 (4)0.0024 (4)
C17A0.0086 (3)0.0089 (3)0.0130 (4)0.0004 (3)0.0014 (3)0.0009 (3)
C18A0.0124 (4)0.0098 (4)0.0136 (4)0.0019 (3)0.0020 (3)0.0013 (3)
C19A0.0124 (4)0.0120 (4)0.0135 (4)0.0022 (3)0.0024 (3)0.0008 (3)
C20A0.0104 (4)0.0123 (4)0.0149 (4)0.0013 (3)0.0015 (3)0.0040 (3)
C21A0.0100 (4)0.0082 (3)0.0185 (4)0.0016 (3)0.0017 (3)0.0027 (3)
C22A0.0107 (3)0.0091 (3)0.0150 (4)0.0004 (3)0.0023 (3)0.0003 (3)
C23A0.0280 (5)0.0149 (4)0.0177 (4)0.0065 (4)0.0052 (4)0.0013 (3)
C24A0.0219 (5)0.0102 (4)0.0281 (5)0.0000 (3)0.0039 (4)0.0003 (3)
O1B0.0299 (4)0.0093 (3)0.0169 (3)0.0001 (3)0.0023 (3)0.0026 (2)
O2B0.0220 (4)0.0223 (4)0.0258 (4)0.0014 (3)0.0142 (3)0.0004 (3)
O3B0.0148 (3)0.0159 (3)0.0229 (3)0.0016 (2)0.0082 (3)0.0013 (3)
O4B0.0143 (3)0.0165 (3)0.0203 (3)0.0059 (3)0.0001 (3)0.0028 (3)
O5B0.0112 (3)0.0149 (3)0.0272 (4)0.0005 (2)0.0007 (3)0.0011 (3)
O6B0.0181 (3)0.0111 (3)0.0256 (4)0.0029 (2)0.0060 (3)0.0060 (3)
N1B0.0151 (3)0.0098 (3)0.0137 (3)0.0001 (3)0.0038 (3)0.0031 (3)
C2B0.0121 (4)0.0147 (4)0.0128 (4)0.0025 (3)0.0027 (3)0.0008 (3)
C3B0.0101 (4)0.0136 (4)0.0129 (4)0.0022 (3)0.0026 (3)0.0010 (3)
C4B0.0107 (4)0.0095 (3)0.0123 (4)0.0011 (3)0.0017 (3)0.0001 (3)
C5B0.0105 (3)0.0094 (3)0.0119 (4)0.0012 (3)0.0014 (3)0.0003 (3)
C6B0.0113 (4)0.0099 (4)0.0128 (4)0.0016 (3)0.0001 (3)0.0009 (3)
C7B0.0147 (4)0.0114 (4)0.0117 (4)0.0004 (3)0.0017 (3)0.0008 (3)
C8B0.0127 (4)0.0122 (4)0.0131 (4)0.0004 (3)0.0032 (3)0.0011 (3)
C9B0.0143 (4)0.0093 (4)0.0147 (4)0.0006 (3)0.0037 (3)0.0013 (3)
C10B0.0098 (3)0.0107 (4)0.0122 (4)0.0015 (3)0.0014 (3)0.0011 (3)
C11B0.0133 (4)0.0205 (4)0.0197 (4)0.0007 (3)0.0032 (3)0.0036 (3)
C12B0.0230 (5)0.0174 (4)0.0177 (4)0.0045 (4)0.0061 (4)0.0020 (3)
C13B0.0250 (5)0.0196 (5)0.0191 (4)0.0027 (4)0.0105 (4)0.0044 (4)
C14B0.0122 (4)0.0162 (4)0.0162 (4)0.0020 (3)0.0030 (3)0.0030 (3)
C15B0.0148 (4)0.0195 (4)0.0252 (5)0.0026 (3)0.0082 (4)0.0042 (4)
C16B0.0210 (5)0.0193 (5)0.0244 (5)0.0038 (4)0.0046 (4)0.0020 (4)
C17B0.0117 (4)0.0108 (4)0.0116 (4)0.0020 (3)0.0023 (3)0.0005 (3)
C18B0.0131 (4)0.0106 (4)0.0152 (4)0.0014 (3)0.0012 (3)0.0006 (3)
C19B0.0118 (4)0.0138 (4)0.0140 (4)0.0009 (3)0.0012 (3)0.0016 (3)
C20B0.0138 (4)0.0139 (4)0.0119 (4)0.0046 (3)0.0021 (3)0.0008 (3)
C21B0.0166 (4)0.0107 (4)0.0126 (4)0.0028 (3)0.0049 (3)0.0016 (3)
C22B0.0135 (4)0.0120 (4)0.0134 (4)0.0015 (3)0.0041 (3)0.0004 (3)
C23B0.0156 (4)0.0162 (4)0.0307 (5)0.0016 (3)0.0025 (4)0.0033 (4)
C24B0.0213 (5)0.0145 (4)0.0243 (5)0.0009 (3)0.0078 (4)0.0041 (3)
Geometric parameters (Å, º) top
O1A—C6A1.2412 (10)O1B—C6B1.2355 (11)
O2A—C14A1.2159 (11)O2B—C14B1.2156 (12)
O3A—C14A1.3583 (11)O3B—C14B1.3593 (12)
O3A—C15A1.4529 (11)O3B—C15B1.4530 (11)
O4A—C20A1.3587 (11)O4B—C20B1.3713 (11)
O5A—C19A1.3661 (11)O5B—C19B1.3717 (11)
O5A—C23A1.4206 (12)O5B—C23B1.4257 (12)
O6A—C21A1.3837 (10)O6B—C21B1.3690 (11)
O6A—C24A1.4341 (12)O6B—C24B1.4245 (12)
N1A—C2A1.3874 (11)N1B—C2B1.3913 (12)
N1A—C10A1.3683 (11)N1B—C10B1.3733 (11)
C2A—C3A1.3617 (12)C2B—C3B1.3589 (13)
C2A—C13A1.5006 (12)C2B—C13B1.4979 (13)
C3A—C4A1.5275 (12)C3B—C4B1.5280 (12)
C3A—C14A1.4684 (12)C3B—C14B1.4725 (13)
C4A—C5A1.5112 (11)C4B—C5B1.5134 (12)
C4A—C17A1.5344 (12)C4B—C17B1.5337 (12)
C5A—C6A1.4437 (11)C5B—C6B1.4479 (12)
C5A—C10A1.3628 (11)C5B—C10B1.3604 (12)
C6A—C7A1.5134 (12)C6B—C7B1.5062 (12)
C7A—C8A1.5371 (12)C7B—C8B1.5314 (12)
C8A—C9A1.5346 (12)C8B—C9B1.5350 (12)
C8A—C11A1.5342 (12)C8B—C11B1.5374 (13)
C8A—C12A1.5313 (12)C8B—C12B1.5313 (13)
C9A—C10A1.4998 (11)C9B—C10B1.5027 (12)
C15A—C16A1.5111 (14)C15B—C16B1.5088 (15)
C17A—C18A1.4034 (12)C17B—C18B1.3972 (12)
C17A—C22A1.3895 (11)C17B—C22B1.3987 (12)
C18A—C19A1.3906 (12)C18B—C19B1.3896 (12)
C19A—C20A1.4082 (12)C19B—C20B1.3932 (13)
C20A—C21A1.3904 (13)C20B—C21B1.3931 (13)
C21A—C22A1.3981 (12)C21B—C22B1.3994 (12)
C14A—O3A—C15A115.43 (7)C14B—O3B—C15B115.02 (7)
C19A—O5A—C23A117.08 (7)C19B—O5B—C23B117.82 (7)
C21A—O6A—C24A113.00 (7)C21B—O6B—C24B118.16 (7)
C10A—N1A—C2A121.78 (7)C10B—N1B—C2B121.19 (8)
N1A—C2A—C13A113.36 (7)N1B—C2B—C13B112.51 (8)
C3A—C2A—N1A119.23 (8)C3B—C2B—N1B119.59 (8)
C3A—C2A—C13A127.37 (8)C3B—C2B—C13B127.86 (9)
C2A—C3A—C4A120.17 (7)C2B—C3B—C4B120.50 (8)
C2A—C3A—C14A119.84 (8)C2B—C3B—C14B119.94 (8)
C14A—C3A—C4A119.99 (7)C14B—C3B—C4B119.50 (8)
C3A—C4A—C17A111.17 (7)C3B—C4B—C17B112.57 (7)
C5A—C4A—C3A109.20 (7)C5B—C4B—C3B109.09 (7)
C5A—C4A—C17A112.05 (7)C5B—C4B—C17B111.19 (7)
C6A—C5A—C4A120.12 (7)C6B—C5B—C4B120.05 (7)
C10A—C5A—C4A120.36 (7)C10B—C5B—C4B121.01 (8)
C10A—C5A—C6A119.51 (7)C10B—C5B—C6B118.93 (8)
O1A—C6A—C5A120.93 (8)O1B—C6B—C5B122.00 (8)
O1A—C6A—C7A120.49 (8)O1B—C6B—C7B119.74 (8)
C5A—C6A—C7A118.54 (7)C5B—C6B—C7B118.21 (7)
C6A—C7A—C8A113.41 (7)C6B—C7B—C8B113.78 (7)
C9A—C8A—C7A108.72 (7)C7B—C8B—C9B108.25 (7)
C11A—C8A—C7A109.30 (7)C7B—C8B—C11B109.50 (7)
C11A—C8A—C9A111.15 (7)C9B—C8B—C11B110.73 (7)
C12A—C8A—C7A109.71 (7)C12B—C8B—C7B109.08 (7)
C12A—C8A—C9A109.08 (7)C12B—C8B—C9B109.31 (7)
C12A—C8A—C11A108.87 (7)C12B—C8B—C11B109.94 (8)
C10A—C9A—C8A113.17 (7)C10B—C9B—C8B113.28 (7)
N1A—C10A—C9A115.91 (7)N1B—C10B—C9B115.54 (7)
C5A—C10A—N1A119.81 (8)C5B—C10B—N1B119.61 (8)
C5A—C10A—C9A124.26 (7)C5B—C10B—C9B124.85 (8)
O2A—C14A—O3A121.80 (8)O2B—C14B—O3B121.11 (9)
O2A—C14A—C3A126.64 (8)O2B—C14B—C3B126.85 (9)
O3A—C14A—C3A111.55 (7)O3B—C14B—C3B112.03 (8)
O3A—C15A—C16A110.04 (8)O3B—C15B—C16B108.38 (8)
C18A—C17A—C4A120.65 (7)C18B—C17B—C4B119.57 (8)
C22A—C17A—C4A120.45 (8)C18B—C17B—C22B119.86 (8)
C22A—C17A—C18A118.83 (8)C22B—C17B—C4B120.56 (8)
C19A—C18A—C17A120.88 (8)C19B—C18B—C17B119.78 (8)
O5A—C19A—C18A125.29 (8)O5B—C19B—C18B125.90 (8)
O5A—C19A—C20A114.41 (8)O5B—C19B—C20B113.51 (8)
C18A—C19A—C20A120.30 (8)C18B—C19B—C20B120.59 (8)
O4A—C20A—C19A117.75 (8)O4B—C20B—C19B120.77 (8)
O4A—C20A—C21A123.89 (8)O4B—C20B—C21B119.34 (8)
C21A—C20A—C19A118.35 (8)C21B—C20B—C19B119.89 (8)
O6A—C21A—C20A118.27 (8)O6B—C21B—C20B114.60 (8)
O6A—C21A—C22A120.27 (8)O6B—C21B—C22B125.54 (8)
C20A—C21A—C22A121.37 (8)C20B—C21B—C22B119.85 (8)
C17A—C22A—C21A120.23 (8)C17B—C22B—C21B120.02 (8)
O1A—C6A—C7A—C8A151.01 (8)O1B—C6B—C7B—C8B147.46 (8)
O4A—C20A—C21A—O6A3.22 (13)O4B—C20B—C21B—O6B0.68 (12)
O4A—C20A—C21A—C22A179.97 (8)O4B—C20B—C21B—C22B179.08 (8)
O5A—C19A—C20A—O4A0.60 (12)O5B—C19B—C20B—O4B0.23 (12)
O5A—C19A—C20A—C21A178.29 (8)O5B—C19B—C20B—C21B179.96 (8)
O6A—C21A—C22A—C17A176.30 (8)O6B—C21B—C22B—C17B178.23 (8)
N1A—C2A—C3A—C4A8.37 (12)N1B—C2B—C3B—C4B5.35 (13)
N1A—C2A—C3A—C14A170.77 (8)N1B—C2B—C3B—C14B171.69 (8)
C2A—N1A—C10A—C5A16.97 (12)C2B—N1B—C10B—C5B17.81 (13)
C2A—N1A—C10A—C9A161.69 (8)C2B—N1B—C10B—C9B161.71 (8)
C2A—C3A—C4A—C5A29.30 (10)C2B—C3B—C4B—C5B26.83 (11)
C2A—C3A—C4A—C17A94.83 (9)C2B—C3B—C4B—C17B97.09 (10)
C2A—C3A—C14A—O2A2.27 (14)C2B—C3B—C14B—O2B3.16 (15)
C2A—C3A—C14A—O3A176.45 (8)C2B—C3B—C14B—O3B178.35 (8)
C3A—C4A—C5A—C6A149.71 (8)C3B—C4B—C5B—C6B153.27 (8)
C3A—C4A—C5A—C10A29.31 (10)C3B—C4B—C5B—C10B28.25 (11)
C3A—C4A—C17A—C18A83.76 (9)C3B—C4B—C17B—C18B84.89 (10)
C3A—C4A—C17A—C22A93.08 (9)C3B—C4B—C17B—C22B96.04 (9)
C4A—C3A—C14A—O2A178.59 (8)C4B—C3B—C14B—O2B173.92 (9)
C4A—C3A—C14A—O3A2.69 (11)C4B—C3B—C14B—O3B4.58 (11)
C4A—C5A—C6A—O1A1.72 (12)C4B—C5B—C6B—O1B0.45 (13)
C4A—C5A—C6A—C7A179.35 (7)C4B—C5B—C6B—C7B177.94 (7)
C4A—C5A—C10A—N1A8.32 (12)C4B—C5B—C10B—N1B7.91 (12)
C4A—C5A—C10A—C9A173.14 (7)C4B—C5B—C10B—C9B172.62 (8)
C4A—C17A—C18A—C19A176.22 (8)C4B—C17B—C18B—C19B178.18 (8)
C4A—C17A—C22A—C21A175.56 (8)C4B—C17B—C22B—C21B178.27 (8)
C5A—C4A—C17A—C18A38.74 (10)C5B—C4B—C17B—C18B37.86 (11)
C5A—C4A—C17A—C22A144.43 (8)C5B—C4B—C17B—C22B141.21 (8)
C5A—C6A—C7A—C8A31.35 (11)C5B—C6B—C7B—C8B34.99 (11)
C6A—C5A—C10A—N1A170.71 (8)C6B—C5B—C10B—N1B173.59 (8)
C6A—C5A—C10A—C9A7.84 (12)C6B—C5B—C10B—C9B5.88 (13)
C6A—C7A—C8A—C9A53.22 (9)C6B—C7B—C8B—C9B54.30 (10)
C6A—C7A—C8A—C11A68.27 (9)C6B—C7B—C8B—C11B66.51 (10)
C6A—C7A—C8A—C12A172.43 (7)C6B—C7B—C8B—C12B173.14 (8)
C7A—C8A—C9A—C10A45.78 (9)C7B—C8B—C9B—C10B44.60 (10)
C8A—C9A—C10A—N1A164.48 (7)C8B—C9B—C10B—N1B164.10 (8)
C8A—C9A—C10A—C5A16.93 (12)C8B—C9B—C10B—C5B16.41 (12)
C10A—N1A—C2A—C3A16.82 (12)C10B—N1B—C2B—C3B19.06 (13)
C10A—N1A—C2A—C13A161.19 (8)C10B—N1B—C2B—C13B158.87 (8)
C10A—C5A—C6A—O1A177.31 (8)C10B—C5B—C6B—O1B178.96 (9)
C10A—C5A—C6A—C7A0.32 (12)C10B—C5B—C6B—C7B3.55 (12)
C11A—C8A—C9A—C10A74.57 (9)C11B—C8B—C9B—C10B75.44 (9)
C12A—C8A—C9A—C10A165.38 (7)C12B—C8B—C9B—C10B163.30 (8)
C13A—C2A—C3A—C4A173.92 (8)C13B—C2B—C3B—C4B177.07 (9)
C13A—C2A—C3A—C14A6.94 (13)C13B—C2B—C3B—C14B5.89 (14)
C14A—O3A—C15A—C16A77.56 (10)C14B—O3B—C15B—C16B173.74 (8)
C14A—C3A—C4A—C5A149.84 (7)C14B—C3B—C4B—C5B150.23 (8)
C14A—C3A—C4A—C17A86.04 (9)C14B—C3B—C4B—C17B85.86 (10)
C15A—O3A—C14A—O2A8.56 (12)C15B—O3B—C14B—O2B3.78 (13)
C15A—O3A—C14A—C3A170.22 (7)C15B—O3B—C14B—C3B174.82 (8)
C17A—C4A—C5A—C6A86.68 (9)C17B—C4B—C5B—C6B82.01 (10)
C17A—C4A—C5A—C10A94.30 (9)C17B—C4B—C5B—C10B96.48 (9)
C17A—C18A—C19A—O5A179.24 (8)C17B—C18B—C19B—O5B179.14 (8)
C17A—C18A—C19A—C20A0.95 (13)C17B—C18B—C19B—C20B0.19 (13)
C18A—C17A—C22A—C21A1.33 (13)C18B—C17B—C22B—C21B0.80 (13)
C18A—C19A—C20A—O4A179.24 (8)C18B—C19B—C20B—O4B179.18 (8)
C18A—C19A—C20A—C21A1.87 (13)C18B—C19B—C20B—C21B0.63 (13)
C19A—C20A—C21A—O6A177.97 (8)C19B—C20B—C21B—O6B179.13 (8)
C19A—C20A—C21A—C22A1.22 (13)C19B—C20B—C21B—C22B0.72 (13)
C20A—C21A—C22A—C17A0.39 (13)C20B—C21B—C22B—C17B0.02 (13)
C22A—C17A—C18A—C19A0.67 (13)C22B—C17B—C18B—C19B0.89 (13)
C23A—O5A—C19A—C18A0.11 (14)C23B—O5B—C19B—C18B8.86 (14)
C23A—O5A—C19A—C20A179.94 (8)C23B—O5B—C19B—C20B171.77 (9)
C24A—O6A—C21A—C20A93.57 (10)C24B—O6B—C21B—C20B171.90 (8)
C24A—O6A—C21A—C22A89.64 (10)C24B—O6B—C21B—C22B9.80 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4A—H4C···O1Ai0.848 (17)1.937 (17)2.6948 (9)148.0 (16)
N1A—H1A···O1Bii0.880 (15)1.890 (15)2.7666 (10)174.1 (13)
C7A—H7C···O6Bii0.992.673.4510 (12)136
C12A—H12D···O2Aiii0.982.603.5237 (12)157
C13A—H13D···O1Bii0.982.593.3590 (12)136
C16A—H16D···O4Aiv0.982.653.3136 (13)126
C24A—H24E···O4Bv0.982.433.3105 (13)149
N1B—H1···O1Ai0.888 (15)2.166 (15)2.9479 (10)146.6 (12)
C7B—H7B···O2A0.992.693.4992 (11)139
C9B—H9B···O6A0.992.593.5751 (11)172
C15B—H15A···O5Biii0.992.603.4993 (12)151
C23B—H23B···O2Bvi0.982.553.4277 (13)149
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1, y, z; (iv) x+1/2, y+3/2, z1/2; (v) x+3/2, y+1/2, z+3/2; (vi) x+1, y, z.
Ethyl 4-(anthracen-9-yl)-2,7,7-trimethyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (III) top
Crystal data top
C29H29NO3F(000) = 936
Mr = 439.53Dx = 1.229 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.6527 (3) ÅCell parameters from 9872 reflections
b = 18.1986 (4) Åθ = 2.2–27.6°
c = 12.3435 (3) ŵ = 0.08 mm1
β = 114.8758 (12)°T = 100 K
V = 2374.74 (10) Å3Prism, yellow
Z = 40.45 × 0.12 × 0.11 mm
Data collection top
Bruker SMART BREEZE CCD
diffractometer
Rint = 0.055
φ and ω scansθmax = 28.3°, θmin = 2.1°
72579 measured reflectionsh = 1515
5902 independent reflectionsk = 2424
4515 reflections with I > 2σ(I)l = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.067P)2 + 1.0544P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5902 reflectionsΔρmax = 0.54 e Å3
306 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34009 (10)0.80683 (6)0.16928 (9)0.0235 (2)
O20.31457 (11)0.54998 (7)0.51900 (11)0.0331 (3)
O30.19449 (10)0.64051 (6)0.40339 (10)0.0256 (2)
N10.61943 (12)0.65569 (7)0.47273 (11)0.0182 (3)
H10.6990 (19)0.6551 (11)0.5295 (18)0.032 (5)*
C20.52536 (13)0.62310 (7)0.49757 (12)0.0177 (3)
C30.40249 (13)0.63374 (7)0.42341 (12)0.0169 (3)
C40.36056 (13)0.68248 (7)0.31263 (12)0.0153 (3)
H40.3047110.7211530.3224530.018*
C50.47314 (13)0.72274 (7)0.30848 (12)0.0152 (3)
C60.44911 (13)0.78495 (7)0.22944 (12)0.0170 (3)
C70.55990 (14)0.82620 (8)0.22492 (13)0.0202 (3)
H7A0.5752710.8708310.2749400.024*
H7B0.5363010.8424250.1417100.024*
C80.68311 (14)0.78268 (8)0.26676 (13)0.0199 (3)
C90.70717 (13)0.74830 (8)0.38790 (13)0.0188 (3)
H9A0.7789560.7135670.4109030.023*
H9B0.7314710.7875290.4490800.023*
C100.59379 (13)0.70822 (7)0.38663 (12)0.0158 (3)
C110.67348 (15)0.72310 (9)0.17535 (14)0.0260 (3)
H11A0.6028600.6901430.1641690.039*
H11B0.7523760.6948700.2044890.039*
H11C0.6590390.7462430.0989980.039*
C120.79290 (15)0.83464 (9)0.28370 (15)0.0262 (3)
H12A0.8723970.8069420.3147650.039*
H12B0.7974300.8734610.3403910.039*
H12C0.7790710.8567450.2067890.039*
C130.57721 (15)0.58079 (8)0.61266 (13)0.0240 (3)
H13A0.6631010.5978540.6628730.036*
H13B0.5793140.5283290.5956500.036*
H13C0.5230730.5885570.6545820.036*
C140.30380 (14)0.60270 (8)0.45520 (13)0.0215 (3)
C150.08506 (16)0.61002 (11)0.41441 (16)0.0340 (4)
H15A0.0232160.6497030.4041720.041*
H15B0.1113720.5891430.4954090.041*
C160.0228 (2)0.55080 (12)0.32261 (18)0.0466 (5)
H16A0.0807150.5090480.3380880.070*
H16B0.0024290.5703540.2426270.070*
H16C0.0550150.5345730.3275450.070*
C170.27883 (12)0.64059 (7)0.19723 (12)0.0149 (3)
C180.33088 (13)0.58220 (7)0.15614 (12)0.0151 (3)
C190.46066 (13)0.55974 (8)0.21467 (12)0.0171 (3)
H190.5159950.5855010.2839150.021*
C200.50692 (14)0.50254 (8)0.17387 (13)0.0199 (3)
H200.5934320.4892060.2150310.024*
C210.42774 (15)0.46271 (8)0.07091 (14)0.0223 (3)
H210.4609220.4227980.0434320.027*
C220.30435 (14)0.48181 (8)0.01176 (13)0.0206 (3)
H220.2518520.4552280.0577340.025*
C230.25166 (13)0.54115 (8)0.05188 (12)0.0174 (3)
C240.12363 (14)0.55804 (8)0.00657 (12)0.0192 (3)
H240.0716270.5302690.0748030.023*
C250.06980 (13)0.61454 (8)0.03234 (12)0.0178 (3)
C260.14856 (13)0.65780 (7)0.13450 (12)0.0162 (3)
C270.08637 (13)0.71596 (8)0.16756 (13)0.0191 (3)
H270.1353060.7476910.2314720.023*
C280.04097 (14)0.72696 (8)0.10984 (14)0.0220 (3)
H280.0788740.7654620.1353650.026*
C290.11792 (14)0.68199 (8)0.01238 (14)0.0228 (3)
H290.2068310.6893770.0254950.027*
C300.06317 (14)0.62827 (8)0.02621 (13)0.0210 (3)
H300.1141570.5993100.0932930.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0196 (5)0.0252 (5)0.0203 (5)0.0012 (4)0.0030 (4)0.0046 (4)
O20.0326 (7)0.0324 (6)0.0380 (7)0.0054 (5)0.0184 (6)0.0102 (5)
O30.0203 (5)0.0324 (6)0.0278 (6)0.0043 (4)0.0139 (5)0.0013 (5)
N10.0150 (6)0.0202 (6)0.0164 (6)0.0014 (5)0.0038 (5)0.0016 (5)
C20.0210 (7)0.0160 (6)0.0158 (6)0.0025 (5)0.0074 (6)0.0012 (5)
C30.0198 (7)0.0171 (6)0.0147 (6)0.0025 (5)0.0082 (5)0.0011 (5)
C40.0146 (6)0.0163 (6)0.0147 (6)0.0009 (5)0.0059 (5)0.0005 (5)
C50.0156 (6)0.0164 (6)0.0140 (6)0.0020 (5)0.0065 (5)0.0020 (5)
C60.0187 (7)0.0178 (6)0.0135 (6)0.0011 (5)0.0058 (5)0.0016 (5)
C70.0231 (7)0.0202 (7)0.0173 (7)0.0036 (6)0.0084 (6)0.0021 (5)
C80.0196 (7)0.0222 (7)0.0195 (7)0.0046 (6)0.0099 (6)0.0007 (5)
C90.0146 (7)0.0228 (7)0.0179 (7)0.0016 (5)0.0058 (5)0.0004 (5)
C100.0169 (7)0.0162 (6)0.0146 (6)0.0012 (5)0.0070 (5)0.0014 (5)
C110.0274 (8)0.0308 (8)0.0247 (8)0.0053 (6)0.0156 (7)0.0049 (6)
C120.0241 (8)0.0297 (8)0.0277 (8)0.0080 (6)0.0137 (7)0.0003 (6)
C130.0268 (8)0.0236 (7)0.0180 (7)0.0033 (6)0.0061 (6)0.0033 (6)
C140.0225 (7)0.0266 (7)0.0166 (7)0.0058 (6)0.0092 (6)0.0055 (6)
C150.0261 (8)0.0496 (11)0.0316 (9)0.0113 (8)0.0174 (7)0.0048 (8)
C160.0397 (11)0.0598 (13)0.0417 (11)0.0258 (10)0.0186 (9)0.0104 (10)
C170.0157 (6)0.0156 (6)0.0140 (6)0.0022 (5)0.0067 (5)0.0004 (5)
C180.0168 (6)0.0162 (6)0.0141 (6)0.0022 (5)0.0083 (5)0.0013 (5)
C190.0172 (7)0.0182 (6)0.0164 (7)0.0014 (5)0.0076 (5)0.0013 (5)
C200.0200 (7)0.0205 (7)0.0220 (7)0.0022 (5)0.0115 (6)0.0026 (5)
C210.0301 (8)0.0174 (7)0.0253 (8)0.0001 (6)0.0175 (7)0.0008 (6)
C220.0260 (8)0.0188 (7)0.0199 (7)0.0070 (6)0.0125 (6)0.0046 (5)
C230.0207 (7)0.0170 (6)0.0162 (7)0.0041 (5)0.0094 (6)0.0005 (5)
C240.0207 (7)0.0198 (7)0.0152 (6)0.0056 (5)0.0057 (6)0.0006 (5)
C250.0166 (7)0.0189 (7)0.0169 (7)0.0043 (5)0.0062 (5)0.0029 (5)
C260.0154 (6)0.0170 (6)0.0168 (6)0.0027 (5)0.0074 (5)0.0023 (5)
C270.0176 (7)0.0195 (7)0.0209 (7)0.0006 (5)0.0087 (6)0.0014 (5)
C280.0193 (7)0.0220 (7)0.0275 (8)0.0017 (6)0.0125 (6)0.0055 (6)
C290.0144 (7)0.0262 (7)0.0260 (8)0.0014 (6)0.0067 (6)0.0094 (6)
C300.0175 (7)0.0230 (7)0.0193 (7)0.0060 (5)0.0046 (6)0.0041 (6)
Geometric parameters (Å, º) top
O1—C61.2370 (17)C9—C101.5036 (19)
O2—C141.2138 (19)C15—C161.510 (3)
O3—C141.3489 (19)C17—C181.4188 (19)
O3—C151.4486 (19)C17—C261.4188 (19)
N1—C21.3893 (18)C18—C191.4342 (19)
N1—C101.3658 (18)C18—C231.4377 (19)
C2—C31.350 (2)C19—C201.362 (2)
C2—C131.5013 (19)C20—C211.416 (2)
C3—C41.5275 (18)C21—C221.356 (2)
C3—C141.4749 (19)C22—C231.430 (2)
C4—C51.5220 (18)C23—C241.391 (2)
C4—C171.5413 (18)C24—C251.391 (2)
C5—C61.4430 (19)C25—C261.4417 (19)
C5—C101.3550 (19)C25—C301.430 (2)
C6—C71.5146 (19)C26—C271.4356 (19)
C7—C81.527 (2)C27—C281.364 (2)
C8—C91.534 (2)C28—C291.419 (2)
C8—C111.534 (2)C29—C301.358 (2)
C8—C121.533 (2)
C14—O3—C15116.95 (13)O2—C14—O3122.01 (14)
C10—N1—C2122.41 (12)O2—C14—C3126.59 (14)
N1—C2—C13112.76 (12)O3—C14—C3111.41 (12)
C3—C2—N1119.95 (12)O3—C15—C16111.51 (14)
C3—C2—C13127.23 (13)C18—C17—C4120.66 (12)
C2—C3—C4122.61 (12)C18—C17—C26119.36 (12)
C2—C3—C14119.20 (13)C26—C17—C4119.90 (12)
C14—C3—C4117.97 (12)C17—C18—C19123.51 (12)
C3—C4—C17112.38 (11)C17—C18—C23119.94 (12)
C5—C4—C3110.73 (11)C19—C18—C23116.53 (12)
C5—C4—C17114.41 (11)C20—C19—C18121.93 (13)
C6—C5—C4118.40 (12)C19—C20—C21120.87 (14)
C10—C5—C4122.21 (12)C22—C21—C20119.68 (13)
C10—C5—C6118.85 (12)C21—C22—C23121.31 (13)
O1—C6—C5121.10 (13)C22—C23—C18119.67 (13)
O1—C6—C7119.63 (12)C24—C23—C18119.61 (13)
C5—C6—C7119.20 (12)C24—C23—C22120.69 (13)
C6—C7—C8115.17 (12)C25—C24—C23121.68 (13)
C7—C8—C9107.55 (11)C24—C25—C26119.48 (13)
C7—C8—C11110.50 (12)C24—C25—C30120.32 (13)
C7—C8—C12109.77 (12)C30—C25—C26120.17 (13)
C9—C8—C11110.82 (12)C17—C26—C25119.88 (12)
C12—C8—C9108.59 (12)C17—C26—C27124.04 (13)
C12—C8—C11109.57 (12)C27—C26—C25116.07 (12)
C10—C9—C8112.84 (11)C28—C27—C26121.87 (14)
N1—C10—C9115.33 (12)C27—C28—C29121.26 (14)
C5—C10—N1120.82 (12)C30—C29—C28119.33 (13)
C5—C10—C9123.84 (12)C29—C30—C25121.17 (14)
O1—C6—C7—C8160.55 (13)C13—C2—C3—C4175.60 (13)
N1—C2—C3—C41.6 (2)C13—C2—C3—C141.1 (2)
N1—C2—C3—C14176.08 (12)C14—O3—C15—C1682.03 (19)
C2—N1—C10—C510.5 (2)C14—C3—C4—C5167.62 (12)
C2—N1—C10—C9168.21 (12)C14—C3—C4—C1763.06 (16)
C2—C3—C4—C56.93 (18)C15—O3—C14—O27.7 (2)
C2—C3—C4—C17122.39 (14)C15—O3—C14—C3172.08 (12)
C2—C3—C14—O225.1 (2)C17—C4—C5—C667.85 (16)
C2—C3—C14—O3155.09 (13)C17—C4—C5—C10120.75 (14)
C3—C4—C5—C6163.92 (11)C17—C18—C19—C20178.82 (13)
C3—C4—C5—C107.48 (18)C17—C18—C23—C22179.25 (12)
C3—C4—C17—C1865.27 (16)C17—C18—C23—C241.38 (19)
C3—C4—C17—C26111.42 (14)C17—C26—C27—C28175.04 (13)
C4—C3—C14—O2160.16 (14)C18—C17—C26—C251.94 (19)
C4—C3—C14—O319.65 (17)C18—C17—C26—C27179.50 (12)
C4—C5—C6—O12.40 (19)C18—C19—C20—C210.1 (2)
C4—C5—C6—C7179.41 (12)C18—C23—C24—C250.8 (2)
C4—C5—C10—N10.6 (2)C19—C18—C23—C220.43 (18)
C4—C5—C10—C9178.06 (12)C19—C18—C23—C24177.45 (12)
C4—C17—C18—C192.05 (19)C19—C20—C21—C220.2 (2)
C4—C17—C18—C23176.69 (12)C20—C21—C22—C230.6 (2)
C4—C17—C26—C25174.79 (12)C21—C22—C23—C180.8 (2)
C4—C17—C26—C273.8 (2)C21—C22—C23—C24177.10 (13)
C5—C4—C17—C1862.12 (16)C22—C23—C24—C25178.66 (13)
C5—C4—C17—C26121.19 (13)C23—C18—C19—C200.04 (19)
C5—C6—C7—C822.39 (18)C23—C24—C25—C261.1 (2)
C6—C5—C10—N1171.93 (12)C23—C24—C25—C30177.01 (13)
C6—C5—C10—C96.7 (2)C24—C25—C26—C172.52 (19)
C6—C7—C8—C949.79 (16)C24—C25—C26—C27178.81 (12)
C6—C7—C8—C1171.30 (15)C24—C25—C30—C29178.32 (13)
C6—C7—C8—C12167.75 (12)C25—C26—C27—C283.6 (2)
C7—C8—C9—C1049.90 (15)C26—C17—C18—C19178.75 (12)
C8—C9—C10—N1157.27 (12)C26—C17—C18—C230.01 (19)
C8—C9—C10—C524.03 (19)C26—C25—C30—C290.2 (2)
C10—N1—C2—C311.0 (2)C26—C27—C28—C291.2 (2)
C10—N1—C2—C13166.55 (13)C27—C28—C29—C301.8 (2)
C10—C5—C6—O1169.29 (13)C28—C29—C30—C252.3 (2)
C10—C5—C6—C77.72 (19)C30—C25—C26—C17175.63 (12)
C11—C8—C9—C1070.98 (15)C30—C25—C26—C273.04 (19)
C12—C8—C9—C10168.62 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (2)1.94 (2)2.7776 (16)154.2 (18)
C13—H13B···O2ii0.982.653.409 (2)134
C19—H19···N10.952.483.4148 (19)168
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the University of Montana grant program for grant 325490.

Funding information

Funding for this research was provided by: University of Montana (grant No. 325490 to Nicholas R. Natale).

References

First citationAygün Cevher, H., Schaller, D., Gandini, M. A., Kaplan, O., Gambeta, E., Zhang, F. X., Çelebier, M., Tahir, M. N., Zamponi, G. W., Wolber, G. & Gündüz, M. G. (2019). Bioorg. Chem. 91, 103187.  Web of Science PubMed Google Scholar
First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Ins., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFranconetti, A., Frontera, A. & Mooibroek, T. J. (2019). CrystEngComm, 21, 5410–5417.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMartín, N., Quinteiro, M., Seoane, C., Soto, J., Mora, A., Suárez, M., Ochoa, E., Morales, A. & Bosque, J. (1995). J. Heterocycl. Chem. 32, 235–238.  Google Scholar
First citationNatale, N. R. & Steiger, S. A. (2014). Future Med. Chem. 6, 923–943.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPalakshi Reddy, B., Vijayakumar, V., Sarveswari, S., Ng, S. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2806–o2807.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRose, U. (1990). Arch. Pharm. Pharm. Med. Chem. 323, 281–286.  CrossRef CAS Web of Science Google Scholar
First citationRose, U. & Dräger, M. (1992). J. Med. Chem. 35, 2238–2243.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSchaller, D., Gündüz, M. G., Zhang, F. X., Zamponi, G. W. & Wolber, G. (2018). Eur. J. Med. Chem. 155, 1–12.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSchauer, C. K., Anderson, O. P., Natale, N. R. & Quincy, D. A. (1986). Acta Cryst. C42, 884–886.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShahraki, O., Edraki, N., Khoshneviszadeh, M., Zargari, F., Ranjbar, S., Saso, L., Firuzi, O. & Miri, R. (2017). Drug. Des. Dev. Ther. 11, 407–418.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Li, C., Backos, D. S., Reigan, P. & Natale, N. R. (2017). Bioorg. Med. Chem. 25, 3223–3234.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSteiger, S. A., Li, C., Campana, C. F. & Natale, N. R. (2016). Tetrahedron Lett. 57, 423–425.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSteiger, S. A., Li, C. & Natale, N. R. (2018). Acta Cryst. E74, 1417–1420.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014a). Acta Cryst. C70, 790–795.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteiger, S. A., Monacelli, A. J., Li, C., Hunting, J. L. & Natale, N. R. (2014b). Acta Cryst. E70, o791–o792.  CSD CrossRef IUCr Journals Google Scholar
First citationTrippier, P. C., Jansen Labby, K., Hawker, D., Mataka, J. & Silverman, R. (2013). J. Med. Chem. 56, 3121–3147.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationWang, L.-M., Sheng, J., Zhang, L., Han, J.-W., Fan, Z.-Y., Tian, H. & Qian, C.-T. (2005). Tetrahedron, 61, 1539–1543.  Web of Science CrossRef CAS Google Scholar
First citationYang, X. H., Zhang, P. H., Zhou, Y. H., Liu, C. G., Lin, X. Y. & Cui, J. F. (2011). Arkivoc, x, 327-337.  Google Scholar
First citationYao, C. S., Zhu, S. L., Yu, C. X. & Tu, S. J. (2005). J. Xuzhou Normal Univ. (Nat. Sci.) 233, 65-67.  Google Scholar
First citationZamponi, G. (2016). Nat. Rev. Drug Discov. 15, 19–34.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZamponi, G., Stotz, S. C., Staples, R. J., Andro, T. M., Nelson, J. K., Hulubei, V., Blumenfeld, A. & Natale, N. R. (2003). J. Med. Chem. 46, 87–96.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds