research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2,4,6,11-tetra­kis­(4-fluoro­phen­yl)-9-oxa-1,5-di­aza­tri­cyclo­[5.3.1.03.8]undeca­ne

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The Gandhigram Rural Institute – Deemed to be University, Gandhigram 624302, Tamilnadu, India, and bSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamilnadu, India
*Correspondence e-mail: msundargri@gmail.com

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 21 September 2018; accepted 14 November 2018; online 22 November 2018)

The title compound, C32H26F4N2O, crystallizes in the monoclinic space group P21/n with four mol­ecules in the unit cell. The compound was prepared by the NaBH4 reduction of 4,8,9,10-tetra­kis­(4-fluoro­phen­yl)-1,3-di­aza­adamantan-6-one in chloro­form and ethanol as solvent. The piperidine rings exhibit chair and boat conformations, and all four fluoro­phenyl groups are oriented in the equatorial direction. The crystal structure features C—H⋯F hydrogen bonds, C—H⋯π, N—H⋯π and ππ inter­actions. Hirshfeld surface and two-dimensional fingerprint analysis show that van der Waals inter­actions constitute a major contribution to the inter­molecular inter­actions, with H⋯H contacts accounting for 37.9% of the surface.

1. Chemical context

Mol­ecules containing a bis­pidine nucleus are of great inter­est due to their presence in a wide variety of naturally occurring alkaloids and various biologically active mol­ecules (Jeyaraman & Avila, 1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). The biological activities of the mol­ecule depend crucially on the stereochemistry and conformation of the compound, and hence studies on the stereochemistry of the mol­ecules are inter­esting. The title compound contains four fluoro­phenyl groups and hence the investigation also looked for any weak inter­actions involving fluorine which are of current inter­est (Hathwar et al., 2014[Hathwar, V. R., Chopra, D., Panini, P. & Guru Row, T. N. (2014). Cryst. Growth Des. 14, 5366-5369.]). Moreover, Das et al. (2017[Das, A. (2017). J. Mol. Struct. 1147, 520-540.]) have recently discussed the role of halogens in stabilizing stacking patterns.

[Scheme 1]

2. Structural commentary

An ORTEP view of the title compound is shown in Fig. 1[link]. The N2/C7/C8/C24–C26 piperidine ring adopts a chair conformation with puckering parameters Q = 0.6178 (19) Å, θ = 176.85 (18)°, φ = 25 (3)° while the N1/C9/C8/C24/C25/C17 piperidine ring [puckering parameters Q = 0.8564 (18) Å, θ = 89.49 (12)°, φ = 178.52 (12)°] adopts a boat conformation. The oxygen-containing quinuclidine ring system (C8/C9/N1/C17/C25/C24/O1/C16) also adopts a boat conformation, with puckering parameters Q = 0.7817 (18) Å, θ = 91.23 (13)°, φ = 121.27 (13)° for the C8/C9/N1/C16/O1/C24 ring and Q = 0.7867 (18) Å, θ = 89.40 (13)°, φ = 297.43 (3)° for the C17/C25/C24/O1/C16/N1 ring. The fluoro­phenyl groups at C7 and C26 subtend a dihedral angle of 29.45 (1)° and are oriented equatorially with respect to the N2/C7/C8/C24–C26 piperidine ring with torsion angles C6—C7—C8—C24 = −179.72 (14)° and C24—C25—C26—C27 = 176.10 (14)°. The other two fluoro­phenyl groups at C9 and C17 subtend a dihedral angle of 21.85 (1)° and are oriented equatorially with respect to the N1/C9/C8/C24/C25/C17 piperidine ring, with torsion angles C10—C9—C8—C24 = 125.64 (15)° and C18—C17—C25—C24 = −128.24 (15)°.

[Figure 1]
Figure 1
An ORTEP view of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at 40% probability level.

3. Supra­molecular features

In the crystal, several C—H⋯F hydrogen bonds occur. Screw-related mol­ecules are linked by C32—H32⋯F4iii and C1—H1⋯F4iii hydrogen bonds with F4 acting as a bifurcated acceptor (Table 1[link]). The mol­ecules are further linked by C31—H31⋯F1i and C8—H8⋯F3ii hydrogen bonds (Fig. 2[link]). An N—H⋯π inter­action is present along with intra- and inter­molecular C—H⋯π inter­actions (Table 1[link], Figs. 2[link] and 3[link]). Weak ππ stacking inter­actions occur between the fluoro­phenyl groups [Cg6vCg7vi = 4.0665 (12) Å; symmetry code: (vi) 1 − x, 1 − y, 1 − z; Cg6 and Cg7 are the centroids of the C10–C15 and C18–C23 rings respectively). Overall, these inter­actions generate a three-dimensional supra­molecular architecture.

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 and Cg6 are the centroids of the C1–C6 and C10–C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C31—H31⋯F1i 0.93 2.51 3.231 (3) 135
C8—H8⋯F3ii 0.98 2.64 3.564 (2) 158
C32—H32⋯F4iii 0.93 2.66 3.567 (3) 162
C1—H1⋯F4iii 0.93 2.51 3.411 (2) 161
N2—H2ACg5iv 0.89 2.80 (2) 3.6594 (18) 161.7 (17)
C2—H2⋯Cg6v 0.93 2.68 3.552 (2) 156
C11—H11⋯Cg5 0.93 2.87 3.514 (2) 128
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y, -z+1; (v) -x, -y+1, -z+1.
[Figure 2]
Figure 2
A view of the supra­molecular architecture of the title compound. Some of the atoms have been omitted for clarity.
[Figure 3]
Figure 3
A view of the C11—H11⋯π inter­action (intra­molecular). Some of the atoms have been omitted for clarity.

4. Hirshfeld surface analysis

Hirshfeld surface analysis and fingerprint plots, here generated with Crystal Explorer (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western, Australia.]; Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western, Australia.]), show the various inter­molecular inter­actions present in crystal structures (Wiedemann & Kohl, 2017[Wiedemann, D. & Kohl, J. (2017). Acta Cryst. C73, 654-659.]; Tarahhomi et al., 2013[Tarahhomi, A., Pourayoubi, M., Golen, J. A., Zargaran, P., Elahi, B., Rheingold, A. L., Leyva Ramírez, M. A. & Mancilla Percino, T. (2013). Acta Cryst. B69, 260-270.]). Fig. 4[link] shows the Hirshfeld surface of the title compound mapped over dnorm where the intense red spots indicate regions of donor–acceptor inter­actions (Cárdenas-Valenzuela et al., 2018[Cárdenas-Valenzuela, A. J., González-García, G., Zárraga- Nuñez, R., Höpfl, H., Campos-Gaxiola, J. J. & Cruz-Enríquez, A. (2018). Acta Cryst. E74, 441-444.]; Atioğlu et al., 2018[Atioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035-1038.]) and represent the fluorine, carbon and hydrogen atoms involved. Fig. 5[link] shows the two-dimensional fingerprint plots, which qu­antify the contribution of each kind of inter­action to the surface formation (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.]). The largest contribution to the surface of 37.9% is from H⋯H contacts, while C⋯H contacts contribute 22.4%; these represent van der Waals inter­actions present in the crystal. Inter­molecular hydrogen-bonding inter­actions (F⋯H/H⋯F contacts) contribute 29.2%.

[Figure 4]
Figure 4
Hirshfeld surface of the title compound plotted over dnorm, with neighbouring inter­actions shown as red dashed lines.
[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound.

5. Database survey

Di­aza­bicyclic compounds with different substituents on the aromatic rings have been reported in the literature: 2,4,6,8-tetra­kis­(4-ethyl­phen­yl)-3,7-di­aza­bicyclo-[3.3.1]-nonan-9-one [(I); Rajesh et al., 2010[Rajesh, K., Vijayakumar, V., Safwan, A. P., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1316.]], 2,4,6,8-tetra­kis­(4-bromo­phen­yl)-3,7di­aza­bicyclo-[3.3.1]-nonan-9-one [(II); Loh et al., 2010[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o265-o266.]], 2,4,6,8-tetra­kis­(2-meth­oxy­phen­yl)-3,7-di­aza­bicyclo­[3.3.1]non­an-9-one [(III); Fun et al., 2009[Fun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486-o2487.]], 2,4,6,8-tetra­kis­(4-fluoro­phen­yl)-3,7-di­aza­bicyclo­[3.3.1]nonan-9-one [(IV); Natarajan et al., 2008[Natarajan, S., Sudhapriya, V., Vijayakumar, V., Shoba, N., Suresh, J. & Lakshman, P. L. N. (2008). Acta Cryst. E64, o2496.]]. Compounds (I)[link], (II) and (III) crystallize in space group P21/c, while compound (IV) crystallizes in space group C2/c. The piperidine rings in all of these compounds adopt chair–boat conformations with an equatorial orientation of the aryl rings. In the crystal of (I)[link], mol­ecules are linked via C—H⋯O hydrogen bonds, forming helical supra­molecular chains along the b-axis direction. In (II), the mol­ecules are connected through C—H⋯O and N—H⋯O hydrogen bonds, forming chains propagating along the c-axis direction, and C—H⋯π inter­actions also occur. The supra­molecular structure of compound (III) features C—H⋯N hydrogen bonds, which link the mol­ecules along the b-axis direction, and C—H⋯π inter­actions. In (IV), the mol­ecules are linked into a two-dimensional network by N—H⋯O, C—H⋯F and C—H⋯O hydrogen bonds and the crystal packing is further supported by N—H⋯π and C—H⋯π inter­actions.

Further background to the synthesis and stereochemistry of 3,7-di­aza­bicyclo­[3.3.1]nonan-9-ones and their derivatives can be seen in reports of the following structures: chloro­phenyl-1,3-di­aza­adamantan-6-one (Krishnakumar et al., 2001[Krishnakumar, R. V., Nandhini, M. S., Vijayakumar, V., Natarajan, S., Sundaravadivelu, M., Perumal, S. & Mostad, A. (2001). Acta Cryst. E57, o860-o862.]), tetra­phenyl-1,3-di­aza­adamantan-6-one (Subha Nandhini et al., 2002[Subha Nandhini, M., Krishnakumar, R. V., Narasimhamurthy, T., Vijayakumar, V., Sundaravadivelu, M. & Natarajan, S. (2002). Acta Cryst. E58, o675-o677.]), fluoro­phenyl-1,3-di­aza­tri­cyclo­[3.3.1.1]decan-6-one (Natarajan et al., 2009[Natarajan, S., Priya, V. S., Vijayakumar, V., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o1530.]) and bis­pidine oxime (Parthiban et al., 2010[Parthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452-6458.]).

Weak C—H⋯F hydrogen bonds with similar bond lengths and bond angles to those in the title compound have been reported in the crystal structures of N-(3,5-di­fluoro­phen­yl)-9,10-di­hydro-9,10-ethano­anthracene-11,12-dicarboximide and N-(2,4,6-tri­fluoro­phen­yl)-9,10-di­hydro-9,10-ethano­anthra­cene-11,12-dicarboximide (Schwarzer & Weber, 2011[Schwarzer, A. & Weber, E. (2011). Acta Cryst. C67, o457-o460.]), 2,3,5,6-tetra­fluoro­benzene-1,4-diol quinoxaline (Czapik & Gdaniec, 2010[Czapik, A. & Gdaniec, M. (2010). Acta Cryst. C66, o356-o360.]) and 2,3-di­fluoro-N-(4-pyrid­yl)benzamide (McMahon et al., 2008[McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493-o497.]). N—H⋯π inter­actions are present in the structures discussed by Fun et al. (2009[Fun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486-o2487.]) and Thirumurugan et al. (1999[Thirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Raghukumar, V. & Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1522-1524.]) while C—H⋯π inter­actions are present in the structures discussed by Selvanayagam et al. (2015[Selvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2015). Acta Cryst. E71, 720-722.]), Muralikrishna et al. (2012[Muralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. (2012). Acta Cryst. E68, o2954.]) and Girisha et al. (2017[Girisha, M., Sagar, B. K., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. C73, 115-120.]).

6. Synthesis and crystallization

The title compound was synthesized in three steps starting from 4-fluoro­benzaldehyde, acetone and ammonium acetate. 4,8,9,10-Tetra­kis(4-fluoro­phen­yl)-1,3-di­aza­adamantan-6-one (1 mmol) dissolved in chloro­form and NaBH4 (1 mmol) dissolved in ethanol were mixed, transferred to a closed container and stirred at 278–283 K. The reaction was monitored by TLC, and after complete disappearance of the ketone the resulting mixture was filtered. The solvent was evaporated and washed with cold water to obtain the resulting product. The crude product was recrystallized from a chloro­form–ethanol (1:2 v:v) mixture by the solvent diffusion method.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Carbon-bound hydrogen atoms were placed in calculated positions (C—H = 0.95–0.99 Å) and refined in the riding-model approximation with Uiso(H) = 1.2–1.5Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C32H26F4N2O
Mr 530.55
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 13.5712 (8), 9.5161 (6), 20.1543 (13)
β (°) 99.357 (2)
V3) 2568.2 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.15 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.711, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 45339, 4510, 3456
Rint 0.039
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.117, 1.08
No. of reflections 4510
No. of parameters 356
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.17, −0.23
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2014 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3 and SAINT (Bruker, 2016); data reduction: SAINT and XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009), Mercury (Macrae et al., 2008) and publCIF (Westrip, 2010); software used to prepare material for publication: PLATON (Spek, 2009).

2,4,6,11-Tetrakis(4-fluorophenyl)-9-oxa-1,5-diazatricyclo[5.3.1.03.8]undecane top
Crystal data top
C32H26F4N2OF(000) = 1104
Mr = 530.55Dx = 1.372 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 13.5712 (8) ÅCell parameters from 9987 reflections
b = 9.5161 (6) Åθ = 2.9–27.2°
c = 20.1543 (13) ŵ = 0.10 mm1
β = 99.357 (2)°T = 296 K
V = 2568.2 (3) Å3Block, colourless
Z = 40.15 × 0.10 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
4510 independent reflections
Radiation source: fine-focus sealed tube3456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω and φ scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1615
Tmin = 0.711, Tmax = 0.746k = 1111
45339 measured reflectionsl = 2323
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0488P)2 + 1.0821P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
4510 reflectionsΔρmax = 0.17 e Å3
356 parametersΔρmin = 0.23 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F40.36854 (15)0.15750 (19)0.84036 (7)0.1037 (6)
F20.14924 (11)0.80017 (13)0.32630 (7)0.0749 (4)
F10.19168 (9)0.36154 (18)0.39919 (8)0.0810 (5)
F30.71306 (11)0.37803 (19)0.77538 (7)0.0862 (5)
O10.43408 (9)0.18807 (14)0.44967 (6)0.0460 (3)
N10.36706 (10)0.34033 (15)0.52679 (7)0.0333 (3)
N20.19955 (12)0.05682 (16)0.54676 (7)0.0367 (4)
C300.3505 (2)0.1210 (3)0.77425 (11)0.0666 (7)
C310.28511 (19)0.0145 (3)0.75434 (11)0.0629 (6)
H310.25340.03310.78520.075*
C320.26722 (16)0.0210 (2)0.68670 (10)0.0490 (5)
H320.22300.09350.67220.059*
C270.31384 (14)0.04937 (19)0.64048 (9)0.0391 (4)
C260.29591 (13)0.01240 (18)0.56657 (9)0.0375 (4)
H260.29550.09980.54080.045*
C250.37815 (13)0.08331 (18)0.54726 (9)0.0365 (4)
H250.44320.03740.55960.044*
C170.38155 (13)0.23122 (18)0.58041 (8)0.0341 (4)
H170.32360.23700.60360.041*
C90.26532 (12)0.32453 (17)0.48748 (8)0.0306 (4)
H90.21890.32440.52000.037*
C100.23762 (12)0.44986 (18)0.44154 (8)0.0324 (4)
C150.28174 (13)0.58030 (19)0.45697 (9)0.0388 (4)
H150.33110.58920.49450.047*
C140.25352 (15)0.6971 (2)0.41748 (10)0.0461 (5)
H140.28520.78300.42730.055*
C130.17844 (16)0.6839 (2)0.36394 (11)0.0487 (5)
C30.10442 (14)0.2911 (2)0.41805 (11)0.0526 (5)
C40.06943 (15)0.2070 (2)0.37201 (11)0.0541 (6)
H40.10410.19850.32840.065*
C50.01920 (15)0.1348 (2)0.39199 (9)0.0449 (5)
H50.04350.07610.36150.054*
C60.07241 (13)0.14846 (18)0.45673 (8)0.0354 (4)
C10.03230 (13)0.2329 (2)0.50172 (9)0.0415 (5)
H10.06560.24120.54570.050*
C20.05616 (15)0.3051 (2)0.48247 (11)0.0505 (5)
H20.08220.36200.51290.061*
C70.17436 (13)0.08262 (18)0.47433 (9)0.0352 (4)
H70.17420.00740.45070.042*
C80.25592 (12)0.17776 (17)0.45258 (8)0.0323 (4)
H80.24180.19090.40370.039*
C240.35693 (13)0.10568 (18)0.47129 (9)0.0379 (4)
H240.35430.01390.44900.045*
C180.47282 (13)0.2657 (2)0.63240 (9)0.0402 (4)
C190.49034 (16)0.4052 (2)0.65186 (10)0.0540 (5)
H190.44670.47440.63220.065*
C200.57105 (18)0.4435 (3)0.69963 (11)0.0631 (6)
H200.58240.53720.71160.076*
C210.63320 (16)0.3411 (3)0.72859 (10)0.0586 (6)
C220.61911 (16)0.2029 (3)0.71244 (11)0.0593 (6)
H220.66250.13490.73350.071*
C230.53842 (15)0.1652 (2)0.66377 (10)0.0508 (5)
H230.52840.07110.65210.061*
C160.44100 (13)0.3227 (2)0.48368 (10)0.0407 (4)
H16A0.50690.33190.51040.049*
H16B0.43320.39700.45030.049*
C120.13179 (16)0.5590 (2)0.34729 (10)0.0517 (5)
H120.08050.55240.31070.062*
C110.16255 (14)0.4425 (2)0.38611 (10)0.0439 (5)
H110.13190.35650.37470.053*
C290.39832 (19)0.1925 (3)0.73059 (13)0.0674 (7)
H290.44270.26450.74570.081*
C280.37981 (16)0.1566 (2)0.66327 (11)0.0538 (5)
H280.41200.20490.63290.065*
H2A0.1518 (16)0.002 (2)0.5589 (10)0.057 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F40.1449 (15)0.1113 (13)0.0448 (8)0.0144 (12)0.0148 (9)0.0298 (8)
F20.0972 (10)0.0440 (7)0.0797 (9)0.0120 (7)0.0024 (8)0.0233 (7)
F10.0451 (7)0.1086 (12)0.0845 (10)0.0120 (8)0.0037 (7)0.0280 (9)
F30.0702 (9)0.1238 (13)0.0541 (8)0.0221 (9)0.0216 (7)0.0030 (8)
O10.0436 (7)0.0487 (8)0.0510 (8)0.0015 (6)0.0231 (6)0.0002 (6)
N10.0292 (7)0.0343 (8)0.0361 (8)0.0024 (6)0.0042 (6)0.0022 (6)
N20.0369 (8)0.0373 (8)0.0358 (8)0.0050 (7)0.0058 (7)0.0065 (7)
C300.0842 (17)0.0705 (16)0.0392 (12)0.0193 (14)0.0072 (12)0.0161 (12)
C310.0797 (16)0.0687 (15)0.0387 (12)0.0088 (13)0.0051 (11)0.0017 (11)
C320.0574 (12)0.0465 (11)0.0418 (11)0.0018 (10)0.0040 (9)0.0031 (9)
C270.0430 (10)0.0343 (10)0.0384 (10)0.0062 (8)0.0014 (8)0.0045 (8)
C260.0456 (10)0.0289 (9)0.0374 (10)0.0002 (8)0.0048 (8)0.0006 (8)
C250.0355 (9)0.0344 (9)0.0403 (10)0.0045 (8)0.0082 (8)0.0014 (8)
C170.0312 (9)0.0348 (9)0.0361 (9)0.0009 (7)0.0050 (7)0.0015 (8)
C90.0288 (9)0.0298 (9)0.0332 (9)0.0028 (7)0.0054 (7)0.0014 (7)
C100.0309 (9)0.0318 (9)0.0352 (9)0.0008 (7)0.0071 (7)0.0001 (7)
C150.0362 (10)0.0370 (10)0.0425 (10)0.0027 (8)0.0048 (8)0.0042 (8)
C140.0531 (12)0.0292 (9)0.0575 (12)0.0037 (9)0.0137 (10)0.0021 (9)
C130.0606 (13)0.0354 (10)0.0507 (12)0.0085 (9)0.0111 (10)0.0114 (9)
C30.0327 (10)0.0652 (14)0.0579 (13)0.0047 (10)0.0008 (9)0.0164 (11)
C40.0461 (12)0.0692 (14)0.0419 (11)0.0212 (11)0.0077 (9)0.0118 (11)
C50.0489 (11)0.0487 (11)0.0358 (10)0.0169 (9)0.0032 (8)0.0011 (9)
C60.0359 (9)0.0358 (9)0.0335 (9)0.0123 (8)0.0028 (7)0.0024 (8)
C10.0361 (10)0.0538 (12)0.0340 (10)0.0063 (9)0.0038 (8)0.0005 (9)
C20.0390 (11)0.0628 (13)0.0504 (12)0.0003 (10)0.0096 (9)0.0035 (10)
C70.0419 (10)0.0290 (9)0.0344 (9)0.0055 (8)0.0053 (8)0.0032 (7)
C80.0380 (10)0.0320 (9)0.0273 (8)0.0023 (7)0.0066 (7)0.0002 (7)
C240.0416 (10)0.0319 (9)0.0427 (10)0.0007 (8)0.0148 (8)0.0039 (8)
C180.0373 (10)0.0484 (11)0.0347 (10)0.0038 (8)0.0055 (8)0.0036 (9)
C190.0564 (13)0.0536 (13)0.0476 (12)0.0015 (10)0.0054 (10)0.0073 (10)
C200.0687 (15)0.0675 (15)0.0482 (13)0.0104 (12)0.0056 (11)0.0130 (11)
C210.0504 (13)0.0873 (18)0.0347 (11)0.0140 (12)0.0034 (9)0.0008 (11)
C220.0484 (12)0.0773 (17)0.0479 (12)0.0026 (11)0.0051 (10)0.0197 (12)
C230.0480 (12)0.0522 (12)0.0492 (12)0.0047 (10)0.0006 (9)0.0116 (10)
C160.0345 (10)0.0416 (10)0.0471 (11)0.0026 (8)0.0100 (8)0.0053 (9)
C120.0570 (13)0.0461 (12)0.0469 (12)0.0017 (10)0.0068 (10)0.0057 (9)
C110.0474 (11)0.0350 (10)0.0464 (11)0.0068 (8)0.0016 (9)0.0021 (8)
C290.0718 (16)0.0562 (14)0.0665 (16)0.0019 (12)0.0117 (13)0.0235 (12)
C280.0581 (13)0.0465 (12)0.0543 (13)0.0040 (10)0.0016 (10)0.0114 (10)
Geometric parameters (Å, º) top
F4—C301.360 (2)C13—C121.362 (3)
F2—C131.364 (2)C3—C21.362 (3)
F1—C31.360 (2)C3—C41.367 (3)
F3—C211.362 (2)C4—C51.387 (3)
O1—C241.431 (2)C4—H40.9300
O1—C161.449 (2)C5—C61.391 (3)
N1—C161.440 (2)C5—H50.9300
N1—C91.484 (2)C6—C11.387 (3)
N1—C171.488 (2)C6—C71.508 (3)
N2—C261.461 (2)C1—C21.383 (3)
N2—C71.465 (2)C1—H10.9300
N2—H2A0.89 (2)C2—H20.9300
C30—C291.358 (4)C7—C81.548 (2)
C30—C311.364 (4)C7—H70.9800
C31—C321.387 (3)C8—C241.524 (2)
C31—H310.9300C8—H80.9800
C32—C271.381 (3)C24—H240.9800
C32—H320.9300C18—C231.387 (3)
C27—C281.385 (3)C18—C191.394 (3)
C27—C261.511 (2)C19—C201.384 (3)
C26—C251.539 (2)C19—H190.9300
C26—H260.9800C20—C211.357 (3)
C25—C241.526 (2)C20—H200.9300
C25—C171.555 (2)C21—C221.361 (3)
C25—H250.9800C22—C231.393 (3)
C17—C181.522 (2)C22—H220.9300
C17—H170.9800C23—H230.9300
C9—C101.519 (2)C16—H16A0.9700
C9—C81.560 (2)C16—H16B0.9700
C9—H90.9800C12—C111.382 (3)
C10—C111.386 (3)C12—H120.9300
C10—C151.391 (2)C11—H110.9300
C15—C141.384 (3)C29—C281.382 (3)
C15—H150.9300C29—H290.9300
C14—C131.364 (3)C28—H280.9300
C14—H140.9300
C24—O1—C16109.55 (12)C1—C6—C5117.92 (17)
C16—N1—C9110.20 (14)C1—C6—C7121.96 (15)
C16—N1—C17109.51 (14)C5—C6—C7119.91 (17)
C9—N1—C17108.58 (12)C2—C1—C6121.29 (18)
C26—N2—C7113.67 (14)C2—C1—H1119.4
C26—N2—H2A108.7 (14)C6—C1—H1119.4
C7—N2—H2A107.9 (14)C3—C2—C1118.7 (2)
C29—C30—F4118.5 (2)C3—C2—H2120.7
C29—C30—C31122.6 (2)C1—C2—H2120.7
F4—C30—C31118.9 (3)N2—C7—C6111.15 (14)
C30—C31—C32118.1 (2)N2—C7—C8108.58 (14)
C30—C31—H31120.9C6—C7—C8111.19 (14)
C32—C31—H31120.9N2—C7—H7108.6
C27—C32—C31121.3 (2)C6—C7—H7108.6
C27—C32—H32119.4C8—C7—H7108.6
C31—C32—H32119.4C24—C8—C7108.82 (14)
C32—C27—C28118.39 (18)C24—C8—C9106.68 (13)
C32—C27—C26122.27 (17)C7—C8—C9113.95 (13)
C28—C27—C26119.34 (17)C24—C8—H8109.1
N2—C26—C27111.59 (15)C7—C8—H8109.1
N2—C26—C25108.53 (14)C9—C8—H8109.1
C27—C26—C25112.33 (15)O1—C24—C8110.56 (14)
N2—C26—H26108.1O1—C24—C25110.71 (14)
C27—C26—H26108.1C8—C24—C25109.05 (14)
C25—C26—H26108.1O1—C24—H24108.8
C24—C25—C26108.06 (14)C8—C24—H24108.8
C24—C25—C17106.99 (14)C25—C24—H24108.8
C26—C25—C17113.51 (14)C23—C18—C19117.44 (18)
C24—C25—H25109.4C23—C18—C17123.74 (18)
C26—C25—H25109.4C19—C18—C17118.77 (17)
C17—C25—H25109.4C20—C19—C18121.7 (2)
N1—C17—C18110.25 (14)C20—C19—H19119.1
N1—C17—C25109.16 (13)C18—C19—H19119.1
C18—C17—C25117.03 (15)C21—C20—C19118.5 (2)
N1—C17—H17106.6C21—C20—H20120.8
C18—C17—H17106.6C19—C20—H20120.8
C25—C17—H17106.6C20—C21—C22122.5 (2)
N1—C9—C10111.25 (13)C20—C21—F3118.8 (2)
N1—C9—C8109.41 (13)C22—C21—F3118.7 (2)
C10—C9—C8115.73 (13)C21—C22—C23118.8 (2)
N1—C9—H9106.6C21—C22—H22120.6
C10—C9—H9106.6C23—C22—H22120.6
C8—C9—H9106.6C18—C23—C22121.1 (2)
C11—C10—C15117.29 (16)C18—C23—H23119.5
C11—C10—C9121.89 (15)C22—C23—H23119.5
C15—C10—C9120.62 (15)N1—C16—O1112.99 (14)
C14—C15—C10121.28 (17)N1—C16—H16A109.0
C14—C15—H15119.4O1—C16—H16A109.0
C10—C15—H15119.4N1—C16—H16B109.0
C13—C14—C15118.81 (18)O1—C16—H16B109.0
C13—C14—H14120.6H16A—C16—H16B107.8
C15—C14—H14120.6C13—C12—C11118.35 (19)
C12—C13—F2119.30 (19)C13—C12—H12120.8
C12—C13—C14122.19 (18)C11—C12—H12120.8
F2—C13—C14118.50 (18)C12—C11—C10122.04 (18)
F1—C3—C2118.7 (2)C12—C11—H11119.0
F1—C3—C4118.78 (19)C10—C11—H11119.0
C2—C3—C4122.5 (2)C30—C29—C28118.8 (2)
C3—C4—C5118.24 (19)C30—C29—H29120.6
C3—C4—H4120.9C28—C29—H29120.6
C5—C4—H4120.9C29—C28—C27120.8 (2)
C4—C5—C6121.31 (19)C29—C28—H28119.6
C4—C5—H5119.3C27—C28—H28119.6
C6—C5—H5119.3
C29—C30—C31—C320.1 (4)C5—C6—C7—N2156.40 (16)
F4—C30—C31—C32179.7 (2)C1—C6—C7—C892.14 (19)
C30—C31—C32—C270.1 (3)C5—C6—C7—C882.51 (19)
C31—C32—C27—C280.3 (3)N2—C7—C8—C2457.70 (17)
C31—C32—C27—C26179.76 (19)C6—C7—C8—C24179.72 (14)
C7—N2—C26—C27174.43 (14)N2—C7—C8—C961.20 (18)
C7—N2—C26—C2561.26 (18)C6—C7—C8—C961.39 (18)
C32—C27—C26—N223.9 (2)N1—C9—C8—C240.98 (17)
C28—C27—C26—N2156.61 (17)C10—C9—C8—C24125.64 (15)
C32—C27—C26—C2598.2 (2)N1—C9—C8—C7119.13 (15)
C28—C27—C26—C2581.2 (2)C10—C9—C8—C7114.26 (16)
N2—C26—C25—C2460.04 (18)C16—O1—C24—C862.17 (18)
C27—C26—C25—C24176.10 (14)C16—O1—C24—C2558.79 (18)
N2—C26—C25—C1758.46 (19)C7—C8—C24—O1177.82 (13)
C27—C26—C25—C1765.41 (19)C9—C8—C24—O158.83 (17)
C16—N1—C17—C1873.99 (17)C7—C8—C24—C2560.24 (18)
C9—N1—C17—C18165.64 (14)C9—C8—C24—C2563.11 (17)
C16—N1—C17—C2555.89 (17)C26—C25—C24—O1176.91 (13)
C9—N1—C17—C2564.48 (16)C17—C25—C24—O160.51 (17)
C24—C25—C17—N12.18 (18)C26—C25—C24—C861.24 (18)
C26—C25—C17—N1121.29 (15)C17—C25—C24—C861.34 (17)
C24—C25—C17—C18128.24 (15)N1—C17—C18—C23142.50 (18)
C26—C25—C17—C18112.65 (17)C25—C17—C18—C2317.0 (3)
C16—N1—C9—C1071.76 (17)N1—C17—C18—C1940.0 (2)
C17—N1—C9—C10168.30 (13)C25—C17—C18—C19165.47 (17)
C16—N1—C9—C857.36 (17)C23—C18—C19—C201.3 (3)
C17—N1—C9—C862.58 (16)C17—C18—C19—C20178.99 (19)
N1—C9—C10—C11159.75 (16)C18—C19—C20—C211.1 (4)
C8—C9—C10—C1134.1 (2)C19—C20—C21—C220.0 (4)
N1—C9—C10—C1525.5 (2)C19—C20—C21—F3179.7 (2)
C8—C9—C10—C15151.19 (16)C20—C21—C22—C230.7 (4)
C11—C10—C15—C141.6 (3)F3—C21—C22—C23178.93 (18)
C9—C10—C15—C14176.61 (16)C19—C18—C23—C220.5 (3)
C10—C15—C14—C132.4 (3)C17—C18—C23—C22178.11 (18)
C15—C14—C13—C121.4 (3)C21—C22—C23—C180.4 (3)
C15—C14—C13—F2178.30 (17)C9—N1—C16—O157.81 (19)
F1—C3—C4—C5179.50 (17)C17—N1—C16—O161.56 (18)
C2—C3—C4—C50.7 (3)C24—O1—C16—N12.7 (2)
C3—C4—C5—C60.9 (3)F2—C13—C12—C11179.99 (19)
C4—C5—C6—C12.2 (3)C14—C13—C12—C110.3 (3)
C4—C5—C6—C7172.63 (17)C13—C12—C11—C101.1 (3)
C5—C6—C1—C22.0 (3)C15—C10—C11—C120.1 (3)
C7—C6—C1—C2172.73 (17)C9—C10—C11—C12174.80 (18)
F1—C3—C2—C1179.71 (18)F4—C30—C29—C28179.6 (2)
C4—C3—C2—C10.9 (3)C31—C30—C29—C280.3 (4)
C6—C1—C2—C30.5 (3)C30—C29—C28—C270.1 (3)
C26—N2—C7—C6177.57 (14)C32—C27—C28—C290.2 (3)
C26—N2—C7—C859.82 (18)C26—C27—C28—C29179.65 (19)
C1—C6—C7—N228.9 (2)
Hydrogen-bond geometry (Å, º) top
Cg5 and Cg6 are the centroids of the C1–C6 and C10–C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C31—H31···F1i0.932.513.231 (3)135
C8—H8···F3ii0.982.643.564 (2)158
C32—H32···F4iii0.932.663.567 (3)162
C1—H1···F4iii0.932.513.411 (2)161
N2—H2A···Cg5iv0.892.80 (2)3.6594 (18)161.7 (17)
C2—H2···Cg6v0.932.683.552 (2)156
C11—H11···Cg50.932.873.514 (2)128
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y, z+1; (v) x, y+1, z+1.
 

Acknowledgements

The authors thank the DST and the SAIF, IIT Madras for X-ray crystallography facilities. They also thank Dr P. T. Mu­thiah (UGC-Emeritus Fellow) School of Chemistry, Bharathidasan University, Trichy and Dr M. Arunachalam, Department of Chemistry, The Gandhigram Rural Institute, for their helpful comments.

Funding information

The authors thank the University Grants Commission, New Delhi, for a Major Research Project [MRP; grant No. 42-358/2013 (SR)]) and a UGC-Special Assistance Programme (SAP).

References

First citationAtioğlu, Z., Akkurt, M., Toze, F. A. A., Mammadova, G. Z. & Panahova, H. M. (2018). Acta Cryst. E74, 1035–1038.  CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX3, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCárdenas-Valenzuela, A. J., González-García, G., Zárraga- Nuñez, R., Höpfl, H., Campos-Gaxiola, J. J. & Cruz-Enríquez, A. (2018). Acta Cryst. E74, 441–444.  CrossRef IUCr Journals Google Scholar
First citationCzapik, A. & Gdaniec, M. (2010). Acta Cryst. C66, o356–o360.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDas, A. (2017). J. Mol. Struct. 1147, 520–540.  CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Yeap, C. S., Rajesh, K., Sarveswari, S. & Vijayakumar, V. (2009). Acta Cryst. E65, o2486–o2487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGirisha, M., Sagar, B. K., Yathirajan, H. S., Rathore, R. S. & Glidewell, C. (2017). Acta Cryst. C73, 115–120.  CrossRef IUCr Journals Google Scholar
First citationHathwar, V. R., Chopra, D., Panini, P. & Guru Row, T. N. (2014). Cryst. Growth Des. 14, 5366–5369.  Web of Science CrossRef CAS Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationKrishnakumar, R. V., Nandhini, M. S., Vijayakumar, V., Natarajan, S., Sundaravadivelu, M., Perumal, S. & Mostad, A. (2001). Acta Cryst. E57, o860–o862.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2010). Acta Cryst. E66, o265–o266.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814.  Google Scholar
First citationMcMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMuralikrishna, A., Kannan, M., Padmavathi, V., Padmaja, A. & Krishna, R. (2012). Acta Cryst. E68, o2954.  CrossRef IUCr Journals Google Scholar
First citationNatarajan, S., Priya, V. S., Vijayakumar, V., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, o1530.  CrossRef IUCr Journals Google Scholar
First citationNatarajan, S., Sudhapriya, V., Vijayakumar, V., Shoba, N., Suresh, J. & Lakshman, P. L. N. (2008). Acta Cryst. E64, o2496.  Web of Science CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Kabilan, S., Ramkumar, V. & Jeong, Y. T. (2010). Bioorg. Med. Chem. Lett. 20, 6452–6458.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRajesh, K., Vijayakumar, V., Safwan, A. P., Tan, K. W. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o1316.  CrossRef IUCr Journals Google Scholar
First citationSchwarzer, A. & Weber, E. (2011). Acta Cryst. C67, o457–o460.  CrossRef IUCr Journals Google Scholar
First citationSelvanayagam, S., Sridhar, B., Kathiravan, S. & Raghunathan, R. (2015). Acta Cryst. E71, 720–722.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Krishnakumar, R. V., Narasimhamurthy, T., Vijayakumar, V., Sundaravadivelu, M. & Natarajan, S. (2002). Acta Cryst. E58, o675–o677.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTarahhomi, A., Pourayoubi, M., Golen, J. A., Zargaran, P., Elahi, B., Rheingold, A. L., Leyva Ramírez, M. A. & Mancilla Percino, T. (2013). Acta Cryst. B69, 260–270.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, R., Shanmuga Sundara Raj, S., Shanmugam, G., Fun, H.-K., Raghukumar, V. & Ramakrishnan, V. T. (1999). Acta Cryst. C55, 1522–1524.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer. University of Western, Australia.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiedemann, D. & Kohl, J. (2017). Acta Cryst. C73, 654–659.  CrossRef IUCr Journals Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western, Australia.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds