research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a new polymorph of 3-acetyl-8-meth­­oxy-2H-chromen-2-one

CROSSMARK_Color_square_no_text.svg

aFacultad de Ciencias Químicas, Universidad de Colima, km 9 carretera, Colima-Coquimatlán, 28400, Coquimatlán, Colima, Mexico, and bLaboratorio de Quimica Supramolecular y Nanociencias, Unidad Profesional, Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Avenida Acueducto s/n, Barrio La Laguna Ticomán, Cd. de Mexico 07340, Mexico
*Correspondence e-mail: fjmartin@ucol.mx

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 2 September 2019; accepted 9 November 2019; online 15 November 2019)

A new polymorphic form of the title compound, C12H10O4, is described in the ortho­rhom­bic space group Pbca and Z = 8, as compared to polymorph I, which crystallizes in the monoclinic space group C2/c and Z = 8 [Li et al. (2012). Chin. J. Struct. Chem. 31, 1003–1007.]. In polymorph II, the coumarin ring system is almost planar (r.m.s. deviation = 0.00129 Å). In the crystal, mol­ecules are connected by Csp3—H⋯O and Car—H⋯O hydrogen bonds, forming mol­ecular sheets linked into zigzag shaped layers along the b-axis direction. The three-dimensional lattice is assembled through stacking of the zigzag layers by ππ inter­actions with a centroid-to-centroid distance of 3.600 (9) Å and anti­parallel C=O⋯C=O inter­actions with a distance of 3.1986 (17) Å, which give rise to a helical supra­molecular architecture.

1. Chemical context

Derivatives of 2H-chromen-2-one are some of the most important heterocycles in natural and synthetic organic chemistry. These substances are bioactive compounds and have a wide range of applications in the medical field (Gaudino et al., 2016[Gaudino, E. C., Tagliapietra, S., Martina, K., Palmisano, G. & Cravotto, G. (2016). RSC Adv. 6, 46394-46405.]) showing, for example, anti-HIV, anti­mutagenic, anti­cancer and anti­tumor activities among others (Vekariya & Patel, 2014[Vekariya, R. H. & Patel, H. D. (2014). Synth. Commun. 44, 2756-2788.]). They are synthesized using classical methodologies such as the Pechmann or Knoevenagel reactions, as well as recent methodologies such as the metathesis cyclization (Salem et al., 2018[Salem, M. A., Helal, M. H., Gouda, M. A., Ammar, Y. A., El-Gaby, M. S. A. & Abbas, S. Y. (2018). Synth. Commun. 48, 1534-1550.]) or alkynoates cyclization (Liu et al., 2018[Liu, Y., Wang, Q. L., Zhou, C. S., Xiong, B. Q., Zhang, P. L., Kang, S. J., Yang, C. A. & Tang, K. W. (2018). Tetrahedron Lett. 59, 2038-2041.]).

The disposition of the crystalline lattices of coumarin derivatives is driven by a great variety of inter­molecular inter­actions (Santos-Contreras et al., 2009[Santos-Contreras, R. J., Martínez-Martínez, F. J., Mancilla-Margalli, N. A., Peraza-Campos, A. L., Morín-Sánchez, L. M., García-Báez, E. V. & Padilla-Martínez, I. I. (2009). CrystEngComm, 11, 1451-1461.]). This working group has reported the participation of ππ stacking inter­actions, hydrogen-bonding and dipole–dipole inter­actions involving the carbonyl group (Gómez-Castro et al., 2014[Gómez-Castro, C. Z., Padilla-Martínez, I. I., García-Báez, E. V., Castrejón-Flores, J. L., Peraza-Campos, A. L. & Martínez-Martínez, F. J. (2014). Molecules, 19, 14446-14460.]) in the determination of the 1D, 2D and 3D supra­molecular assemblies of crystalline structures for different compounds (González-Padilla et al., 2014[González-Padilla, J. E., Rosales-Hernández, M. C., Padilla-Martínez, I. I., García-Báez, E. V., Rojas-Lima, S. & Salazar-Pereda, V. (2014). Acta Cryst. C70, 55-59.]). This report describes the structure of a second polymorph of the title compound and the importance of C—H⋯O, C=O⋯C=O and ππ stacking inter­molecular inter­actions in crystal packing.

2. Structural commentary

The title polymorph II (Fig. 1[link]) crystallizes in the ortho­rhom­bic system, space group Pbca, with eight mol­ecules in the unit cell whereas polymorph I (Li et al., 2012[Li, J., Li, X. & Wang, S. (2012). Chin. J. Struct. Chem. 31, 1003-1007.]) crystallizes in the monoclinic system in space group C2/c, also with eight mol­ecules in the unit cell. In polymorph II, the coumarin skeleton is almost planar (r.m.s. deviation = 0.00129 Å) with dihedral angles O1—C9—C10—C5 and C8—C9—C10—C4 of 179.20 (10) and 179.87 (11)°, respectively. In contrast, in polymorph I the benzene and lactone rings deviate slightly from planarity by 2.76 (3)°. The acetyl and meth­oxy groups of polymorph II are almost coplanar with the coumarin ring, with torsion angles C2—C3—C11—C12 = −1.25 (18)° and C14—O13—C8—C7 = −2.70 (18)°.

[Scheme 1]
[Figure 1]
Figure 1
ORTEP plot of polymorph II of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

The crystal network of the title compound (polymorph II) is assembled by zigzag shaped mol­ecular layers that extend approximately in the (012) and (01[\overline2]) planes, forming an angle of 116.2°. In the flat section of the zigzag layer R33(18) motifs are formed by C6—H6⋯O2ii and C12—H12B⋯O11i hydrogen bonds (Table 1[link]). These inter­molecular inter­actions impart stability to the 2D sheet, while weak C14—H14A⋯O2iii inter­actions generate an R32(16) motif at the inter­section of the planes (Fig. 2[link]). Adjacent layers, separated by a distance of 3.4083 (5) Å, are connected by ππ stacking inter­actions with a centroid-to-centroid distance of 3.600 (9) Å and a slippage of 1.160 Å. In addition to the π stacking, layers are stabilized by anti­parallel C=O⋯C=O inter­actions (Allen et al., 1998[Allen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320-329.]) involving the acetyl group separated by a distance of 3.1986 (17) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12B⋯O11i 0.96 2.63 3.4255 (17) 141
C6—H6⋯O2ii 0.93 2.45 3.3808 (16) 176
C14—H14A⋯O2iii 0.96 2.68 3.4535 (18) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x-1, y, z; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of mol­ecules in polymorph II by C—H⋯O hydrogen bonding and the packing of parallel sheets connected via C=O⋯C=O and weak ππ inter­actions. Dotted lines depict the inter­molecular inter­actions.

The supra­molecular array of polymorph II exhibits a helical conformation, like polymorph I (Li et al., 2012[Li, J., Li, X. & Wang, S. (2012). Chin. J. Struct. Chem. 31, 1003-1007.]). However, in polymorph II the C=O⋯C=O inter­actions form the central axis of the helix whilst ππ inter­actions between the aromatic and lactone rings, aligned in a head-to-tail conformation, control the rotation of the structure. In polymorph I, the helical axis is built by hydrogen bonds and face-to-face ππ stacking inter­actions of the benzofused rings (Fig. 3[link]). For polymorph I, a complete rotation of the helix is performed in 11.5 Å, while in polymorph II the displacement of the helix in a whole rotation is 12.4 Å.

[Figure 3]
Figure 3
Helical conformation in the packing of polymorphs I and II of 3-acetyl-8-meth­oxy-2H-chromen-2-one. Dotted lines depict inter­molecular inter­actions.

4. Hirshfeld surface and 2D fingerprint plots

In order to better understand the crystal packing of both polymorphs, Hirshfeld surface analyses and 2D fingerprint plots were carried out using Crystal Explorer 17.5 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.]). From the analysis of the Hirshfeld surfaces (Fig. 4[link]), it is evident that there are differences between the chemical environments of these two identical mol­ecules. In Fig. 4[link], the Hirshfeld surfaces for polymorph I show a series of strong short contacts (big red dots) corresponding to hydrogen bonds stabilizing the 2D sheets. The planar areas above and below the rings are where ππ inter­actions (small red dots) take place, giving rise to the 3D network. On the other hand, polymorph II is stabilized by a short directional hydrogen bond and the sum of weak inter­actions with longer contact distances than in polymorph I. This suggests that polymorph II may be the less stable between these two phases of the title compound. To qu­anti­tatively compare polymorphs I and II in terms of their crystal packing, 2D fingerprint plots were developed and analysed. The character of the fingerprints plots for both polymorphs is similar, with small differences in the relative contributions of each type of inter­action to the Hirshfeld surface. The weak inter­actions include C⋯H (C—H⋯ π), C⋯O (C=O⋯C=O, C=O⋯π) and C⋯C (ππ), as well as short directional inter­actions such as H⋯O (Fig. 5[link]).

[Figure 4]
Figure 4
Hirshfeld surfaces for polymorphs I and II showing both sides of the mol­ecules. Red areas represent contacts shorter than the sum of the van der Waals radii, blue areas represent zones where the shortest distance between atoms is larger than the sum of van der Waals radii and white areas are zones close to the sum of van der Waals radii.
[Figure 5]
Figure 5
Comparison of several inter­molecular inter­actions (blue areas) involved in the crystal packing of polymorphs I and II by decomposition of two-dimensional fingerprint plots. Green areas represent a greater abundance of close contacts and the full fingerprint appears beneath each decomposed plot as a grey shadow.

Although polymorphs I and II exhibit the same type of inter­molecular inter­actions, the way these common inter­actions contribute to the packing in each polymorph differs in each case. The minor differences in which weak inter­molecular inter­actions contribute to the formation of the crystal (Fig. 6[link]), give rise to distinct polymorphs as suggested by Hasija & Chopra (2019[Hasija, A. & Chopra, D. (2019). Acta Cryst. C75, 451-461.]). As can be seen in Fig. 6[link], the major forces in the crystal formation of both polymorphs are H⋯H and O⋯H inter­actions, but C⋯O and C⋯H short contacts in polymorph I make slightly bigger contributions to build the lattice, while in polymorph II, hydrogen bonding and ππ stacking contribute in greater proportions.

[Figure 6]
Figure 6
Relative contributions to the Hirshfeld surface for the major inter­molecular contacts in polymorphs I and II.

5. Database survey

A search of the Cambridge Structural Database (version 5.39, February 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed only one crystal structure of the title compound (Refcode TEBFAJ; Li et al., 2012[Li, J., Li, X. & Wang, S. (2012). Chin. J. Struct. Chem. 31, 1003-1007.]). This structure, which we call polymorph I, is assembled by parallel flat sheets that extend along the b axis. It is worth mentioning that the acetyl coumarin without any substituent also forms at least two polymorphic forms (A and B; Munshi et al., 2004[Munshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105-1107.]) with subtle differences in inter­molecular inter­actions, which include weak C—H⋯O and C—H⋯ π inter­actions. Form A crystallizes with head-to-head stacking being favored during nucleation, while form B prefers a head-to tail-stacking. This is similar to the two polymorphs of the title compound.

6. Synthesis and crystallization

The title compound was obtained via Knoevenagel condensation. 3-Meth­oxy­salicyl­aldehyde and ethyl aceto­acetate in a 1:1 molar ratio were loaded in a flask with ethyl alcohol as solvent and piperidine as catalyst and left under stirring and reflux for 5 h. The product was filtered and washed with cold ethanol followed by recrystallization from ethanol to yield the title compound as colourless crystals, 88% yield, mp 444–447 K; IR νKBr (cm−1): 1727 (OC=O), 1682 (C=O), 1278, 1197 (C—O). NMR 1H (δ ppm, CDCl3): 8.42 (s, 1H, H-4); 7.25 (d, 1H, H-7, 3J = 1.1, 4J = 5.7 Hz), 7.18 (t, 1H, H-6, 3J = 5.5, 2.0 Hz) 7.14 (d, 1H, H-5, 3J = 2.0, 4J = 5.7 Hz), 3.94 (s, 3H, OCH3), 2.68 (s, 3H, H-12). NMR 13C (δ ppm, CDCl3): 195.8 (C-11), 158.9 (C-2), 147.9 (C-4), 147.2 (C-8), 145.1 (C-9), 125.0 (C-5), 124.8 (C-3), 121.5 (C-6), 118.9 (C-10), 116.0 (C-7), 56.5 (OCH3), 30.8 (C-12). EA (%) calculated for C12H10O4: 66.05 C, 4.62 H; found: 66.15 C, 4.60 H.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geom­etrically and treated as riding atoms, with C—H = 0.93–0.98 Å and Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C12H10O4
Mr 218.20
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 9.4973 (13), 7.9733 (11), 26.682 (4)
V3) 2020.5 (5)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.40 × 0.35 × 0.30 × 0.15 (radius)
 
Data collection
Diffractometer Bruker APEXII area detector
Absorption correction For a sphere [the interpolation procedure of Dwiggins (1975[Dwiggins, C. W. (1975). Acta Cryst. A31, 146-148.]) was used with some modification]
Tmin, Tmax 0.861, 0.862
No. of measured, independent and observed [I > 2σ(I)] reflections 15317, 2453, 1798
Rint 0.045
(sin θ/λ)max−1) 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.116, 1.10
No. of reflections 2453
No. of parameters 148
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.20, −0.19
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), WinGX2003 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: Mercury (Macrae et al., 2008) and WinGX2003 (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), WinGX2003 (Farrugia, 2012) and PLATON (Spek, 2009).

3-Acetyl-8-methoxy-2H-chromen-2-one top
Crystal data top
C12H10O4Dx = 1.435 Mg m3
Mr = 218.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 600 reflections
a = 9.4973 (13) Åθ = 20–25°
b = 7.9733 (11) ŵ = 0.11 mm1
c = 26.682 (4) ÅT = 293 K
V = 2020.5 (5) Å3Prism, colorless
Z = 80.40 × 0.35 × 0.30 × 0.15 (radius) mm
F(000) = 912
Data collection top
Bruker APEXII area detector
diffractometer
2453 independent reflections
Radiation source: fine-focus sealed tube1798 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
φ and ω scansθmax = 28.3°, θmin = 1.5°
Absorption correction: for a sphere
[the interpolation procedure of Dwiggins (1975) was used with some modification]
h = 1212
Tmin = 0.861, Tmax = 0.862k = 1010
15317 measured reflectionsl = 3435
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.0858P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max < 0.001
S = 1.10Δρmax = 0.20 e Å3
2453 reflectionsΔρmin = 0.19 e Å3
148 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0117 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.50500 (12)0.47624 (16)0.37371 (4)0.0424 (3)
C30.44835 (12)0.56358 (15)0.41705 (4)0.0382 (3)
C40.30805 (13)0.57565 (15)0.42255 (4)0.0410 (3)
H40.2728440.6327620.4502380.049*
C50.06405 (13)0.51543 (17)0.39234 (5)0.0503 (3)
H50.0236600.5711300.4193790.060*
C60.01876 (14)0.44331 (19)0.35668 (6)0.0561 (4)
H60.1161560.4504970.3595630.067*
C70.03947 (14)0.35925 (18)0.31610 (5)0.0512 (4)
H70.0194980.3111730.2922630.061*
C80.18326 (13)0.34597 (15)0.31060 (4)0.0410 (3)
C90.26746 (12)0.42080 (14)0.34702 (4)0.0364 (3)
C100.21098 (12)0.50478 (14)0.38783 (4)0.0389 (3)
C110.54296 (14)0.64209 (16)0.45541 (4)0.0457 (3)
C120.69794 (15)0.6292 (2)0.45047 (6)0.0645 (4)
H12A0.7247280.5132430.4491030.097*
H12B0.7420350.6815990.4788190.097*
H12C0.7274900.6845820.4203010.097*
C140.17018 (17)0.1828 (2)0.23613 (5)0.0637 (4)
H14A0.1114600.2625060.2191010.096*
H14B0.1122610.0997790.2520750.096*
H14C0.2313700.1292800.2123660.096*
O10.40976 (8)0.40859 (11)0.34056 (3)0.0415 (2)
O20.62587 (9)0.45659 (16)0.36291 (4)0.0728 (4)
O110.49013 (11)0.71394 (14)0.49062 (4)0.0688 (3)
O130.25265 (9)0.26717 (11)0.27307 (3)0.0524 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0323 (6)0.0528 (8)0.0422 (6)0.0022 (5)0.0010 (5)0.0078 (5)
C30.0384 (6)0.0398 (7)0.0366 (6)0.0002 (5)0.0004 (5)0.0005 (5)
C40.0432 (7)0.0407 (7)0.0391 (6)0.0040 (5)0.0075 (5)0.0005 (5)
C50.0355 (7)0.0548 (8)0.0608 (8)0.0073 (6)0.0079 (6)0.0094 (6)
C60.0287 (6)0.0638 (9)0.0756 (9)0.0034 (6)0.0017 (6)0.0203 (8)
C70.0383 (7)0.0542 (8)0.0612 (8)0.0070 (6)0.0140 (6)0.0146 (7)
C80.0377 (7)0.0424 (7)0.0428 (6)0.0039 (5)0.0060 (5)0.0087 (5)
C90.0290 (6)0.0389 (6)0.0413 (6)0.0007 (5)0.0014 (4)0.0072 (5)
C100.0341 (6)0.0387 (7)0.0439 (6)0.0031 (5)0.0041 (5)0.0075 (5)
C110.0530 (8)0.0441 (7)0.0400 (6)0.0015 (6)0.0030 (5)0.0030 (5)
C120.0495 (8)0.0822 (11)0.0619 (8)0.0103 (7)0.0129 (7)0.0193 (8)
C140.0738 (10)0.0702 (10)0.0472 (8)0.0148 (8)0.0223 (7)0.0020 (7)
O10.0292 (4)0.0548 (5)0.0406 (4)0.0015 (4)0.0003 (3)0.0094 (4)
O20.0288 (5)0.1185 (10)0.0710 (7)0.0005 (5)0.0019 (4)0.0424 (7)
O110.0716 (7)0.0821 (8)0.0527 (6)0.0059 (6)0.0036 (5)0.0262 (5)
O130.0503 (6)0.0613 (6)0.0455 (5)0.0085 (4)0.0092 (4)0.0084 (4)
Geometric parameters (Å, º) top
C2—O21.1940 (14)C8—O131.3535 (15)
C2—O11.3753 (14)C8—C91.3929 (16)
C2—C31.4530 (16)C9—O11.3659 (14)
C3—C41.3440 (16)C9—C101.3863 (16)
C3—C111.4991 (17)C11—O111.2094 (15)
C4—C101.4238 (17)C11—C121.481 (2)
C4—H40.9300C12—H12A0.9600
C5—C61.362 (2)C12—H12B0.9600
C5—C101.4032 (17)C12—H12C0.9600
C5—H50.9300C14—O131.4275 (15)
C6—C71.388 (2)C14—H14A0.9600
C6—H60.9300C14—H14B0.9600
C7—C81.3776 (17)C14—H14C0.9600
C7—H70.9300
O2—C2—O1115.19 (11)O1—C9—C8116.70 (10)
O2—C2—C3127.66 (11)C10—C9—C8122.20 (11)
O1—C2—C3117.15 (10)C9—C10—C5118.77 (11)
C4—C3—C2119.23 (10)C9—C10—C4116.89 (11)
C4—C3—C11119.32 (11)C5—C10—C4124.34 (11)
C2—C3—C11121.44 (10)O11—C11—C12120.94 (12)
C3—C4—C10122.85 (11)O11—C11—C3118.66 (12)
C3—C4—H4118.6C12—C11—C3120.40 (11)
C10—C4—H4118.6C11—C12—H12A109.5
C6—C5—C10119.27 (13)C11—C12—H12B109.5
C6—C5—H5120.4H12A—C12—H12B109.5
C10—C5—H5120.4C11—C12—H12C109.5
C5—C6—C7121.25 (12)H12A—C12—H12C109.5
C5—C6—H6119.4H12B—C12—H12C109.5
C7—C6—H6119.4O13—C14—H14A109.5
C8—C7—C6121.00 (12)O13—C14—H14B109.5
C8—C7—H7119.5H14A—C14—H14B109.5
C6—C7—H7119.5O13—C14—H14C109.5
O13—C8—C7126.67 (11)H14A—C14—H14C109.5
O13—C8—C9115.82 (11)H14B—C14—H14C109.5
C7—C8—C9117.51 (12)C9—O1—C2122.79 (9)
O1—C9—C10121.09 (10)C8—O13—C14117.55 (11)
O2—C2—C3—C4178.80 (14)O1—C9—C10—C40.53 (16)
O1—C2—C3—C40.59 (17)C8—C9—C10—C4179.87 (11)
O2—C2—C3—C110.5 (2)C6—C5—C10—C90.02 (18)
O1—C2—C3—C11179.90 (10)C6—C5—C10—C4179.73 (12)
C2—C3—C4—C100.63 (18)C3—C4—C10—C90.08 (17)
C11—C3—C4—C10179.96 (11)C3—C4—C10—C5179.79 (11)
C10—C5—C6—C70.2 (2)C4—C3—C11—O110.34 (18)
C5—C6—C7—C80.0 (2)C2—C3—C11—O11179.66 (12)
C6—C7—C8—O13179.70 (11)C4—C3—C11—C12179.43 (12)
C6—C7—C8—C90.40 (18)C2—C3—C11—C121.25 (18)
O13—C8—C9—O10.88 (15)C10—C9—O1—C20.57 (16)
C7—C8—C9—O1179.03 (10)C8—C9—O1—C2179.80 (11)
O13—C8—C9—C10179.50 (10)O2—C2—O1—C9179.47 (12)
C7—C8—C9—C100.58 (17)C3—C2—O1—C90.00 (16)
O1—C9—C10—C5179.20 (10)C7—C8—O13—C142.70 (18)
C8—C9—C10—C50.40 (17)C9—C8—O13—C14177.40 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12B···O11i0.962.633.4255 (17)141
C6—H6···O2ii0.932.453.3808 (16)176
C14—H14A···O2iii0.962.683.4535 (18)138
C4—H4···O110.932.422.7395 (16)100
C12—H12A···O20.962.522.797 (2)97
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x1, y, z; (iii) x1/2, y, z+1/2.
 

Acknowledgements

The authors thank Juan Pablo Mojica Sánchez for his contribution to the Hirshfeld surfaces calculation.

Funding information

GGC thanks CONACYT (Mexico) for PhD scholarship No. 364826.

References

First citationAllen, F. H., Baalham, C. A., Lommerse, J. P. M. & Raithby, P. R. (1998). Acta Cryst. B54, 320–329.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDwiggins, C. W. (1975). Acta Cryst. A31, 146–148.  CrossRef IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaudino, E. C., Tagliapietra, S., Martina, K., Palmisano, G. & Cravotto, G. (2016). RSC Adv. 6, 46394–46405.  Google Scholar
First citationGómez-Castro, C. Z., Padilla-Martínez, I. I., García-Báez, E. V., Castrejón-Flores, J. L., Peraza-Campos, A. L. & Martínez-Martínez, F. J. (2014). Molecules, 19, 14446–14460.  Web of Science PubMed Google Scholar
First citationGonzález-Padilla, J. E., Rosales-Hernández, M. C., Padilla-Martínez, I. I., García-Báez, E. V., Rojas-Lima, S. & Salazar-Pereda, V. (2014). Acta Cryst. C70, 55–59.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHasija, A. & Chopra, D. (2019). Acta Cryst. C75, 451–461.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J., Li, X. & Wang, S. (2012). Chin. J. Struct. Chem. 31, 1003–1007.  Web of Science CrossRef CAS Google Scholar
First citationLiu, Y., Wang, Q. L., Zhou, C. S., Xiong, B. Q., Zhang, P. L., Kang, S. J., Yang, C. A. & Tang, K. W. (2018). Tetrahedron Lett. 59, 2038–2041.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMunshi, P., Venugopala, K. N., Jayashree, B. S. & Guru Row, T. N. (2004). Cryst. Growth Des. 4, 1105–1107.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalem, M. A., Helal, M. H., Gouda, M. A., Ammar, Y. A., El-Gaby, M. S. A. & Abbas, S. Y. (2018). Synth. Commun. 48, 1534–1550.  Web of Science CrossRef CAS Google Scholar
First citationSantos-Contreras, R. J., Martínez-Martínez, F. J., Mancilla-Margalli, N. A., Peraza-Campos, A. L., Morín-Sánchez, L. M., García-Báez, E. V. & Padilla-Martínez, I. I. (2009). CrystEngComm, 11, 1451–1461.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface.net.  Google Scholar
First citationVekariya, R. H. & Patel, H. D. (2014). Synth. Commun. 44, 2756–2788.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds