research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structural characterization and Hirshfeld surface analysis of 2-iodo-4-(penta­fluoro-λ6-sulfan­yl)benzo­nitrile

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico, and bDepartment of Chemistry and the Molecular Sciences Research Center, University of Puerto Rico-Rio Piedras Campus, PO Box 23346, San Juan, 00931-3346, Puerto Rico
*Correspondence e-mail: dalice.pinero@upr.edu

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 29 July 2019; accepted 13 January 2020; online 17 January 2020)

The title compound, C7H3F5INS, a penta­fluoro­sulfanyl (SF5) containing arene, was synthesized from 4-(penta­fluoro­sulfan­yl)benzo­nitrile and lithium tetra­methyl­piperidide following a variation to the standard approach, which features simple and mild conditions that allow direct access to tri-substituted SF5 inter­mediates that have not been demonstrated using previous methods. The mol­ecule displays a planar geometry with the benzene ring in the same plane as its three substituents. It lies on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta­fluoro­sulfanyl substituent in the plane of the mol­ecule. The equatorial F atoms have symmetry-related counterparts generated by the mirror plane. The penta­fluoro­sulfanyl group exhibits a staggered fashion relative to the ring and the two hydrogen atoms ortho to the substituent. S—F bond lengths of the penta­fluoro­sulfanyl group are unequal: the equatorial bond facing the iodo moiety has a longer distance [1.572 (3) Å] and wider angle compared to that facing the side of the mol­ecules with two hydrogen atoms [1.561 (4) Å]. As expected, the axial S—F bond is the longest [1.582 (5) Å]. In the crystal, in-plane C—H⋯F and N⋯I inter­actions as well as out-of-plane F⋯C inter­actions are observed. According to the Hirshfeld analysis, the principal inter­molecular contacts for the title compound are F⋯H (29.4%), F⋯I (15.8%), F⋯N (11.4%), F⋯F (6.0%), N⋯I (5.6%) and F⋯C (4.5%).

1. Chemical context

Organic compounds containing the tri­fluoro­methyl (CF3) or penta­fluoro­thio (or penta­fluoro-λ6-sulfanyl, SF5) groups play an important role in organofluorine chemistry because of their special properties including low surface energy, hydro­phobicity, high chemical resistance, high thermal stability and high electronegativity (Kirsch et al., 1999[Kirsch, P., Bremer, M., Heckmeier, M. & Tarumi, K. (1999). Angew. Chem. Int. Ed. 38, 1989-1992.], 2014[Kirsch, P. & Bremer, M. (2014). Chimia, 68, 363-370.]; Iida et al., 2015[Iida, N., Tanaka, K., Tokunaga, E., Mori, S., Saito, N. & Shibata, N. (2015). Chem. Open. 4, 698-702.]; Beier et al., 2011[Beier, P., Pastýříková, T. & Iakobson, G. (2011). J. Org. Chem. 76, 4781-4786.]). SF5, coined as the `super-tri­fluoro­meth­yl' group, is often preferred to CF3 as it is more electronegative, lipophilic and chemically stable, and possesses a higher steric effect (Bowden et al., 2000[Bowden, R. D., Comina, P. J., Greenhall, M. P., Kariuki, B. M., Loveday, A. & Philp, D. (2000). Tetrahedron, 56, 3399-3408.]). The current inter­est in the field of drug discovery of fluorinated substituents is based on the possibility of improving both the metabolic stability and bioavailability of receptor binders upon the incorporation of susbtituents with one or more fluorine atoms (Altomonte et al., 2014[Altomonte, S., Baillie, G. L., Ross, R. A., Riley, J. & Zanda, M. (2014). RSC Adv. 4, 20164-20176.]; Savoie & Welch, 2015[Savoie, P. R. & Welch, J. T. (2015). Chem. Rev. 115, 1130-1190.]; Sowaileh et al., 2017[Sowaileh, M. F., Hazlitt, R. A. & Colby, D. A. (2017). Med. Chem. 12, 1481-1490.]). In fact, several blockbuster drugs include such a group, demonstrating the prominent role of the tri­fluoro­methyl group in the area of drug discovery (O'Hagan, 2010[O'Hagan, D. (2010). J. Fluor. Chem. 131, 1071-1081.]; Müller et al., 2007[Müller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]; Purser et al., 2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). New mol­ecules incorporating the SF5 group are thus potential alternatives to already existing biologically active mol­ecules containing the CF3 substitution. Additionally, the chemical robustness of SF5 has been explored in other areas such as polymer chemistry (Zhou et al., 2016[Zhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J. L., Soloshonok, V. A., Izawa, K. & Liu, H. (2016). Chem. Rev. 116, 422-518.]). Despite the popularity of the title compound, an important precursor in organofluorine chemistry, its crystallographic characterization, which is an important milestone in the synthesis of next-generation materials containing this motif, has not been reported. Herein, we describe a variation to the synthetic approach and give details of its simple crystallization through slow evaporation methods, yielding X-ray diffraction-quality single crystals.

[Scheme 1]

The title compound was obtained as part of our studies toward the synthesis of functionalized arenes containing the SF5 moiety. Its synthesis involves a one-pot reaction in which the inter­action of the cyano group in 4-(penta­fluoro­sulfan­yl)benzo­nitrile to the Lewis acidic lithium cation in lithium tetra­methyl­piperidide (LiTMP) allows deprotonation from the nearest ortho-H atom on the arene. The SF5-containing organolithium species is then quenched with iodine to yield the title compound. This reaction pathway was proposed by Iida et al. (2015[Iida, N., Tanaka, K., Tokunaga, E., Mori, S., Saito, N. & Shibata, N. (2015). Chem. Open. 4, 698-702.]) for the synthesis of SF5-substituted zinc phthalocyanines. We modified the synthesis by adding tetra­methyl­ethylenedi­amine (TMEDA), an amine additive that serves to break up the li­thia­ted base aggregates, allowing for accelerated reactivity because of the increased basicity. This variation improves the total yield of the title compound by 8%.

2. Structural commentary

Fig. 1[link] shows the mol­ecular structure of the title compound, which crystallizes in the space group Pnma. Its asymmetric unit comprises a single mol­ecule lying on a mirror plane perpendicular to [010] with the iodo, cyano, and the sulfur and axial fluorine atoms of the penta­fluoro­sulfanyl substituent in the plane of the mol­ecule. The fluorine atoms of the penta­fluoro­sulfanyl group in the equatorial positions lie above and below the plane in a staggered fashion relative to the two hydrogen atoms ortho to the substituent; of those, two of the four fluorine atoms are generated symmetrically by the mirror plane. The S1—F(eq) bond distances differ from each other depending on which side of the mol­ecule the bond is located (Table 1[link]). The S1—F2(eq) bond and its symmetry equivalent S1—F2 i(eq) [symmetry code: (i) x, −y + [{3\over 2}], z] are on the same side as the iodine atom and exhibit a longer bond distance of 1.572 (3) Å in comparison to S1—F1(eq) and S1—F1i(eq), which are further away from the iodine and have a shorter bond length distance of 1.561 (4) Å. The S1—F3(ax) bond length of 1.582 (5) Å is the longest and is consistent with those in similar structures [1.588 (2) and 1.573 (3) Å; Du et al., 2016[Du, J., Hua, G., Beier, P., Slawin, A. M. Z. & Woollins, J. D. (2016). Struct. Chem. 28, 723-733.]].

Table 1
Selected bond lengths and angles

S1—F1(eq) and S1—–F1i(eq) 1.561 (4)
S1—F2(eq) and S1—F2i(eq) 1.572 (3)
S1—F3(ax) 1.582 (5)
   
C4—S1—F2(eq) 92.0 (2)
C4—S1—F1(eq) 92.2 (2)
Symmetry code: (i) x, −y + [{3\over 2}], z.
[Figure 1]
Figure 1
Mol­ecular structure of the title compound, including atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Atoms generated by the mirror plane [symmetry code: (i) x, −y + [{3\over 2}], z] are depicted in dark green.

3. Supra­molecular features

The packing of the title compound is consolidated through a series of inter­molecular inter­actions, which can be classified as being in-plane and out-of-plane (Table 2[link]). Each mol­ecule acts as a C—H donor through the meta- and para-hydrogen atoms of the phenyl ring counter to the iodine atom. Two C–H⋯F hydrogen bonds, C5—H5⋯F3 and C6—H6⋯F3 with H⋯F distances of 2.5 and 2.6 Å, respectively, create an in-plane network (Table 2[link] and Fig. 2[link]). Both the H5 and H6 atoms are highly acidic because of the electron-withdrawing effects of the –SF5 and –CN substituents. Additionally, significant in-plane halogen-bonding inter­actions [N1⋯I1([{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] − z) = 3.408 (10) Å] are observed (Metrangolo et al., 2005[Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386-395.]). Out-of-plane inter­molecular inter­actions arise primarily from F⋯π ring inter­actions at one of the `corners' of the ring (Fig. 3[link]) with an F2⋯C3(2 − x, −[{1\over 2}] + y, 1 − z) distance of 3.124 (5) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F3i 0.93 2.57 3.501 (1) 174
C6—H6⋯F3ii 0.93 2.56 3.476 (1) 169
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (ii) [x-1, -y+{\script{3\over 2}}, z].
[Figure 2]
Figure 2
In plane contacts. A view along the b axis of crystal packing of the title compound, with short-contact inter­actions shown as dashed lines.
[Figure 3]
Figure 3
Out-of-plane contacts. Partial packing diagram for the the title compound viewed along the a axis. F⋯π inter­actions are shown as dashed lines.

4. Hirshfeld surface analysis

The Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) for the title compound mapped over dnorm is shown in Fig. 4[link] while Fig. 5[link] shows the associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), both generated with CrystalExplorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net]). Red spots on the Hirshfeld surface mapped over dnorm in the colour range −0.4869 to 1.4157 arbitrary units confirm the previously mentioned main inter­molecular contacts. The fingerprint plots are given for all contacts and those delineated into F⋯H/H ⋯F (29.4%; Fig. 5[link]b), F⋯I/I⋯F (15.8%; Fig. 5[link]c), F⋯N/N⋯F (11.4%; Fig. 5[link]d), H⋯N/N⋯H (6.3%; Fig. 5[link]e), I⋯N/N⋯I (5.6%; Fig. 5[link]f), C⋯F/F⋯C (4.5%; Fig. 5[link]g), C⋯H/H⋯C (4.5%; Fig. 5[link]h), I⋯H/H⋯I (3.3%; Fig. 5[link]i), C⋯N/N⋯C (1.6%; Fig. 5[link]j), C⋯C (9.5%; Fig. 5[link]k), F⋯F (6.0%; Fig. 5[link]l) and I⋯I (2.2%; Fig. 5[link]m) inter­actions. Thus, the Hirshfeld surface analysis indicates that the most significant contributions arise from F⋯H and F⋯I contacts.

[Figure 4]
Figure 4
A view of the Hirshfeld surface of the title compound mapped over dnorm with the four main inter­molecular contacts in the crystal lattice.
[Figure 5]
Figure 5
Full (a) and individual (b)–(m) two-dimensional fingerprint plots showing the 12 inter­molecular contacts present in the crystal structure.

5. Database survey

A search of the Cambridge Structural Database (Version 5.39, updated May 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed no matching compounds with the title compound substructure and the three substituents. However, a search for SF5 aryl compounds fragment revealed about 85 hits: 77 of these structures were reported in the last 10 years, which shows the increasing inter­est in the SF5 group. Most of these compounds are used as reagents in the synthesis and modification of pharmaceuticals, such as the anti­malarial agent mefloquine (Wipf et al., 2009[Wipf, P., Mo, T., Geib, S. J., Caridha, D., Dow, G. S., Gerena, L., Roncal, N. & Milner, E. E. (2009). Org. Biomol. Chem. 7, 4163-4165.]) and the anti-obesity drug fenfluramine (Welch et al., 2007[Welch, J. T. & Lim, D. S. (2007). Bioorg. Med. Chem. 15, 6659-6666.]).

6. Synthesis and crystallization

All solvents and reagents were purified prior to being used. 4-(Penta­fluoro­sulfan­yl)benzo­nitrile was obtained commercially and used without further purification. A solution of 2.5 M n-butyl lithium in hexa­nes was used. Column chroma­tography was carried out on a column packed with silica gel 70–230 mesh.

The synthesis of the title compound was performed through the regioselective ortho-li­thia­tion of 4-(penta­fluoro­sulfan­yl)benzo­nitrile with lithium tetra­methyl­piperidide (LiTMP) in THF as solvent, favouring the formation of the ortho product (1,2,4-substituted arene) over the meta product (1,3,4-substituted arene). The ortho-metalated product was subsequently quenched with I2 to afford the iodinated tris­ubstituted arene. A dry 50 mL Schlenk tube was charged with 4 mL of dry THF and 300 µL of 2,2,6,6-tetra­methyl piperidine (1.75 mmol, 2 eq.) and 262 µL of N,N,N,N-tetra­methyl­ethylendi­amine (1.75 mmol) were added under an inert atmosphere. The solution was cooled to 273 K and 700 µL of 2.5 M n-butyl lithium in hexane (1.75 mmol, 2 eq.) were added slowly. The reaction mixture was stirred at 273 K for 30 minutes and then cooled to 195 K. A solution containing 200 mg of 4-(penta­fluoro­sulfan­yl)benzo­nitrile (0.872 mmol, 1 eq.) in 4 mL THF was added dropwise: the solution changed from pale yellow to dark brown upon formation of the metalated inter­mediary. After stirring for 1 h at 195 K, a solution of 244 mg I2 (0.960 mmol, 1.2 eq.) in 4 mL THF was added dropwise and stirred for 2 h. The mixture was then warmed to room temperature and stirred for 1 h.

The reaction was quenched with water and THF was removed under reduced pressure, followed by extraction with diethyl ether. The combined organic phase was washed with aqueous 0.1 M HCl, 0.1 M Na2S2O3 and brine, then dried over MgSO4. The crude product was purified by column chromatography (9:1, hexa­ne:ethyl acetate) to yield 71 mg (46%) of the pure arene product as a yellow solid (m.p. 367–369 K). Block-like yellow crystals suitable for X-ray diffraction were obtained by slow evaporation of a saturated CH2Cl2 solution of the 2-iodo-4-(penta­fluoro-λ6-sulfan­yl)benzo­nitrile at room temperature over a period of four days. NMR analyses were performed on a Bruker AV-500 spectrometer using chloro­form-d as solvent (CDCl3). The solvent signals at 7.26 and 77.00 ppm were used as inter­nal standards for proton and carbon, respectively. 1H NMR (500 MHz, Chloro­form-d) δ 8.31 (d, J = 2.1 Hz, 1H), 7.89 (dd, J = 8.6, 2.1 Hz, 1H), 7.75 (d, J = 8.6 Hz, 1H). 13C NMR (125 MHz, CDCl3) δ, 98.22, 117.83, 124.10, 126.16, 134.39, 136.82, 156.15.

7. Refinement

Data collection, crystal data and structure refinement parameters are summarized in Table 3[link]. H atoms were included in geometrically calculated positions and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula C7H3F5INS
Mr 355.06
Crystal system, space group Orthorhombic, Pnma
Temperature (K) 300
a, b, c (Å) 8.0634 (1), 7.7088 (1), 16.4410 (3)
V3) 1021.96 (3)
Z 4
Radiation type Cu Kα
μ (mm−1) 26.99
Crystal size (mm) 0.26 × 0.17 × 0.12
 
Data collection
Diffractometer SuperNova, Single source at offset/far, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.287, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 9403, 1020, 953
Rint 0.082
(sin θ/λ)max−1) 0.605
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.03
No. of reflections 1020
No. of parameters 85
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −1.78
Computer programs: CrysAlis PRO (Rigaku OD, 2018[Rigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2018); cell refinement: CrysAlis PRO (Rigaku OD, 2018); data reduction: CrysAlis PRO (Rigaku OD, 2018); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Iodo-4-(pentafluoro-λ6-sulfanyl)benzonitrile top
Crystal data top
C7H3F5INSDx = 2.308 Mg m3
Mr = 355.06Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PnmaCell parameters from 6922 reflections
a = 8.0634 (1) Åθ = 2.7–68.4°
b = 7.7088 (1) ŵ = 26.99 mm1
c = 16.4410 (3) ÅT = 300 K
V = 1021.96 (3) Å3Irregular, clear light yellow
Z = 40.26 × 0.17 × 0.12 mm
F(000) = 664
Data collection top
SuperNova, Single source at offset/far, HyPix3000
diffractometer
953 reflections with I > 2σ(I)
ω scansRint = 0.082
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2018)
θmax = 68.8°, θmin = 5.4°
Tmin = 0.287, Tmax = 1.000h = 99
9403 measured reflectionsk = 99
1020 independent reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.071P)2 + 1.8371P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1020 reflectionsΔρmax = 0.74 e Å3
85 parametersΔρmin = 1.77 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. ShelXL

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.67725 (6)0.7500000.31142 (3)0.0540 (3)
S10.97572 (19)0.7500000.62917 (9)0.0398 (4)
F31.1407 (6)0.7500000.6812 (3)0.0641 (14)
F21.0576 (4)0.6065 (5)0.5743 (2)0.0641 (9)
F10.9063 (5)0.8925 (6)0.68738 (19)0.0819 (13)
C40.7869 (8)0.7500000.5682 (4)0.0356 (13)
C30.8020 (7)0.7500000.4841 (4)0.0335 (13)
H30.9058560.7500000.4595080.040*
C20.6572 (8)0.7500000.4373 (4)0.0352 (13)
C10.5034 (8)0.7500000.4752 (4)0.0467 (16)
C70.3514 (9)0.7500000.4290 (5)0.056 (2)
C50.6348 (10)0.7500000.6059 (5)0.065 (3)
H50.6281670.7500000.6624010.078*
N10.2295 (10)0.7500000.3943 (6)0.080 (2)
C60.4948 (10)0.7500000.5606 (5)0.072 (3)
H60.3919260.7500000.5861800.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0575 (4)0.0786 (4)0.0259 (3)0.0000.00566 (16)0.000
S10.0409 (8)0.0534 (9)0.0250 (8)0.0000.0044 (6)0.000
F30.055 (3)0.097 (4)0.040 (3)0.0000.020 (2)0.000
F20.0622 (18)0.0697 (19)0.0605 (18)0.0256 (16)0.0188 (15)0.0192 (17)
F10.081 (3)0.110 (3)0.055 (2)0.022 (2)0.0146 (16)0.044 (2)
C40.038 (3)0.045 (3)0.024 (3)0.0000.002 (3)0.000
C30.037 (3)0.038 (3)0.026 (3)0.0000.000 (2)0.000
C20.047 (4)0.033 (3)0.025 (3)0.0000.003 (2)0.000
C10.038 (3)0.066 (4)0.036 (4)0.0000.003 (3)0.000
C70.046 (4)0.081 (6)0.042 (5)0.0000.004 (3)0.000
C50.047 (4)0.121 (8)0.027 (4)0.0000.002 (3)0.000
N10.049 (4)0.121 (7)0.071 (5)0.0000.016 (4)0.000
C60.036 (4)0.139 (9)0.042 (4)0.0000.014 (3)0.000
Geometric parameters (Å, º) top
I1—C22.076 (6)C3—H30.9300
S1—F31.582 (5)C3—C21.399 (8)
S1—F21.572 (3)C2—C11.388 (9)
S1—F2i1.572 (3)C1—C71.442 (10)
S1—F1i1.561 (4)C1—C61.406 (11)
S1—F11.561 (4)C7—N11.136 (10)
S1—C41.823 (7)C5—H50.9300
C4—C31.388 (9)C5—C61.353 (11)
C4—C51.374 (10)C6—H60.9300
F3—S1—C4179.4 (3)C5—C4—C3121.8 (6)
F2i—S1—F387.52 (18)C4—C3—H3120.8
F2—S1—F387.52 (18)C4—C3—C2118.4 (6)
F2i—S1—F289.4 (3)C2—C3—H3120.8
F2—S1—C492.04 (19)C3—C2—I1118.9 (5)
F2i—S1—C492.04 (19)C1—C2—I1121.2 (5)
F1i—S1—F388.3 (2)C1—C2—C3119.9 (6)
F1—S1—F388.3 (2)C2—C1—C7121.6 (6)
F1—S1—F2i90.4 (2)C2—C1—C6119.5 (6)
F1—S1—F2175.8 (2)C6—C1—C7118.9 (7)
F1i—S1—F290.4 (2)N1—C7—C1178.4 (9)
F1i—S1—F2i175.8 (2)C4—C5—H5120.1
F1i—S1—F189.5 (4)C6—C5—C4119.8 (7)
F1i—S1—C492.2 (2)C6—C5—H5120.1
F1—S1—C492.2 (2)C1—C6—H6119.7
C3—C4—S1118.3 (5)C5—C6—C1120.6 (7)
C5—C4—S1119.8 (5)C5—C6—H6119.7
I1—C2—C1—C70.000 (2)F1i—S1—C4—C544.79 (18)
I1—C2—C1—C6180.000 (2)C4—C3—C2—I1180.000 (1)
S1—C4—C3—C2180.000 (2)C4—C3—C2—C10.000 (2)
S1—C4—C5—C6180.000 (2)C4—C5—C6—C10.000 (3)
F2—S1—C4—C344.74 (15)C3—C4—C5—C60.000 (3)
F2i—S1—C4—C344.74 (15)C3—C2—C1—C7180.000 (2)
F2i—S1—C4—C5135.26 (15)C3—C2—C1—C60.000 (2)
F2—S1—C4—C5135.26 (15)C2—C1—C6—C50.000 (3)
F1i—S1—C4—C3135.21 (18)C7—C1—C6—C5180.000 (2)
F1—S1—C4—C3135.21 (18)C5—C4—C3—C20.000 (2)
F1—S1—C4—C544.79 (18)
Symmetry code: (i) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F3ii0.932.573.501 (1)174
C6—H6···F3iii0.932.563.476 (1)169
Symmetry codes: (ii) x1/2, y+3/2, z+3/2; (iii) x1, y+3/2, z.
Selected bond lengths and angles top
S1—F1(eq) and S1—–F1i(eq)1.561 (4)
S1—F2(eq) and S1—F2i(eq)1.572 (3)
S1—F3(ax)1.582 (5)
C4—S1—F2(eq)92.0 (2)
C4—S1—F1(eq)92.2 (2)
Symmetry code: (i) x, -y + 3/2, z.
Non-covalent intermolecular interactions (Å) top
N1—I13.408F2—C3'3.408
F3—H53.123F3—H62.573, 2.558
Hydrogen-bond and short-contact geometry (Å, °) top
D—H···A/D···AD—HH···AD···AD—H···A
C5—H5···F30.932.573.501 (1)174
F2···C33.123 (1)
C6—H6···F30.932.563.476 (1)169
N1···I13.408 (1)-
Percentage contributions of interatomic contacts to the Hirshfeld surface top
Contact% contributionContact% contribution
F···H/H···F29.4C···C9.5
F···I/I···F15.8F···F6.0
F···N/N···F11.4I···I2.2
H···N/N···H6.3
I···N/N···I5.6
C···F/F···C4.5
C···H/H···C4.5
I···H/H···I3.3
C···N/N···C1.6

Funding information

The authors acknowledge financial support by the NSF–CREST Center for Innovation, Research and Education in Environmental Nanotechnology (CIRE2N) grant No. HRD-1736093. The single crystal x-ray diffractometer was acquired through the support of the National Science Foundation under the Major Research Instrumentation Award No. CHE-1626103.

References

First citationAltomonte, S., Baillie, G. L., Ross, R. A., Riley, J. & Zanda, M. (2014). RSC Adv. 4, 20164–20176.  Web of Science CrossRef CAS Google Scholar
First citationBeier, P., Pastýříková, T. & Iakobson, G. (2011). J. Org. Chem. 76, 4781–4786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBowden, R. D., Comina, P. J., Greenhall, M. P., Kariuki, B. M., Loveday, A. & Philp, D. (2000). Tetrahedron, 56, 3399–3408.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDu, J., Hua, G., Beier, P., Slawin, A. M. Z. & Woollins, J. D. (2016). Struct. Chem. 28, 723–733.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIida, N., Tanaka, K., Tokunaga, E., Mori, S., Saito, N. & Shibata, N. (2015). Chem. Open. 4, 698–702.  CAS Google Scholar
First citationKirsch, P. & Bremer, M. (2014). Chimia, 68, 363–370.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKirsch, P., Bremer, M., Heckmeier, M. & Tarumi, K. (1999). Angew. Chem. Int. Ed. 38, 1989–1992.  CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMetrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMüller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science PubMed Google Scholar
First citationO'Hagan, D. (2010). J. Fluor. Chem. 131, 1071–1081.  CAS Google Scholar
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku OD (2018). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSavoie, P. R. & Welch, J. T. (2015). Chem. Rev. 115, 1130–1190.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSowaileh, M. F., Hazlitt, R. A. & Colby, D. A. (2017). Med. Chem. 12, 1481–1490.  CAS Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. https://hirshfeldsurface. net  Google Scholar
First citationWelch, J. T. & Lim, D. S. (2007). Bioorg. Med. Chem. 15, 6659–6666.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWipf, P., Mo, T., Geib, S. J., Caridha, D., Dow, G. S., Gerena, L., Roncal, N. & Milner, E. E. (2009). Org. Biomol. Chem. 7, 4163–4165.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhou, Y., Wang, J., Gu, Z., Wang, S., Zhu, W., Aceña, J. L., Soloshonok, V. A., Izawa, K. & Liu, H. (2016). Chem. Rev. 116, 422–518.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds