Download citation
Download citation
link to html
The crystal structures of five new salts of 2-chloro-4-nitro­aniline (2Cl4na) and 2-methyl-6-nitro­aniline (2m6na) with inorganic acids, namely, 2-chloro-4-nitro­anilinium bromide, C6H6ClN2O2+·Br (1), 2-chloro-4-nitro­anilinium hydrogen sulfate, C6H6ClN2O2+·HSO4 (2), 2-methyl-6-nitro­anilinium bromide, C7H9N2O2+·Br (3), 2-methyl-6-nitro­anilinium triiodide, C7H9N2O2+·I3 (4), and 2-methyl-6-nitro­anilinium hydrogen sulfate, C7H9N2O2+·HSO4 (5), were determined by single-crystal X-ray diffraction. Theoretical calculations of the relaxed potential energy surface (rPES) revealed that the energy barriers for the rotation of the nitro group for isolated H2Cl4na+ and H2m6na+ cations are 4.6 and 11.6 kcal mol−1, respectively. The ammonium group and respective anions form hydrogen bonds which are the most important inter­actions and are arranged in zero- (in 3), one- (in 1 and 4) or two-dimensional (in 2 and 5) networks. Hydrogen-bonding patterns were analyzed by means of mathematical relationships between graph-set descriptors and com­pared with previously reported nitro­aniline salts. Hirshfeld surface analysis indicates that the nitro group plays a dominant role among the weak inter­actions, i.e. C—H...O(NO2), NO2...π(Ar) and O(NO2)...π(NO2). The frequency of the νsNO2 vibration is correlated with the type of inter­action in which the NO2 group is involved. Analysis of the νsNO2 band observed in the IR and Raman spectra allowed an assessment of its shift in the sequence (H2m6na)I3 (4) < (H2m6na)HSO4 (5) < (H2m6na)Br (3) < (H2Cl4na)Br (1) < (H2Cl4na)HSO4 (2).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621001455/dv3005sup1.cif
Contains datablocks 1, 2, 3, 4, 5, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621001455/dv30051sup2.hkl
Contains datablock 1

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621001455/dv30051sup7.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621001455/dv30052sup3.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621001455/dv30052sup8.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621001455/dv30053sup4.hkl
Contains datablock 3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621001455/dv30053sup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621001455/dv30054sup10.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621001455/dv30054sup5.hkl
Contains datablock 4

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621001455/dv30055sup11.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621001455/dv30055sup6.hkl
Contains datablock 5

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621001455/dv3005sup12.pdf
Additional figures and tables

CCDC references: 2043369; 2043368; 2043367; 2043366; 2043365

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015) for (1), (2), (3), (5); CrysAlis PRO (Rigaku OD, 2018) for (4). Cell refinement: CrysAlis PRO (Rigaku OD, 2015) for (1), (2), (3), (5); CrysAlis PRO (Rigaku OD, 2018) for (4). Data reduction: CrysAlis PRO (Rigaku OD, 2015) for (1), (2), (3), (5); CrysAlis PRO (Rigaku OD, 2018) for (4). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (1), (2); SHELXT (Sheldrick, 2015a) for (3), (4), (5). For all structures, program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2008) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Chloro-4-nitroanilinium bromide (1) top
Crystal data top
C6H6ClN2O2+·BrDx = 1.837 Mg m3
Mr = 253.49Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 7548 reflections
a = 5.72152 (9) Åθ = 2.8–27.4°
b = 7.90017 (17) ŵ = 4.74 mm1
c = 20.2729 (4) ÅT = 295 K
V = 916.35 (3) Å3Block, clear yellowish colourless
Z = 40.36 × 0.26 × 0.22 mm
F(000) = 496
Data collection top
Rigaku Xcalibur Atlas
diffractometer
2669 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2340 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.6249 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω scansh = 88
Absorption correction: analytical
{CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1111
Tmin = 0.300, Tmax = 0.446l = 2828
18773 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.002
S = 1.13Δρmax = 0.33 e Å3
2669 reflectionsΔρmin = 0.70 e Å3
113 parametersAbsolute structure: Flack x determined using 881 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.008 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction data were collected on an Oxford Diffraction four-circle single crystal diffractometer equipped with a CCD detector using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). The raw data were treated with the CrysAlis Data Reduction Program, version 1.171.38.34a or 1.171.39.46. The intensities of the reflection were corrected for Lorentz and polarization effects. The crystal structures were solved by direct methods (Sheldrick, 2008) and refined by full-matrix least-squares methods using the SHELXL2017 program (Sheldrick, 2015) and OLEX2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.52443 (5)0.84406 (4)0.58461 (2)0.04093 (10)
Cl10.31036 (14)0.35586 (13)0.53964 (4)0.0489 (2)
O10.0516 (5)0.1126 (3)0.68972 (13)0.0555 (7)
O20.2906 (5)0.0104 (4)0.75612 (13)0.0684 (8)
N10.0211 (4)0.6339 (3)0.57628 (13)0.0376 (6)
H1A0.1392120.7034050.5853390.051 (11)*
H1B0.1124460.6807640.5894830.061 (12)*
H1C0.0153040.6153230.5330100.058 (12)*
N20.1576 (5)0.0117 (4)0.70883 (14)0.0435 (7)
C10.0557 (5)0.4735 (4)0.61076 (14)0.0315 (6)
C20.0893 (5)0.3361 (4)0.59723 (13)0.0316 (6)
C30.0560 (5)0.1838 (4)0.62907 (14)0.0353 (6)
H30.1507080.0908530.6202200.042*
C40.1227 (5)0.1743 (4)0.67451 (14)0.0336 (6)
C50.2665 (6)0.3069 (5)0.68918 (16)0.0411 (8)
H50.3851250.2954830.7202240.049*
C60.2312 (6)0.4597 (4)0.65653 (15)0.0384 (7)
H60.3262560.5522080.6657120.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03208 (15)0.03898 (17)0.05173 (17)0.00640 (13)0.00074 (12)0.00111 (15)
Cl10.0427 (4)0.0490 (5)0.0550 (4)0.0100 (4)0.0201 (3)0.0017 (4)
O10.0662 (17)0.0372 (14)0.0631 (15)0.0065 (13)0.0010 (13)0.0077 (11)
O20.073 (2)0.064 (2)0.0680 (17)0.0007 (16)0.0280 (15)0.0191 (16)
N10.0321 (12)0.0338 (13)0.0470 (14)0.0041 (11)0.0043 (11)0.0024 (11)
N20.0447 (16)0.0424 (18)0.0433 (14)0.0014 (14)0.0024 (13)0.0069 (14)
C10.0283 (14)0.0320 (15)0.0342 (13)0.0022 (12)0.0033 (11)0.0001 (12)
C20.0273 (12)0.0336 (15)0.0339 (13)0.0016 (12)0.0019 (9)0.0050 (14)
C30.0364 (14)0.0300 (16)0.0395 (14)0.0072 (12)0.0003 (12)0.0037 (13)
C40.0358 (14)0.0310 (16)0.0340 (13)0.0002 (14)0.0020 (11)0.0009 (14)
C50.0368 (16)0.046 (2)0.0409 (16)0.0033 (15)0.0098 (13)0.0050 (15)
C60.0343 (16)0.0383 (18)0.0424 (15)0.0106 (14)0.0076 (13)0.0005 (15)
Geometric parameters (Å, º) top
Cl1—C21.729 (3)C1—C61.371 (4)
O1—N21.217 (4)C2—C31.379 (4)
O2—N21.224 (4)C3—H30.9300
N1—H1A0.8900C3—C41.378 (4)
N1—H1B0.8900C4—C51.365 (5)
N1—H1C0.8900C5—H50.9300
N1—C11.461 (4)C5—C61.391 (5)
N2—C41.475 (4)C6—H60.9300
C1—C21.393 (4)
H1A—N1—H1B109.5C3—C2—C1120.4 (3)
H1A—N1—H1C109.5C2—C3—H3121.2
H1B—N1—H1C109.5C4—C3—C2117.6 (3)
C1—N1—H1A109.5C4—C3—H3121.2
C1—N1—H1B109.5C3—C4—N2117.6 (3)
C1—N1—H1C109.5C5—C4—N2119.0 (3)
O1—N2—O2123.5 (3)C5—C4—C3123.4 (3)
O1—N2—C4119.0 (3)C4—C5—H5120.8
O2—N2—C4117.5 (3)C4—C5—C6118.3 (3)
C2—C1—N1120.1 (3)C6—C5—H5120.8
C6—C1—N1119.5 (3)C1—C6—C5119.8 (3)
C6—C1—C2120.5 (3)C1—C6—H6120.1
C1—C2—Cl1119.9 (2)C5—C6—H6120.1
C3—C2—Cl1119.7 (2)
Cl1—C2—C3—C4179.9 (2)C1—C2—C3—C40.6 (4)
O1—N2—C4—C310.1 (5)C2—C1—C6—C50.7 (5)
O1—N2—C4—C5170.2 (3)C2—C3—C4—N2179.7 (3)
O2—N2—C4—C3168.8 (3)C2—C3—C4—C50.1 (5)
O2—N2—C4—C510.9 (5)C3—C4—C5—C60.1 (5)
N1—C1—C2—Cl10.1 (4)C4—C5—C6—C10.2 (5)
N1—C1—C2—C3179.3 (3)C6—C1—C2—Cl1179.7 (2)
N1—C1—C6—C5179.5 (3)C6—C1—C2—C30.9 (4)
N2—C4—C5—C6179.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br10.892.473.329 (2)163
N1—H1B···Br1i0.892.453.295 (2)159
N1—H1C···Br1ii0.892.413.266 (3)163
C3—H3···Br1iii0.932.793.712 (3)172
C5—H5···O2iv0.932.563.199 (4)126
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z+1; (iii) x1, y1, z; (iv) x+1, y+1/2, z+3/2.
2-Chloro-4-nitroanilinium hydrogen sulfate (2) top
Crystal data top
C6H6ClN2O2+·HSO4F(000) = 552
Mr = 270.65Dx = 1.783 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.1771 (6) ÅCell parameters from 1898 reflections
b = 4.95335 (16) Åθ = 3.2–31.7°
c = 12.8431 (5) ŵ = 0.60 mm1
β = 101.584 (4)°T = 295 K
V = 1008.17 (7) Å3Plate, clear light colourless
Z = 40.56 × 0.46 × 0.06 mm
Data collection top
Rigaku Xcalibur Atlas
diffractometer
2923 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2351 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 10.6249 pixels mm-1θmax = 30.0°, θmin = 2.6°
ω scansh = 2222
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 66
Tmin = 0.967, Tmax = 1.000l = 918
6028 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036Hetero
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.2615P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2923 reflectionsΔρmax = 0.52 e Å3
161 parametersΔρmin = 0.55 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction data were collected on an Oxford Diffraction four-circle single crystal diffractometer equipped with a CCD detector using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). The raw data were treated with the CrysAlis Data Reduction Program, version 1.171.38.34a or 1.171.39.46. The intensities of the reflection were corrected for Lorentz and polarization effects. The crystal structures were solved by direct methods (Sheldrick, 2008) and refined by full-matrix least-squares methods using the SHELXL2017 program (Sheldrick, 2015) and OLEX2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.23626 (3)0.96745 (10)0.12914 (4)0.03739 (14)
O10.53464 (9)0.7499 (4)0.09311 (14)0.0535 (4)
O20.52394 (9)0.4068 (4)0.19099 (14)0.0506 (4)
N10.14105 (9)0.5553 (3)0.03115 (12)0.0241 (3)
H1A0.1199 (14)0.422 (5)0.0078 (17)0.035 (6)*
H1B0.1317 (16)0.517 (5)0.101 (2)0.054 (8)*
H1C0.1168 (16)0.706 (5)0.021 (2)0.052 (7)*
N20.49334 (10)0.5802 (4)0.12857 (14)0.0347 (4)
C10.23101 (10)0.5733 (3)0.01443 (13)0.0224 (3)
C20.28109 (11)0.7520 (3)0.02814 (13)0.0251 (3)
C30.36733 (11)0.7586 (4)0.01055 (15)0.0295 (4)
H30.4017630.8773710.0173580.035*
C40.40055 (11)0.5844 (4)0.09144 (14)0.0275 (4)
C50.35195 (12)0.4124 (4)0.13820 (15)0.0322 (4)
H50.3763230.3022980.1947170.039*
C60.26607 (11)0.4079 (4)0.09890 (14)0.0299 (4)
H60.2316910.2938880.1290730.036*
S10.06905 (2)0.00369 (7)0.15958 (3)0.01902 (11)
O30.09583 (8)0.0670 (2)0.06133 (9)0.0258 (3)
O40.06204 (9)0.3111 (3)0.15478 (11)0.0306 (3)
H40.0475 (16)0.361 (5)0.207 (2)0.053 (8)*
O50.01424 (8)0.1079 (3)0.16332 (10)0.0300 (3)
O60.13091 (8)0.0741 (3)0.25338 (10)0.0318 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0396 (3)0.0372 (3)0.0332 (3)0.0025 (2)0.0022 (2)0.0149 (2)
O10.0321 (7)0.0656 (11)0.0619 (11)0.0164 (7)0.0077 (7)0.0142 (9)
O20.0323 (8)0.0582 (10)0.0568 (10)0.0050 (7)0.0022 (7)0.0171 (9)
N10.0234 (7)0.0278 (7)0.0210 (7)0.0009 (6)0.0043 (6)0.0016 (6)
N20.0275 (8)0.0424 (9)0.0328 (8)0.0029 (7)0.0030 (7)0.0017 (7)
C10.0219 (7)0.0256 (8)0.0195 (7)0.0003 (6)0.0039 (6)0.0016 (6)
C20.0302 (8)0.0243 (8)0.0209 (8)0.0013 (7)0.0057 (7)0.0026 (6)
C30.0292 (8)0.0304 (9)0.0300 (9)0.0057 (7)0.0082 (7)0.0026 (7)
C40.0224 (8)0.0326 (9)0.0266 (8)0.0023 (7)0.0027 (7)0.0014 (7)
C50.0285 (9)0.0369 (10)0.0289 (9)0.0017 (8)0.0000 (7)0.0108 (8)
C60.0296 (9)0.0333 (9)0.0258 (8)0.0059 (7)0.0034 (7)0.0069 (7)
S10.0229 (2)0.01866 (19)0.01607 (18)0.00072 (14)0.00517 (14)0.00065 (14)
O30.0324 (6)0.0278 (6)0.0195 (6)0.0037 (5)0.0106 (5)0.0018 (5)
O40.0476 (8)0.0195 (6)0.0290 (7)0.0035 (5)0.0176 (6)0.0006 (5)
O50.0296 (6)0.0379 (7)0.0241 (6)0.0082 (6)0.0088 (5)0.0004 (5)
O60.0331 (7)0.0390 (7)0.0207 (6)0.0071 (6)0.0005 (5)0.0011 (5)
Geometric parameters (Å, º) top
Cl1—C21.7233 (17)C3—H30.9300
O1—N21.218 (2)C3—C41.374 (3)
O2—N21.211 (2)C4—C51.376 (3)
N1—H1A0.93 (2)C5—H50.9300
N1—H1B0.90 (3)C5—C61.380 (2)
N1—H1C0.87 (3)C6—H60.9300
N1—C11.458 (2)S1—O31.4483 (12)
N2—C41.481 (2)S1—O41.5636 (13)
C1—C21.384 (2)S1—O51.4526 (12)
C1—C61.387 (2)S1—O61.4457 (12)
C2—C31.384 (2)O4—H40.79 (3)
H1A—N1—H1B112 (2)C4—C3—H3121.0
H1A—N1—H1C108 (2)C3—C4—N2117.99 (16)
H1B—N1—H1C110 (2)C3—C4—C5123.21 (17)
C1—N1—H1A105.8 (13)C5—C4—N2118.79 (17)
C1—N1—H1B111.5 (16)C4—C5—H5120.9
C1—N1—H1C109.6 (17)C4—C5—C6118.16 (17)
O1—N2—C4117.82 (17)C6—C5—H5120.9
O2—N2—O1123.73 (17)C1—C6—H6120.0
O2—N2—C4118.45 (17)C5—C6—C1120.01 (16)
C2—C1—N1119.76 (15)C5—C6—H6120.0
C2—C1—C6120.46 (16)O3—S1—O4102.32 (7)
C6—C1—N1119.77 (15)O3—S1—O5113.18 (8)
C1—C2—Cl1120.14 (13)O5—S1—O4107.17 (8)
C3—C2—Cl1119.80 (13)O6—S1—O3113.31 (8)
C3—C2—C1120.06 (16)O6—S1—O4107.83 (8)
C2—C3—H3121.0O6—S1—O5112.21 (8)
C4—C3—C2117.99 (16)S1—O4—H4107.9 (19)
Cl1—C2—C3—C4179.72 (14)C1—C2—C3—C40.1 (3)
O1—N2—C4—C37.3 (3)C2—C1—C6—C52.8 (3)
O1—N2—C4—C5173.56 (19)C2—C3—C4—N2176.51 (16)
O2—N2—C4—C3171.69 (19)C2—C3—C4—C52.6 (3)
O2—N2—C4—C57.5 (3)C3—C4—C5—C62.6 (3)
N1—C1—C2—Cl14.0 (2)C4—C5—C6—C10.1 (3)
N1—C1—C2—C3176.13 (16)C6—C1—C2—Cl1177.08 (14)
N1—C1—C6—C5176.11 (17)C6—C1—C2—C32.8 (3)
N2—C4—C5—C6176.51 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O30.93 (2)1.96 (2)2.854 (2)161 (2)
N1—H1B···O6i0.90 (3)1.92 (3)2.813 (2)171 (2)
N1—H1C···O3ii0.87 (3)2.14 (3)2.952 (2)156 (2)
N1—H1C···O5iii0.87 (3)2.39 (3)2.911 (2)119 (2)
C3—H3···O1iv0.932.413.326 (2)168
C6—H6···O30.932.473.184 (2)134
O4—H4···O5v0.79 (3)1.85 (3)2.6350 (18)167 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z; (iii) x, y+1, z; (iv) x+1, y+2, z; (v) x, y1/2, z+1/2.
2-Methyl-6-nitroanilinium bromide (3) top
Crystal data top
C7H9N2O2+·BrZ = 2
Mr = 233.07F(000) = 232
Triclinic, P1Dx = 1.775 Mg m3
a = 6.8920 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.7281 (3) ÅCell parameters from 6602 reflections
c = 8.9210 (2) Åθ = 2.8–29.2°
α = 76.646 (3)°µ = 4.67 mm1
β = 73.897 (2)°T = 295 K
γ = 76.045 (2)°Block, clear yellowish colourless
V = 436.12 (2) Å30.46 × 0.33 × 0.18 mm
Data collection top
Rigaku Xcalibur Atlas
diffractometer
2299 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1986 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.6249 pixels mm-1θmax = 29.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
{CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1010
Tmin = 0.947, Tmax = 0.973l = 1212
15285 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0284P)2 + 0.0941P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
2299 reflectionsΔρmax = 0.33 e Å3
122 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction data were collected on an Oxford Diffraction four-circle single crystal diffractometer equipped with a CCD detector using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). The raw data were treated with the CrysAlis Data Reduction Program, version 1.171.38.34a or 1.171.39.46. The intensities of the reflection were corrected for Lorentz and polarization effects. The crystal structures were solved by direct methods (Sheldrick, 2008) and refined by full-matrix least-squares methods using the SHELXL2017 program (Sheldrick, 2015) and OLEX2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81600 (3)0.10038 (3)0.85182 (2)0.04788 (9)
O10.2903 (3)0.0584 (2)0.53501 (18)0.0519 (4)
N10.3605 (3)0.1243 (2)0.7969 (2)0.0356 (3)
H1A0.359 (4)0.044 (4)0.739 (3)0.062 (7)*
H1B0.281 (4)0.095 (3)0.889 (3)0.057 (7)*
H1C0.492 (4)0.108 (3)0.811 (3)0.052 (6)*
C10.2937 (2)0.3101 (2)0.7213 (2)0.0294 (3)
O20.3704 (3)0.2520 (2)0.32372 (17)0.0638 (5)
N20.3158 (2)0.2116 (2)0.46776 (19)0.0397 (4)
C20.2568 (3)0.4475 (2)0.8078 (2)0.0354 (4)
C30.1993 (3)0.6251 (3)0.7319 (3)0.0457 (5)
H30.1689360.7193620.7883710.055*
C40.1863 (3)0.6645 (3)0.5753 (3)0.0484 (5)
H40.1481820.7841480.5281820.058*
C50.2291 (3)0.5293 (3)0.4892 (2)0.0411 (4)
H50.2242230.5556550.3830670.049*
C60.2799 (2)0.3522 (2)0.5636 (2)0.0316 (3)
C70.2796 (4)0.4061 (3)0.9765 (2)0.0500 (5)
H7A0.1954810.3201741.0384420.075*
H7B0.2370420.5155871.0200320.075*
H7C0.4209240.3563050.9782740.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04293 (13)0.05194 (14)0.04204 (12)0.01063 (9)0.01413 (9)0.01167 (9)
O10.0688 (10)0.0404 (8)0.0518 (8)0.0171 (7)0.0158 (7)0.0094 (7)
N10.0429 (9)0.0296 (8)0.0318 (8)0.0052 (7)0.0110 (7)0.0008 (6)
C10.0251 (7)0.0285 (8)0.0321 (8)0.0079 (6)0.0049 (6)0.0004 (6)
O20.0869 (12)0.0773 (12)0.0324 (7)0.0260 (10)0.0152 (8)0.0074 (8)
N20.0372 (8)0.0496 (10)0.0364 (8)0.0109 (7)0.0127 (6)0.0078 (7)
C20.0296 (8)0.0352 (9)0.0401 (9)0.0094 (7)0.0023 (7)0.0078 (7)
C30.0372 (10)0.0312 (9)0.0673 (14)0.0099 (8)0.0045 (9)0.0116 (9)
C40.0407 (10)0.0310 (9)0.0690 (14)0.0103 (8)0.0186 (10)0.0108 (9)
C50.0355 (9)0.0397 (10)0.0463 (10)0.0140 (8)0.0167 (8)0.0116 (8)
C60.0270 (8)0.0327 (8)0.0353 (9)0.0094 (7)0.0099 (7)0.0005 (7)
C70.0571 (13)0.0552 (13)0.0402 (10)0.0122 (10)0.0065 (9)0.0177 (10)
Geometric parameters (Å, º) top
O1—N21.228 (2)C2—C71.508 (3)
N1—H1A0.90 (3)C3—H30.9300
N1—H1B0.86 (3)C3—C41.383 (3)
N1—H1C0.92 (3)C4—H40.9300
N1—C11.461 (2)C4—C51.366 (3)
C1—C21.389 (3)C5—H50.9300
C1—C61.394 (2)C5—C61.383 (2)
O2—N21.222 (2)C7—H7A0.9600
N2—C61.467 (2)C7—H7B0.9600
C2—C31.399 (3)C7—H7C0.9600
H1A—N1—H1B105 (2)C4—C3—H3119.1
H1A—N1—H1C108 (2)C3—C4—H4119.7
H1B—N1—H1C108 (2)C5—C4—C3120.57 (18)
C1—N1—H1A111.5 (17)C5—C4—H4119.7
C1—N1—H1B112.9 (17)C4—C5—H5120.8
C1—N1—H1C110.7 (15)C4—C5—C6118.49 (18)
C2—C1—N1118.04 (15)C6—C5—H5120.8
C2—C1—C6120.05 (16)C1—C6—N2122.02 (15)
C6—C1—N1121.77 (16)C5—C6—C1121.68 (17)
O1—N2—C6118.93 (15)C5—C6—N2116.30 (16)
O2—N2—O1122.57 (17)C2—C7—H7A109.5
O2—N2—C6118.50 (17)C2—C7—H7B109.5
C1—C2—C3117.32 (17)C2—C7—H7C109.5
C1—C2—C7121.11 (17)H7A—C7—H7B109.5
C3—C2—C7121.57 (18)H7A—C7—H7C109.5
C2—C3—H3119.1H7B—C7—H7C109.5
C4—C3—C2121.83 (19)
O1—N2—C6—C124.5 (2)C2—C1—C6—N2179.47 (15)
O1—N2—C6—C5154.82 (17)C2—C1—C6—C50.2 (3)
N1—C1—C2—C3178.02 (16)C2—C3—C4—C50.3 (3)
N1—C1—C2—C71.5 (3)C3—C4—C5—C61.8 (3)
N1—C1—C6—N24.9 (2)C4—C5—C6—C11.8 (3)
N1—C1—C6—C5175.88 (16)C4—C5—C6—N2177.48 (16)
C1—C2—C3—C42.3 (3)C6—C1—C2—C32.2 (2)
O2—N2—C6—C1155.44 (18)C6—C1—C2—C7177.35 (17)
O2—N2—C6—C525.3 (2)C7—C2—C3—C4177.29 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.90 (3)1.98 (3)2.693 (2)135 (2)
N1—H1B···Br1i0.86 (3)2.47 (3)3.2717 (17)155 (2)
N1—H1C···Br10.92 (3)2.34 (3)3.2650 (18)174 (2)
Symmetry code: (i) x+1, y, z+2.
2-Methyl-6-nitroanilinium triiodide (4) top
Crystal data top
C7H9N2O2+·I3F(000) = 960
Mr = 533.86Dx = 2.681 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0840 (2) ÅCell parameters from 6876 reflections
b = 11.5247 (4) Åθ = 3.0–26.6°
c = 16.3921 (6) ŵ = 7.07 mm1
β = 98.738 (3)°T = 295 K
V = 1322.73 (8) Å3Block, clear dark black
Z = 40.21 × 0.11 × 0.09 mm
Data collection top
Rigaku Xcalibur Atlas
diffractometer
5822 measured reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source5822 independent reflections
Graphite monochromator3181 reflections with I > 2σ(I)
Detector resolution: 10.6249 pixels mm-1θmax = 29.7°, θmin = 3.1°
ω scansh = 99
Absorption correction: gaussian
{CrysAlis PRO (Rigaku OD, 2015), based on expressions derived by Clark & Reid (1995)]
k = 1515
Tmin = 0.966, Tmax = 0.988l = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.80(Δ/σ)max = 0.001
5822 reflectionsΔρmax = 0.70 e Å3
130 parametersΔρmin = 0.78 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

X-ray diffraction data were collected on an Oxford Diffraction four-circle single crystal diffractometer equipped with a CCD detector using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). The raw data were treated with the CrysAlis Data Reduction Program, version 1.171.38.34a or 1.171.39.46. The intensities of the reflection were corrected for Lorentz and polarization effects. The crystal structures were solved by direct methods (Sheldrick, 2008) and refined by full-matrix least-squares methods using the SHELXL2017 program (Sheldrick, 2015) and OLEX2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.23412 (5)0.64676 (3)0.49174 (2)0.05463 (12)
O10.7268 (7)0.6352 (3)0.3066 (3)0.0872 (15)
N10.7262 (6)0.6691 (3)0.4628 (2)0.0498 (11)
H1A0.7056540.6244930.4180410.060*
H1B0.6323770.6589510.4925670.060*
H1C0.8371320.6499410.4929070.060*
C10.7319 (7)0.7911 (4)0.4380 (3)0.0384 (11)
O20.6924 (7)0.7754 (4)0.2194 (3)0.0901 (15)
N20.7129 (7)0.7393 (5)0.2892 (3)0.0615 (13)
C20.7435 (7)0.8734 (4)0.5006 (3)0.0435 (12)
C30.7455 (7)0.9904 (4)0.4768 (3)0.0493 (13)
H30.7505881.0478410.5169510.059*
C40.7403 (7)1.0219 (4)0.3964 (3)0.0562 (15)
H40.7440291.0999350.3823260.067*
C50.7293 (7)0.9375 (5)0.3353 (3)0.0515 (13)
H50.7242290.9587060.2802550.062*
C60.7262 (7)0.8236 (4)0.3568 (3)0.0405 (12)
C70.7513 (9)0.8411 (4)0.5907 (3)0.0653 (17)
H7A0.6377620.7991880.5977060.098*
H7B0.7598890.9103300.6235880.098*
H7C0.8611880.7933080.6077670.098*
I20.25651 (6)0.48323 (3)0.33199 (2)0.06088 (13)
I30.28580 (6)0.33035 (3)0.20403 (2)0.06437 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0485 (2)0.0462 (2)0.0689 (2)0.00020 (18)0.00820 (19)0.00626 (17)
O10.126 (4)0.051 (3)0.089 (3)0.006 (3)0.033 (3)0.027 (2)
N10.046 (3)0.039 (2)0.065 (3)0.001 (2)0.009 (2)0.002 (2)
C10.031 (3)0.032 (2)0.052 (3)0.000 (2)0.005 (2)0.002 (2)
O20.112 (4)0.109 (4)0.050 (3)0.001 (3)0.014 (3)0.021 (2)
N20.051 (3)0.076 (4)0.060 (3)0.005 (3)0.017 (3)0.017 (3)
C20.043 (3)0.039 (3)0.049 (3)0.001 (2)0.004 (2)0.005 (2)
C30.056 (4)0.036 (3)0.057 (4)0.000 (3)0.010 (3)0.002 (2)
C40.057 (4)0.038 (3)0.073 (4)0.004 (3)0.010 (3)0.014 (3)
C50.047 (3)0.055 (3)0.053 (3)0.003 (3)0.008 (3)0.008 (3)
C60.044 (3)0.041 (3)0.037 (3)0.002 (2)0.008 (2)0.010 (2)
C70.097 (5)0.048 (3)0.050 (3)0.006 (3)0.008 (3)0.006 (3)
I20.0549 (2)0.0456 (2)0.0798 (3)0.00325 (19)0.00274 (19)0.01677 (19)
I30.0536 (3)0.0606 (3)0.0816 (3)0.0035 (2)0.0189 (2)0.0096 (2)
Geometric parameters (Å, º) top
O1—N21.234 (6)C3—H30.9300
N1—H1A0.8900C3—C41.363 (6)
N1—H1B0.8900C4—H40.9300
N1—H1C0.8900C4—C51.389 (7)
N1—C11.466 (5)C5—H50.9300
C1—C21.391 (6)C5—C61.360 (6)
C1—C61.378 (6)C7—H7A0.9600
O2—N21.205 (6)C7—H7B0.9600
N2—C61.465 (6)C7—H7C0.9600
C2—C31.405 (6)I2—I32.7711 (6)
C2—C71.515 (6)
H1A—N1—H1B109.5C4—C3—H3119.2
H1A—N1—H1C109.5C3—C4—H4119.9
H1B—N1—H1C109.5C3—C4—C5120.1 (5)
C1—N1—H1A109.5C5—C4—H4119.9
C1—N1—H1B109.5C4—C5—H5120.3
C1—N1—H1C109.5C6—C5—C4119.4 (5)
C2—C1—N1116.7 (4)C6—C5—H5120.3
C6—C1—N1122.1 (4)C1—C6—N2122.6 (4)
C6—C1—C2121.2 (4)C5—C6—C1120.9 (4)
O1—N2—C6118.5 (5)C5—C6—N2116.5 (5)
O2—N2—O1123.3 (5)C2—C7—H7A109.5
O2—N2—C6118.2 (5)C2—C7—H7B109.5
C1—C2—C3116.8 (4)C2—C7—H7C109.5
C1—C2—C7122.8 (4)H7A—C7—H7B109.5
C3—C2—C7120.4 (4)H7A—C7—H7C109.5
C2—C3—H3119.2H7B—C7—H7C109.5
C4—C3—C2121.6 (4)
O1—N2—C6—C17.5 (8)C2—C1—C6—N2179.6 (5)
O1—N2—C6—C5173.6 (5)C2—C1—C6—C50.8 (8)
N1—C1—C2—C3178.9 (4)C2—C3—C4—C51.1 (8)
N1—C1—C2—C70.4 (7)C3—C4—C5—C60.7 (8)
N1—C1—C6—N20.4 (7)C4—C5—C6—C10.6 (8)
N1—C1—C6—C5179.2 (5)C4—C5—C6—N2179.5 (5)
C1—C2—C3—C41.3 (8)C6—C1—C2—C31.1 (7)
O2—N2—C6—C1173.9 (5)C6—C1—C2—C7179.6 (5)
O2—N2—C6—C55.0 (7)C7—C2—C3—C4179.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.891.862.591 (6)138
N1—H1B···I10.892.823.598 (4)146
N1—H1C···I1i0.892.823.566 (4)143
C5—H5···O1ii0.932.543.304 (6)140
Symmetry codes: (i) x+1, y, z; (ii) x+3/2, y+1/2, z+1/2.
2-Methyl-6-nitroanilinium hydrogen sulfate (5) top
Crystal data top
C7H9N2O2+·HSO4F(000) = 520
Mr = 250.23Dx = 1.622 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0966 (5) ÅCell parameters from 5045 reflections
b = 8.3785 (8) Åθ = 3.0–30.2°
c = 17.5115 (18) ŵ = 0.33 mm1
β = 100.185 (9)°T = 295 K
V = 1024.81 (16) Å3Plate, clear light colourless
Z = 40.42 × 0.32 × 0.09 mm
Data collection top
Rigaku Xcalibur Atlas
diffractometer
4495 measured reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4495 independent reflections
Graphite monochromator3463 reflections with I > 2σ(I)
Detector resolution: 10.6249 pixels mm-1θmax = 27.5°, θmin = 2.7°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 1010
Tmin = 0.939, Tmax = 1.000l = 2222
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.0891P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4495 reflectionsΔρmax = 0.66 e Å3
149 parametersΔρmin = 0.42 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

X-ray diffraction data were collected on an Oxford Diffraction four-circle single crystal diffractometer equipped with a CCD detector using graphite-monochromatized Mo Kα radiation (λ = 0.71073 Å). The raw data were treated with the CrysAlis Data Reduction Program, version 1.171.38.34a or 1.171.39.46. The intensities of the reflection were corrected for Lorentz and polarization effects. The crystal structures were solved by direct methods (Sheldrick, 2008) and refined by full-matrix least-squares methods using the SHELXL2017 program (Sheldrick, 2015) and OLEX2 software (Dolomanov et al., 2009).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.32295 (8)0.09177 (8)0.70227 (4)0.0348 (2)
O30.4440 (3)0.1334 (4)0.64969 (14)0.0759 (8)
O40.1257 (3)0.1015 (3)0.66720 (14)0.0616 (6)
O50.3759 (3)0.0587 (3)0.73916 (19)0.0826 (9)
O60.3636 (4)0.2094 (4)0.76979 (18)0.1056 (12)
H60.2810610.2789840.7642110.158*
O10.6922 (3)0.5681 (3)0.70497 (17)0.0655 (7)
N10.7908 (3)0.2815 (3)0.66155 (12)0.0339 (5)
H1A0.8145140.3526340.6998090.041*
H1B0.8880310.2132570.6653120.041*
H1C0.6838850.2285550.6649730.041*
C10.7677 (3)0.3634 (3)0.58742 (14)0.0296 (5)
O20.7360 (4)0.7746 (3)0.6394 (2)0.1016 (11)
N20.7261 (3)0.6306 (3)0.6464 (2)0.0544 (7)
C20.7659 (3)0.2709 (3)0.52187 (15)0.0376 (6)
C30.7550 (4)0.3499 (5)0.45104 (17)0.0550 (8)
H30.7546730.2898520.4063570.066*
C40.7451 (4)0.5101 (5)0.4451 (2)0.0651 (10)
H40.7426140.5582460.3971080.078*
C50.7385 (4)0.6028 (4)0.5088 (2)0.0549 (8)
H50.7278140.7132020.5042820.066*
C60.7481 (3)0.5294 (3)0.58028 (18)0.0391 (6)
C70.7704 (4)0.0907 (4)0.52610 (19)0.0540 (8)
H7A0.8881110.0567210.5577340.081*
H7B0.7617900.0475170.4748160.081*
H7C0.6643390.0534200.5484270.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0317 (3)0.0349 (3)0.0374 (4)0.0040 (2)0.0048 (3)0.0040 (3)
O30.0534 (13)0.121 (2)0.0551 (15)0.0218 (12)0.0147 (10)0.0165 (16)
O40.0349 (11)0.0726 (16)0.0731 (16)0.0129 (9)0.0023 (10)0.0071 (13)
O50.0546 (13)0.0609 (16)0.124 (2)0.0057 (10)0.0065 (13)0.0485 (16)
O60.104 (2)0.122 (3)0.074 (2)0.0560 (17)0.0328 (15)0.0527 (19)
O10.0745 (15)0.0624 (17)0.0601 (16)0.0092 (11)0.0136 (12)0.0225 (14)
N10.0335 (10)0.0397 (12)0.0282 (12)0.0023 (8)0.0046 (8)0.0031 (9)
C10.0219 (11)0.0376 (13)0.0295 (12)0.0006 (9)0.0054 (9)0.0023 (10)
O20.125 (2)0.0362 (15)0.134 (3)0.0110 (13)0.0042 (19)0.0145 (17)
N20.0452 (13)0.0392 (15)0.072 (2)0.0068 (10)0.0080 (12)0.0099 (14)
C20.0264 (12)0.0543 (17)0.0320 (14)0.0026 (10)0.0050 (10)0.0027 (12)
C30.0445 (16)0.092 (3)0.0298 (16)0.0084 (15)0.0094 (11)0.0052 (16)
C40.0482 (18)0.101 (3)0.046 (2)0.0019 (17)0.0090 (15)0.036 (2)
C50.0390 (15)0.0520 (19)0.071 (2)0.0023 (12)0.0032 (14)0.0263 (18)
C60.0276 (12)0.0373 (14)0.0498 (18)0.0007 (10)0.0002 (11)0.0044 (13)
C70.0558 (18)0.0529 (19)0.0512 (18)0.0083 (13)0.0037 (14)0.0193 (16)
Geometric parameters (Å, º) top
S1—O31.410 (2)N2—C61.465 (4)
S1—O41.428 (2)C2—C31.396 (4)
S1—O51.436 (2)C2—C71.512 (4)
S1—O61.527 (3)C3—H30.9300
O6—H60.8200C3—C41.347 (5)
O1—N21.213 (4)C4—H40.9300
N1—H1A0.8900C4—C51.367 (5)
N1—H1B0.8900C5—H50.9300
N1—H1C0.8900C5—C61.385 (4)
N1—C11.452 (3)C7—H7A0.9600
C1—C21.383 (3)C7—H7B0.9600
C1—C61.401 (4)C7—H7C0.9600
O2—N21.216 (3)
O3—S1—O4111.65 (15)C1—C2—C7121.5 (2)
O3—S1—O5111.72 (17)C3—C2—C7121.0 (3)
O3—S1—O6107.0 (2)C2—C3—H3118.8
O4—S1—O5113.72 (14)C4—C3—C2122.3 (3)
O4—S1—O6109.44 (14)C4—C3—H3118.8
O5—S1—O6102.7 (2)C3—C4—H4119.6
S1—O6—H6109.5C3—C4—C5120.8 (3)
H1A—N1—H1B109.5C5—C4—H4119.6
H1A—N1—H1C109.5C4—C5—H5120.6
H1B—N1—H1C109.5C4—C5—C6118.8 (3)
C1—N1—H1A109.5C6—C5—H5120.6
C1—N1—H1B109.5C1—C6—N2121.8 (3)
C1—N1—H1C109.5C5—C6—C1120.7 (3)
C2—C1—N1117.4 (2)C5—C6—N2117.5 (3)
C2—C1—C6119.7 (2)C2—C7—H7A109.5
C6—C1—N1122.9 (2)C2—C7—H7B109.5
O1—N2—O2122.5 (3)C2—C7—H7C109.5
O1—N2—C6118.9 (3)H7A—C7—H7B109.5
O2—N2—C6118.6 (4)H7A—C7—H7C109.5
C1—C2—C3117.5 (3)H7B—C7—H7C109.5
O1—N2—C6—C112.4 (4)C2—C1—C6—N2172.5 (2)
O1—N2—C6—C5164.2 (3)C2—C1—C6—C53.9 (3)
N1—C1—C2—C3176.3 (2)C2—C3—C4—C52.3 (4)
N1—C1—C2—C75.2 (3)C3—C4—C5—C61.9 (4)
N1—C1—C6—N27.6 (3)C4—C5—C6—C11.2 (4)
N1—C1—C6—C5175.9 (2)C4—C5—C6—N2175.5 (2)
C1—C2—C3—C40.5 (4)C6—C1—C2—C33.5 (3)
O2—N2—C6—C1170.0 (2)C6—C1—C2—C7175.0 (2)
O2—N2—C6—C513.4 (4)C7—C2—C3—C4178.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O5i0.821.752.568 (3)173
N1—H1A···O5ii0.892.392.993 (3)126
N1—H1A···O10.892.012.650 (3)128
N1—H1B···O4iii0.891.922.802 (3)169
N1—H1C···O30.891.862.731 (3)167
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds