Download citation
Download citation
link to html
A novel com­plex has been prepared using the (E)-4-nitro-N-(pyridin-2-yl­methyl­idene)aniline bidentate Schiff base ligand and PtCl2, namely, di­chlorido­[(E)-4-nitro-N-(pyridin-2-yl­methyl­idene)aniline-κ2N,N′]platinum(II) acetonitrile hemisolvate, [PtCl2(C12H9N3O2)]·0.5CH3CN, 1. According to the X-ray measurements of the crystal structure, the PtII ion adopts a PtCl2N2 square-planar coordination. The coordination of the Schiff base ligand to the PtII ion occurs in a cyclic bidentate fashion, as a result of which a five-membered metallacycle is formed. Furthermore, in the structure of 1, the neutral mol­ecules form a one-dimensional chain structure through C—H...Cl and C—H...O hydrogen bonds. The characterization of the com­plex was performed via single-crystal X-ray diffraction, IR spectroscopy and elemental analysis, and the anti­oxidant activity of the com­plex was evaluated using spec­trophotometry by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962001308X/dv3003sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962001308X/dv3003Isup2.hkl
Contains datablock I

CCDC reference: 1544210

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2020); software used to prepare material for publication: SHELXL.

Dichlorido[(E)-4-nitro-N-(pyridin-2-ylmethylidene)aniline]platinum(II) acetonitrile hemisolvate top
Crystal data top
[PtCl2(C12H9N3O2)]·0.5C2H3NDx = 2.293 Mg m3
Mr = 513.74Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, C2221Cell parameters from 15181 reflections
a = 7.4469 (2) Åθ = 2.8–27.5°
b = 27.9271 (11) ŵ = 9.80 mm1
c = 14.3092 (5) ÅT = 147 K
V = 2975.89 (18) Å3Needle, red
Z = 80.10 × 0.06 × 0.06 mm
F(000) = 1928
Data collection top
Nonius KappaCCD
diffractometer
3418 independent reflections
Radiation source: fine-focus sealed tube2830 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.072
φ scans and ω scans with κ offsetsθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 99
Tmin = 0.385, Tmax = 0.570k = 3636
15181 measured reflectionsl = 1818
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0106P)2 + 24.5578P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.08Δρmax = 1.78 e Å3
3418 reflectionsΔρmin = 0.81 e Å3
227 parametersAbsolute structure: Flack x determined using 1041 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
30 restraintsAbsolute structure parameter: 0.030 (8)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. X-ray diffraction data were measured at 147K with a Mo K? radiation (? = 0.7107 ) using a Rigaku SuperNova E (dual source) four-circle diffractometer equipped with an Eos CCD detector. For all operations (data collection, cell refinement, data reduction, and multi-scan absorption correction), the CrysAlis PRO software was used (Agilent, 2014). The structure was solved by direct methods and refined by a full-matrix least-squares technique on F2 data using SHELXTL programs (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.31897 (6)0.81317 (2)0.15900 (3)0.02861 (13)
Cl10.3837 (5)0.87583 (12)0.0619 (2)0.0435 (9)
Cl20.4380 (4)0.76332 (12)0.04850 (19)0.0339 (7)
O10.313 (5)0.5360 (8)0.2850 (18)0.065 (7)0.60 (4)
O20.154 (4)0.5415 (8)0.155 (2)0.070 (7)0.60 (4)
O1A0.206 (7)0.5368 (14)0.274 (3)0.066 (8)0.40 (4)
O2A0.247 (6)0.5498 (11)0.131 (2)0.066 (9)0.40 (4)
N10.2324 (12)0.8557 (4)0.2639 (6)0.028 (2)
N20.2458 (11)0.7621 (3)0.2534 (6)0.022 (2)
N30.2263 (18)0.5612 (5)0.2186 (10)0.059 (4)
C10.2284 (17)0.9030 (5)0.2676 (9)0.041 (3)
H1A0.2640330.9207980.2142000.049*
C20.1730 (18)0.9275 (4)0.3478 (9)0.043 (3)
H2A0.1731810.9615100.3485090.051*
C30.1189 (17)0.9029 (5)0.4249 (9)0.042 (3)
H3A0.0778820.9193500.4789550.051*
C40.1249 (16)0.8529 (4)0.4229 (8)0.032 (3)
H4A0.0906680.8347800.4762280.039*
C50.1813 (15)0.8303 (3)0.3423 (8)0.029 (2)
C60.1893 (14)0.7798 (4)0.3320 (7)0.027 (2)
H6A0.1539210.7593180.3817330.032*
C80.3035 (14)0.6822 (4)0.3167 (7)0.031 (2)
H8A0.3467460.6964730.3725990.037*
C90.2971 (17)0.6333 (4)0.3091 (8)0.036 (3)
H9A0.3330570.6134050.3596680.043*
C100.2366 (16)0.6133 (4)0.2253 (9)0.034 (3)
C110.1787 (16)0.6409 (4)0.1522 (8)0.034 (2)
H11A0.1345260.6263700.0967260.041*
C120.1855 (13)0.6899 (4)0.1604 (7)0.028 (2)
H12A0.1482940.7094940.1096750.034*
C130.2472 (14)0.7110 (4)0.2433 (8)0.027 (3)
C1S0.398 (3)1.003 (5)0.503 (13)0.060 (10)0.5
H1S10.4630910.9726490.4928140.090*0.5
H1S20.4133201.0236250.4487780.090*0.5
H1S30.4461011.0186620.5588830.090*0.5
C2S0.214 (4)0.9929 (19)0.516 (4)0.065 (10)0.5
N1S0.059 (4)0.9897 (12)0.537 (2)0.081 (10)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0293 (2)0.0323 (2)0.02423 (19)0.0004 (2)0.0009 (2)0.0042 (2)
Cl10.054 (2)0.038 (2)0.0379 (18)0.0005 (15)0.0075 (15)0.0145 (16)
Cl20.0364 (17)0.0437 (19)0.0216 (15)0.0011 (14)0.0008 (12)0.0010 (13)
O10.11 (2)0.027 (9)0.061 (12)0.004 (15)0.009 (16)0.006 (8)
O20.110 (18)0.036 (10)0.066 (14)0.025 (11)0.021 (14)0.003 (11)
O1A0.11 (2)0.039 (13)0.046 (13)0.010 (19)0.014 (19)0.011 (11)
O2A0.11 (2)0.023 (14)0.069 (18)0.009 (14)0.051 (16)0.022 (12)
N10.032 (6)0.027 (6)0.025 (5)0.008 (4)0.006 (4)0.003 (4)
N20.019 (5)0.033 (6)0.014 (5)0.004 (4)0.003 (4)0.001 (4)
N30.065 (9)0.050 (8)0.062 (9)0.002 (7)0.025 (8)0.005 (8)
C10.046 (9)0.044 (9)0.033 (7)0.004 (6)0.002 (6)0.006 (6)
C20.053 (7)0.036 (7)0.039 (7)0.001 (7)0.002 (9)0.001 (6)
C30.045 (8)0.046 (9)0.036 (7)0.009 (6)0.008 (6)0.011 (7)
C40.036 (7)0.035 (8)0.026 (6)0.006 (6)0.007 (5)0.004 (6)
C50.028 (5)0.031 (6)0.027 (5)0.001 (5)0.012 (7)0.000 (5)
C60.019 (5)0.041 (6)0.019 (5)0.005 (5)0.010 (6)0.007 (5)
C80.026 (5)0.037 (6)0.029 (6)0.001 (6)0.004 (5)0.004 (5)
C90.041 (7)0.035 (7)0.033 (7)0.001 (6)0.008 (6)0.005 (5)
C100.041 (8)0.028 (7)0.035 (7)0.007 (5)0.009 (5)0.001 (6)
C110.031 (5)0.034 (6)0.038 (6)0.005 (6)0.003 (8)0.004 (6)
C120.024 (4)0.038 (6)0.023 (4)0.003 (6)0.002 (5)0.004 (6)
C130.029 (6)0.031 (7)0.020 (6)0.006 (5)0.002 (4)0.008 (5)
C1S0.077 (14)0.02 (3)0.08 (2)0.01 (3)0.00 (3)0.004 (15)
C2S0.073 (15)0.03 (2)0.09 (2)0.015 (18)0.00 (2)0.035 (16)
N1S0.069 (16)0.07 (2)0.10 (3)0.010 (16)0.003 (16)0.055 (19)
Geometric parameters (Å, º) top
Pt1—N12.021 (10)C4—C51.381 (15)
Pt1—N22.039 (9)C4—H4A0.9500
Pt1—Cl12.286 (3)C5—C61.418 (14)
Pt1—Cl22.286 (3)C6—H6A0.9500
O1—N31.35 (3)C8—C91.372 (16)
O2—N31.19 (2)C8—C131.389 (15)
O1A—N31.06 (4)C8—H8A0.9500
O2A—N31.30 (4)C9—C101.397 (16)
N1—C11.320 (15)C9—H9A0.9500
N1—C51.382 (14)C10—C111.369 (16)
N2—C61.298 (13)C11—C121.375 (15)
N2—C131.434 (15)C11—H11A0.9500
N3—C101.459 (18)C12—C131.403 (15)
C1—C21.399 (17)C12—H12A0.9500
C1—H1A0.9500C1S—C2S1.41 (5)
C2—C31.361 (17)C1S—H1S10.9800
C2—H2A0.9500C1S—H1S20.9800
C3—C41.397 (17)C1S—H1S30.9800
C3—H3A0.9500C2S—N1S1.19 (4)
N1—Pt1—N280.4 (4)C4—C5—C6123.7 (11)
N1—Pt1—Cl193.9 (3)N1—C5—C6114.6 (10)
N2—Pt1—Cl1174.1 (3)N2—C6—C5118.8 (10)
N1—Pt1—Cl2174.9 (3)N2—C6—H6A120.6
N2—Pt1—Cl297.8 (3)C5—C6—H6A120.6
Cl1—Pt1—Cl287.94 (12)C9—C8—C13120.5 (11)
C1—N1—C5118.4 (10)C9—C8—H8A119.8
C1—N1—Pt1128.7 (9)C13—C8—H8A119.8
C5—N1—Pt1112.8 (7)C8—C9—C10118.5 (11)
C6—N2—C13118.0 (9)C8—C9—H9A120.8
C6—N2—Pt1113.3 (8)C10—C9—H9A120.8
C13—N2—Pt1128.8 (7)C11—C10—C9122.2 (12)
O1A—N3—O2A126 (3)C11—C10—N3119.6 (12)
O2—N3—O1120.8 (19)C9—C10—N3118.1 (12)
O1A—N3—C10127 (3)C10—C11—C12118.9 (11)
O2—N3—C10122.3 (17)C10—C11—H11A120.5
O2A—N3—C10107.6 (19)C12—C11—H11A120.5
O1—N3—C10116.8 (16)C11—C12—C13120.2 (11)
N1—C1—C2121.9 (12)C11—C12—H12A119.9
N1—C1—H1A119.0C13—C12—H12A119.9
C2—C1—H1A119.0C8—C13—C12119.7 (11)
C3—C2—C1120.3 (12)C8—C13—N2120.1 (10)
C3—C2—H2A119.8C12—C13—N2120.2 (10)
C1—C2—H2A119.8C2S—C1S—H1S1109.5
C2—C3—C4118.6 (12)C2S—C1S—H1S2109.5
C2—C3—H3A120.7H1S1—C1S—H1S2109.5
C4—C3—H3A120.7C2S—C1S—H1S3109.5
C5—C4—C3119.0 (11)H1S1—C1S—H1S3109.5
C5—C4—H4A120.5H1S2—C1S—H1S3109.5
C3—C4—H4A120.5N1S—C2S—C1S171 (9)
C4—C5—N1121.7 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···Cl10.952.673.252 (14)120
C2—H2A···O2i0.952.583.44 (3)150
C2—H2A···O2Ai0.952.553.48 (3)165
C4—H4A···Cl2ii0.952.943.739 (13)143
C6—H6A···Cl2ii0.952.563.456 (11)157
C8—H8A···Cl2iii0.952.713.544 (12)147
C11—H11A···Cl1iv0.952.943.799 (13)151
C12—H12A···Cl2iv0.952.863.746 (11)157
C1S—H1S1···Cl1v0.982.883.67 (14)138
C1S—H1S3···Cl1vi0.982.983.50 (14)114
C1S—H1S2···O2vii0.972.383.15 (15)135
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y, z+1/2; (iv) x1/2, y+3/2, z; (v) x, y, z+1/2; (vi) x, y+2, z+1/2; (vii) x1/2, y+1/2, z+1/2.
Radical scavenging abilities (IC50±SD, µM) of compound 1 and standard drugs [What does * represent] top
CompoundDPPH radical scavenging activityABTS radical scavenging activity
IC50M)R2IC50M)R2
PtII complex1.98±1.050.9914.27±1.170.808
Rutin*2.52±1.600.7982.83±1.840.983
Vitamin C*1.92±1.070.978--
BHT*--1.64±1.540.919
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds