Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The reaction of the imide–nitride complex [{Ti(η5-C5Me5)(μ-NH)}33-N)] with potassium iodide in pyridine at room temperature affords the adduct di-μ-iodido-1:1′κ4I-bis­{tri-μ3-imido-1:2:3κ3N;1:2:4κ3N;1:3:4κ3N3-nitrido-2:3:4κ3N-tris[2,3,4(η5)-penta­methyl­cyclo­penta­dien­yl](pyridine-1κN)-tetrahedro-potassiumtrititanium(IV)}, [K2Ti6(C10H15)6I2N2(NH)6(C5H5N)2] or [(C5H5N)(μ-I)K{(μ3-NH)3Ti35-C5Me5)33-N)}]2. The crystal structure contains two [KTi3N4] cube-type units held together by two bridging I atoms. There is a centre of inversion located in the middle of this unprecedented discrete K2I2 unit. The geometry around K is best described as distorted trigonal prismatic, with three imide groups, two bridging I atoms and one pyridine ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111012686/dt3001sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111012686/dt3001IIsup2.hkl
Contains datablock II

CCDC reference: 829695

Comment top

Polynuclear transition metal nitride complexes exhibit singular structures. These compounds might be of interest as building blocks in the synthesis of metal nitride materials (Oyama, 1996) or as intermediates in dinitrogen fixation and activation processes (see, for example, Fryzuk & Johnson, 2000; Himmel & Reiher, 2006; Kozak & Mountford, 2004). However, a review of the literature reveals a lack of a systematic synthetic method for the preparation of these polynuclear complexes (Abarca et al., 2003; Dehnicke & Strähle, 1992). In this context, the titanium imide–nitride compound [{Ti(η5-C5Me5)(µ-NH)}33-N)], (I) (Abarca et al., 2000; Roesky et al., 1989), is able to incorporate metal centres, and we have extensively investigated the rational synthesis of a series of heterometallic nitride complexes with cube-type structures. In particular, ligand (I) entraps alkali metal halides to give stable molecular adducts [XM{(µ3-NH)3Ti3(η5-C5Me5)33-N)}] (M = Li and X = Br, I; M = Na and X = I) (García-Castro et al., 2005). However, the analogous treatment of (I) with amides of group 1 elements affords edge-linked [M4-N)(µ3-NH)2{Ti3(η5-C5Me5)33-N)}]2 or corner-shared [M3-N)(µ3-NH)5{Ti3(η5-C5Me5)33-N)}2] double-cube complexes, depending on the reagent ratio of (I) and the amide (viz. 1:1 or 2:1; Martín et al., 2004).

The reaction of these edge-linked double-cube derivatives with metal halides has been used to prepare new heterometallic nitride complexes (García-Castro et al., 2001). Over the course of these investigations, we attempted to synthesize a zinc double-cube compound by treatment of the potassium derivative with ZnI2 in pyridine. After three days at room temperature, yellow crystals of [(C5H5N)(µ-I)K{(µ3-NH)3Ti3(η5-C5Me5)33-N)}]2, (II), were obtained in 27% yield. These crystals had a hexagonal prism shape and were air sensitive. Complex (II) was characterized by X-ray crystal structure determination, IR spectroscopy and CHN microanalysis. Compound (II) is not soluble in pyridine-d5, and decomposes in benzene-d6 or chloroform-d1 to afford the imide–nitride ligand (I), KI and pyridine, precluding its characterization by NMR spectroscopy. Furthermore, a rational synthesis by reaction of (I) with KI in pyridine gave compound (II) in 73% yield.

The structure of (II) (Fig. 1) contains two [KTi3N4] cube-type units linked by two bridging I atoms and related by a centre of symmetry located in the middle of the planar K2I2 unit. The distance between the two K atoms is 4.629 (2) Å, clearly shorter than the K···K lengths found for [K6I4(dmp)8]2+ [dmp is 2,9-dimethyl-1,10-phenanthroline; 4.960 (1) and 5.010 (1) Å], in which three K2I2 fragments are held together (Buttery et al., 2006). This phenanthroline derivative is the only compound in the Cambridge Structural Database (CSD, Version 5.32; Allen, 2002) containing I-bridged K2I2 units. Complexes with this type of unit, viz. M2I2, are common for the lighter alkali metal iodide complexes (see, for example, Barrett et al., 2006; Fei et al., 2003; Herberich et al., 2005) but, to the best of our knowledge, there are no structural examples of compounds with discrete K2I2 units. The K—I bond lengths in (II) [3.553 (1) and 3.605 (1) Å] are slightly longer than the values found for the phenanthroline complex [3.303 (1)–3.581 (1) Å]. The I—K—Ii and K—I—Ki angles [symmetry code: (i) -x + 1, -y + 1, -z + 2] in our discrete unit [99.39 (3) and 80.61 (3)°, respectively] are quite different to the values found for the polynuclear [K6I4(dmp)8]2+ cation described by Buttery et al. (2006) [I—K—I = 85.78 (3)–88.77 (3)° and K—I—K = 89.23 (3)–97.39 (3)°].

The geometry around the potassium centre of (II) is best described as distorted trigonal prismatic, with the three imide groups of (I), two bridging iodide ligands and one N atom of the pyridine group occupying the six coordination positions. The K—N bond lengths [2.962 (3)–3.089 (3) Å] are similar to those found for potassium complexes containing the neutral tridentate ligand N,N,N',N'',N''-pentamethyldiethylenetriamine [2.838 (3)–3.066 (5) Å; Althaus et al., 1999; Craig et al., 1996; Fanjul et al., 2007]. Additionally, the K—N bond distances for (II) are longer than those found for the corner-shared double-cube complex [K(µ3-N)(µ3-NH)5{Ti3(η5-C5Me5)33-N)}2] [2.958 (2) Å; Martín et al., 2004] which presents intracube N—K—N angles [average 62.0 (1)°] very similar to those in (II) [60.70 (9)–62.09 (9)°]. The Nimide—K—I and Nimide—K—Npyridine angles are in the range 74.18 (6)–138.2 (1)°, whereas the Npyridine—K—I angles are 92.89 (9) and 124.17 (8)°. The K—Npyridine bond length [2.896 (4) Å] compares well with those found in other potassium complexes containing a pyridine ligand [2.776 (3)–2.926 (2) Å; for example, Boyle et al., 2003].

The Ti—N1 and Ti—Nimide distances [average 1.939 (4) and 1.946 (5) Å, respectively] are slightly longer than those determined for the free ligand [1.913 (8) and 1.929 (8) Å; Roesky et al., 1989] and close to those found for the potassium corner-shared double-cube [1.928 (2) and 1.932 (6) Å; Martín et al., 2004]. The average Nimide—Ti—Nimide angle [104.0 (1)°] is similar to that observed in the potassium double-cube [104.1 (1)°], whereas it is narrower than the same angle in the structure of (I) [107.5 (7)°]. The remainder of the parameters within the tridentate organometallic ligand are similar to these cited complexes.

Related literature top

For related literature, see: Abarca et al. (2000, 2003); Allen (2002); Althaus et al. (1999); Barrett et al. (2006); Boyle et al. (2003); Buttery et al. (2006); Craig et al. (1996); Dehnicke & Strähle (1992); Fanjul et al. (2007); Fei et al. (2003); Fryzuk & Johnson (2000); García-Castro, Gracia, Martín, Mena, Poblet, Sarasa & Yélamos (2005); García-Castro, Martín, Mena, Pérez-Redondo & Yélamos (2001); Herberich et al. (2005); Himmel & Reiher (2006); Kozak & Mountford (2004); Martín et al. (2004); Oyama (1996); Roesky et al. (1989).

Experimental top

All manipulations were carried out under an argon atmosphere using Schlenk line or glove-box techniques. Pyridine was distilled from CaH2. Oven-dried glassware was repeatedly evacuated with a pumping system (ca 10 -3 Torr; 1 Torr = 133.322 Pa) and subsequently filled with inert gas. Samples for IR spectroscopy were prepared as KBr pellets. Microanalysis (CHN) was performed in a Leco CHNS-932 microanalyser.

[{Ti(η5-C5Me5)(µ-NH)}33-N)], (I), and [K(µ4-N)(µ3-NH)2{Ti3(η5-C5Me5)33-N)}]2 were prepared according to the methods of Abarca et al. (2000) and García-Castro et al. (2001), respectively. A pyridine solution (15 ml) of [K(µ4-N)(µ3-NH)2{Ti3(η5-C5Me5)33-N)}]2 (0.20 g, 0.15 mmol) was carefully layered with a pyridine solution (5 ml) of ZnI2 (0.049 g, 0.15 mmol; Aldrich). The system was allowed to equilibrate for 3 d to afford yellow crystals of [(C5H5N)(µ-I)K{(µ3-NH)3Ti3(η5-C5Me5)33-N)}]2, (II) (yield 0.070 g, 27%). The following rational method of synthesis may also be employed. A 100 ml Schlenk flask was charged with (I) (0.30 g, 0.49 mmol), KI (0.080 g, 0.48 mmol; 98%, Aldrich) and pyridine (20 ml). The reaction mixture was stirred at room temperature for 20 h. The resultant pale-yellow solid was isolated by filtration, washed with pyridine (5 ml) and vacuum dried for 3 h to give (II) (yield 0.30 g, 73%). Spectroscopic analysis: IR (KBr, ν, cm-1): 3315 (w), 2907 (m), 2855 (m), 1602 (w), 1584 (m), 1484 (w), 1438 (m), 1376 (m), 1218 (w), 1147 (w), 1069 (w), 1029 (m), 992 (w), 758 (vs), 713 (s), 676 (vs), 661 (vs), 643 (s), 606 (m), 575 (s), 472 (m), 423 (m). Analysis, calculated for C70H106I2K2N10Ti6: C 49.26, H 6.26, N 8.21%; found: C 49.62, H 6.56, N 8.13%.

Refinement top

H atoms bonded to C atoms were introduced at calculated positions and refined using a riding model, with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl groups of the cyclopentadienyl rings, and with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for the pyridine ligand. The H atoms of the imide groups were found in an electron-density difference Fourier map at the final stages of the refinement procedure and were refined freely.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DIRAX/LSQ (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) -x + 1, -y + 1, -z + 2.]
di-µ-iodido-1:1'κ4I-bis[tri-µ3-imido-1:2:3κ3N; 1:2:4κ3N;1:3:4κ3N3-nitrido-2:3:4κ3N- tris[2,3,4(η5)-pentamethylcyclopentadienyl](pyridine-1κN)- tetrahedro-potassiumtrititanium(IV)] top
Crystal data top
[K2Ti6(C10H15)6I2N2(NH)6(C5H5N)2]Z = 1
Mr = 1707.05F(000) = 872
Triclinic, P1Dx = 1.38 Mg m3
a = 11.298 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.346 (2) ÅCell parameters from 82 reflections
c = 18.391 (3) Åθ = 3–19°
α = 101.66 (1)°µ = 1.45 mm1
β = 93.46 (1)°T = 200 K
γ = 115.55 (1)°Prism, yellow
V = 2053.8 (6) Å30.32 × 0.29 × 0.23 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
9150 independent reflections
Radiation source: Enraf–Nonius FR5906034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD rotation images, thick slices scansh = 1414
Absorption correction: multi-scan
(Blessing, 1995)
k = 1414
Tmin = 0.594, Tmax = 0.827l = 2323
34701 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0609P)2 + 0.0977P]
where P = (Fo2 + 2Fc2)/3
9150 reflections(Δ/σ)max = 0.002
433 parametersΔρmax = 1.10 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[K2Ti6(C10H15)6I2N2(NH)6(C5H5N)2]γ = 115.55 (1)°
Mr = 1707.05V = 2053.8 (6) Å3
Triclinic, P1Z = 1
a = 11.298 (2) ÅMo Kα radiation
b = 11.346 (2) ŵ = 1.45 mm1
c = 18.391 (3) ÅT = 200 K
α = 101.66 (1)°0.32 × 0.29 × 0.23 mm
β = 93.46 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
9150 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6034 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.827Rint = 0.045
34701 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 1.10 e Å3
9150 reflectionsΔρmin = 0.82 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.6813 (3)0.4029 (4)0.7540 (2)0.0320 (8)
C120.7232 (3)0.5237 (4)0.8121 (2)0.0318 (8)
C130.7454 (3)0.6325 (4)0.7784 (2)0.0372 (9)
C140.7148 (4)0.5777 (5)0.6979 (2)0.0409 (10)
C150.6754 (4)0.4365 (5)0.6832 (2)0.0387 (10)
C160.6534 (4)0.2661 (4)0.7661 (3)0.0461 (10)
H16A0.59740.19690.72220.069*
H16B0.60950.25310.8090.069*
H16C0.73580.26140.77470.069*
C170.7442 (4)0.5378 (5)0.8963 (2)0.0449 (10)
H17A0.68390.45520.9070.067*
H17B0.72790.61050.9220.067*
H17C0.83410.55650.9130.067*
C180.7979 (4)0.7789 (4)0.8214 (3)0.0557 (13)
H18A0.78010.82840.78930.084*
H18B0.89210.81720.83770.084*
H18C0.75470.78370.86450.084*
C190.7303 (5)0.6565 (6)0.6384 (3)0.0693 (16)
H19A0.72540.73860.65910.104*
H19B0.66050.6030.5960.104*
H19C0.8150.67760.62250.104*
C200.6413 (5)0.3402 (6)0.6067 (3)0.0648 (15)
H20A0.58390.25020.60970.097*
H20B0.72140.34320.59030.097*
H20C0.59680.36580.57140.097*
C210.2430 (4)0.6774 (4)0.6522 (2)0.0345 (9)
C220.3768 (4)0.7727 (4)0.6849 (3)0.0402 (10)
C230.3836 (4)0.8151 (4)0.7622 (3)0.0453 (11)
C240.2547 (5)0.7484 (5)0.7798 (2)0.0482 (11)
C250.1666 (4)0.6633 (4)0.7118 (3)0.0411 (10)
C260.1911 (6)0.6104 (6)0.5688 (3)0.0729 (16)
H26A0.10.54380.5620.109*
H26B0.24370.56760.5490.109*
H26C0.1970.67730.54260.109*
C270.4903 (5)0.8189 (6)0.6401 (4)0.0812 (19)
H27A0.4870.74190.60510.122*
H27B0.57380.86440.67390.122*
H27C0.48160.87960.6130.122*
C280.5051 (6)0.9221 (5)0.8196 (4)0.089 (2)
H28A0.50330.89640.86640.133*
H28B0.50351.00760.82770.133*
H28C0.58490.92940.80090.133*
C290.2150 (8)0.7675 (7)0.8581 (3)0.098 (2)
H29A0.12580.69990.85620.147*
H29B0.21930.85550.87350.147*
H29C0.27490.75890.89360.147*
C300.0164 (5)0.5809 (6)0.7021 (4)0.082 (2)
H30A0.0080.56280.74920.124*
H30B0.01150.49720.6650.124*
H30C0.0260.63080.6860.124*
C310.1070 (4)0.0565 (4)0.6827 (2)0.0396 (10)
C320.1903 (4)0.0680 (4)0.6273 (2)0.0351 (9)
C330.1578 (4)0.1316 (4)0.5758 (2)0.0429 (10)
C340.0503 (4)0.1561 (4)0.5985 (3)0.0485 (12)
C350.0190 (4)0.1097 (4)0.6646 (3)0.0466 (11)
C360.1103 (6)0.0070 (5)0.7477 (3)0.0707 (16)
H36A0.07060.02470.78680.106*
H36B0.20090.01770.76710.106*
H36C0.06150.10350.73010.106*
C370.2952 (5)0.0175 (5)0.6239 (3)0.0650 (15)
H37A0.33730.03480.58070.098*
H37B0.25370.07780.61990.098*
H37C0.36080.06370.66880.098*
C380.2226 (7)0.1628 (5)0.5072 (3)0.083 (2)
H38A0.30110.14980.50920.124*
H38B0.24630.25480.5070.124*
H38C0.16110.10360.46220.124*
C390.0204 (7)0.2174 (5)0.5573 (4)0.106 (3)
H39A0.05330.26540.59280.159*
H39B0.09340.14680.52060.159*
H39C0.0410.27860.53250.159*
C400.0917 (5)0.1113 (6)0.7073 (4)0.090 (2)
H40A0.06540.12210.75980.134*
H40B0.17110.02780.68790.134*
H40C0.10860.18510.70130.134*
N10.3709 (3)0.4524 (3)0.66719 (16)0.0276 (6)
N120.4739 (3)0.6157 (3)0.80365 (17)0.0267 (6)
N130.3862 (3)0.3109 (3)0.76297 (18)0.0295 (7)
N230.1795 (3)0.4169 (3)0.74969 (17)0.0295 (7)
Ti10.51229 (6)0.47830 (6)0.74308 (3)0.02487 (15)
Ti20.32196 (6)0.57712 (6)0.73130 (3)0.02383 (15)
Ti30.24024 (6)0.29469 (6)0.69314 (4)0.02655 (15)
K10.33000 (8)0.44731 (9)0.90362 (5)0.0383 (2)
I10.43572 (3)0.23225 (3)0.973406 (16)0.04420 (11)
H120.527 (4)0.689 (4)0.839 (2)0.028 (10)*
H130.404 (4)0.259 (5)0.778 (2)0.044 (14)*
H230.105 (4)0.397 (4)0.757 (2)0.047 (14)*
C1020.0438 (5)0.3309 (5)0.9240 (3)0.0583 (13)
H1020.02990.41130.91220.07*
C1030.1669 (5)0.2515 (6)0.9407 (3)0.0642 (15)
H1030.23330.27910.94020.077*
C1040.1901 (5)0.1318 (5)0.9579 (3)0.0577 (13)
H1040.27220.07720.9690.069*
C1050.0890 (5)0.0945 (5)0.9583 (3)0.0568 (13)
H1050.1020.01410.96980.068*
C1060.0319 (5)0.1780 (5)0.9414 (3)0.0556 (12)
H1060.0990.15130.94170.067*
N1010.0579 (4)0.2964 (4)0.9243 (2)0.0526 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0298 (19)0.037 (2)0.037 (2)0.0223 (17)0.0044 (15)0.0096 (17)
C120.0239 (18)0.037 (2)0.036 (2)0.0152 (16)0.0014 (15)0.0094 (17)
C130.0229 (18)0.038 (2)0.055 (3)0.0146 (16)0.0103 (16)0.0168 (19)
C140.033 (2)0.059 (3)0.046 (3)0.027 (2)0.0193 (17)0.029 (2)
C150.030 (2)0.059 (3)0.036 (2)0.0264 (19)0.0110 (16)0.013 (2)
C160.048 (2)0.044 (3)0.056 (3)0.031 (2)0.006 (2)0.012 (2)
C170.048 (2)0.054 (3)0.037 (2)0.028 (2)0.0016 (18)0.010 (2)
C180.036 (2)0.032 (2)0.092 (4)0.0090 (19)0.010 (2)0.016 (2)
C190.058 (3)0.106 (5)0.083 (4)0.050 (3)0.034 (3)0.069 (4)
C200.062 (3)0.101 (4)0.042 (3)0.051 (3)0.014 (2)0.005 (3)
C210.044 (2)0.030 (2)0.040 (2)0.0264 (18)0.0023 (17)0.0119 (17)
C220.045 (2)0.036 (2)0.058 (3)0.0268 (19)0.0155 (19)0.029 (2)
C230.056 (3)0.018 (2)0.058 (3)0.0177 (18)0.012 (2)0.0056 (19)
C240.084 (3)0.043 (3)0.044 (3)0.049 (3)0.023 (2)0.018 (2)
C250.034 (2)0.034 (2)0.072 (3)0.0254 (18)0.016 (2)0.025 (2)
C260.117 (5)0.062 (3)0.051 (3)0.055 (3)0.011 (3)0.011 (3)
C270.077 (4)0.084 (4)0.135 (6)0.054 (3)0.063 (4)0.083 (4)
C280.103 (4)0.028 (3)0.105 (5)0.023 (3)0.051 (4)0.010 (3)
C290.194 (7)0.104 (5)0.066 (4)0.117 (5)0.066 (4)0.039 (4)
C300.039 (3)0.058 (3)0.169 (7)0.028 (3)0.024 (3)0.052 (4)
C310.044 (2)0.0203 (19)0.041 (2)0.0038 (17)0.0006 (18)0.0072 (17)
C320.044 (2)0.0186 (18)0.039 (2)0.0134 (16)0.0027 (17)0.0029 (16)
C330.057 (3)0.022 (2)0.031 (2)0.0055 (19)0.0064 (18)0.0011 (17)
C340.046 (2)0.023 (2)0.061 (3)0.0114 (18)0.026 (2)0.001 (2)
C350.031 (2)0.025 (2)0.065 (3)0.0051 (17)0.0008 (19)0.007 (2)
C360.088 (4)0.038 (3)0.067 (3)0.007 (3)0.002 (3)0.026 (3)
C370.068 (3)0.037 (3)0.085 (4)0.031 (2)0.003 (3)0.009 (3)
C380.124 (5)0.048 (3)0.040 (3)0.007 (3)0.009 (3)0.010 (2)
C390.110 (5)0.040 (3)0.135 (6)0.029 (3)0.085 (4)0.004 (3)
C400.034 (3)0.058 (4)0.139 (6)0.006 (2)0.019 (3)0.021 (4)
N10.0357 (16)0.0263 (16)0.0248 (16)0.0165 (13)0.0069 (12)0.0086 (13)
N120.0269 (15)0.0207 (16)0.0300 (17)0.0100 (13)0.0028 (12)0.0036 (13)
N130.0333 (17)0.0279 (17)0.0328 (18)0.0169 (14)0.0040 (13)0.0127 (14)
N230.0274 (17)0.0266 (17)0.0369 (18)0.0128 (14)0.0080 (13)0.0112 (14)
Ti10.0254 (3)0.0251 (3)0.0292 (3)0.0145 (3)0.0063 (2)0.0097 (3)
Ti20.0257 (3)0.0192 (3)0.0291 (3)0.0120 (3)0.0033 (2)0.0076 (3)
Ti30.0287 (3)0.0189 (3)0.0311 (4)0.0110 (3)0.0007 (3)0.0052 (3)
K10.0436 (5)0.0413 (5)0.0328 (5)0.0186 (4)0.0104 (4)0.0156 (4)
I10.05457 (19)0.03754 (17)0.04513 (18)0.02405 (14)0.00893 (12)0.01264 (12)
C1020.067 (3)0.059 (3)0.058 (3)0.031 (3)0.011 (2)0.028 (3)
C1030.061 (3)0.100 (5)0.051 (3)0.051 (3)0.010 (2)0.025 (3)
C1040.044 (3)0.066 (3)0.043 (3)0.007 (2)0.005 (2)0.016 (2)
C1050.069 (3)0.039 (3)0.046 (3)0.013 (2)0.003 (2)0.007 (2)
C1060.055 (3)0.057 (3)0.059 (3)0.034 (3)0.002 (2)0.007 (3)
N1010.052 (2)0.059 (3)0.044 (2)0.020 (2)0.0070 (17)0.0166 (19)
Geometric parameters (Å, º) top
K1—N122.962 (3)C25—C301.521 (6)
K1—N132.986 (3)C25—Ti22.390 (4)
K1—N233.089 (3)C26—H26A0.96
K1—N1012.896 (4)C26—H26B0.96
K1—I13.553 (1)C26—H26C0.96
K1—I1i3.605 (1)C27—H27A0.96
Ti1—N121.949 (3)C27—H27B0.96
Ti1—N131.944 (3)C27—H27C0.96
Ti2—N121.936 (3)C28—H28A0.96
Ti2—N231.950 (3)C28—H28B0.96
Ti3—N131.947 (3)C28—H28C0.96
Ti3—N231.949 (3)C29—H29A0.96
Ti1—N11.936 (3)C29—H29B0.96
Ti2—N11.943 (3)C29—H29C0.96
Ti3—N11.939 (3)C30—H30A0.96
I1—K1i3.6046 (12)C30—H30B0.96
C11—C121.426 (5)C30—H30C0.96
C11—C151.434 (5)C31—C321.416 (6)
C11—C161.511 (6)C31—C351.422 (6)
C11—Ti12.420 (3)C31—C361.521 (6)
C12—C131.427 (6)C31—Ti32.419 (4)
C12—C171.516 (5)C32—C331.419 (6)
C12—Ti12.423 (3)C32—C371.523 (6)
C13—C141.441 (6)C32—Ti32.410 (4)
C13—C181.516 (6)C33—C341.426 (6)
C13—Ti12.404 (4)C33—C381.524 (7)
C14—C151.426 (6)C33—Ti32.367 (4)
C14—C191.520 (6)C34—C351.425 (7)
C14—Ti12.362 (4)C34—C391.521 (6)
C15—C201.507 (6)C34—Ti32.375 (4)
C15—Ti12.371 (4)C35—C401.522 (7)
C16—H16A0.96C35—Ti32.408 (4)
C16—H16B0.96C36—H36A0.96
C16—H16C0.96C36—H36B0.96
C17—H17A0.96C36—H36C0.96
C17—H17B0.96C37—H37A0.96
C17—H17C0.96C37—H37B0.96
C18—H18A0.96C37—H37C0.96
C18—H18B0.96C38—H38A0.96
C18—H18C0.96C38—H38B0.96
C19—H19A0.96C38—H38C0.96
C19—H19B0.96C39—H39A0.96
C19—H19C0.96C39—H39B0.96
C20—H20A0.96C39—H39C0.96
C20—H20B0.96C40—H40A0.96
C20—H20C0.96C40—H40B0.96
C21—C251.428 (6)C40—H40C0.96
C21—C221.426 (6)C102—N1011.364 (6)
C21—C261.520 (6)C102—C1031.386 (7)
C21—Ti22.366 (4)C102—H1020.93
C22—C231.391 (6)C103—C1041.375 (8)
C22—C271.524 (6)C103—H1030.93
C22—Ti22.383 (4)C104—C1051.378 (7)
C23—C241.416 (6)C104—H1040.93
C23—C281.531 (6)C105—C1061.384 (7)
C23—Ti22.410 (4)C105—H1050.93
C24—C251.422 (6)C106—N1011.353 (6)
C24—C291.535 (7)C106—H1060.93
C24—Ti22.410 (4)
N12—K1—N1362.09 (9)C34—C39—H39B109.5
N12—K1—N2360.70 (9)H39A—C39—H39B109.5
N13—K1—N2360.71 (9)C34—C39—H39C109.5
N12—K1—I1123.11 (6)H39A—C39—H39C109.5
N12—K1—I1i74.18 (6)H39B—C39—H39C109.5
N12—K1—N101138.2 (1)C35—C40—H40A109.5
N13—K1—I179.45 (7)C35—C40—H40B109.5
N13—K1—I1i124.46 (7)H40A—C40—H40B109.5
N13—K1—N101111.3 (1)C35—C40—H40C109.5
N23—K1—I1132.43 (7)H40A—C40—H40C109.5
N23—K1—I1i123.68 (6)H40B—C40—H40C109.5
N23—K1—N10179.8 (1)N1—Ti1—C14107.54 (13)
N101—K1—I192.89 (9)N13—Ti1—C14142.90 (15)
N101—K1—I1i124.17 (8)N12—Ti1—C14111.06 (15)
I1—K1—I1i99.39 (3)N1—Ti1—C15109.24 (13)
K1—I1—K1i80.61 (3)N13—Ti1—C15108.10 (15)
N12—Ti1—N13104.0 (1)N12—Ti1—C15145.14 (14)
N12—Ti2—N23103.9 (1)C14—Ti1—C1535.07 (15)
N13—Ti3—N23104.1 (1)N1—Ti1—C13134.66 (13)
N1—Ti1—N1285.8 (1)N13—Ti1—C13138.27 (14)
N1—Ti1—N1386.4 (1)N12—Ti1—C1388.70 (13)
N1—Ti2—N1286.0 (1)C14—Ti1—C1335.19 (14)
N1—Ti2—N2385.9 (1)C15—Ti1—C1358.10 (14)
N1—Ti3—N1386.3 (1)N1—Ti1—C11137.95 (13)
N1—Ti3—N2386.0 (1)N13—Ti1—C1188.39 (13)
Ti1—N1—Ti294.0 (1)N12—Ti1—C11135.74 (13)
Ti1—N1—Ti393.7 (1)C14—Ti1—C1157.97 (14)
Ti2—N1—Ti394.1 (1)C15—Ti1—C1134.83 (13)
Ti1—N12—Ti293.8 (1)C13—Ti1—C1157.46 (13)
Ti1—N12—K195.2 (1)N1—Ti1—C12165.05 (12)
Ti1—N12—H12130 (2)N13—Ti1—C12103.92 (13)
Ti2—N12—K198.3 (1)N12—Ti1—C12101.79 (13)
Ti2—N12—H12132 (2)C14—Ti1—C1257.79 (13)
K1—N12—H1298 (2)C15—Ti1—C1257.57 (13)
Ti1—N13—Ti393.2 (1)C13—Ti1—C1234.39 (13)
Ti1—N13—K194.5 (1)C11—Ti1—C1234.26 (13)
Ti1—N13—H13126 (3)N1—Ti1—Ti343.20 (9)
Ti3—N13—K197.9 (1)N13—Ti1—Ti343.43 (10)
Ti3—N13—H13134 (3)N12—Ti1—Ti393.33 (9)
K1—N13—H13101 (3)C14—Ti1—Ti3141.62 (11)
Ti2—N23—Ti393.6 (1)C15—Ti1—Ti3119.41 (11)
Ti2—N23—K194.0 (1)C13—Ti1—Ti3176.81 (11)
Ti2—N23—H23134 (3)C11—Ti1—Ti3121.97 (10)
Ti3—N23—K194.6 (1)C12—Ti1—Ti3146.96 (10)
Ti3—N23—H23126 (3)N1—Ti1—Ti243.09 (9)
K1—N23—H23103 (3)N13—Ti1—Ti293.70 (10)
C12—C11—C15107.6 (3)N12—Ti1—Ti242.92 (9)
C12—C11—C16125.4 (4)C14—Ti1—Ti2120.24 (11)
C15—C11—C16127.0 (4)C15—Ti1—Ti2144.51 (10)
C12—C11—Ti173.0 (2)C13—Ti1—Ti2120.33 (10)
C15—C11—Ti170.7 (2)C11—Ti1—Ti2177.79 (10)
C16—C11—Ti1123.4 (3)C12—Ti1—Ti2144.08 (10)
C11—C12—C13108.7 (3)Ti3—Ti1—Ti260.22 (3)
C11—C12—C17126.7 (4)N1—Ti1—K198.39 (9)
C13—C12—C17124.6 (4)N13—Ti1—K153.79 (10)
C11—C12—Ti172.76 (19)N12—Ti1—K153.10 (9)
C13—C12—Ti172.1 (2)C14—Ti1—K1148.83 (11)
C17—C12—Ti1122.1 (2)C15—Ti1—K1146.36 (10)
C12—C13—C14107.5 (4)C13—Ti1—K1113.64 (10)
C12—C13—C18124.7 (4)C11—Ti1—K1111.70 (9)
C14—C13—C18127.7 (4)C12—Ti1—K196.44 (9)
C12—C13—Ti173.5 (2)Ti3—Ti1—K169.54 (3)
C14—C13—Ti170.8 (2)Ti2—Ti1—K169.09 (2)
C18—C13—Ti1123.3 (3)N12—Ti2—C21141.77 (13)
C15—C14—C13107.9 (3)N1—Ti2—C21107.24 (13)
C15—C14—C19125.3 (4)N23—Ti2—C21112.55 (14)
C13—C14—C19126.6 (4)N12—Ti2—C22106.91 (14)
C15—C14—Ti172.8 (2)N1—Ti2—C22110.02 (14)
C13—C14—Ti174.0 (2)N23—Ti2—C22146.05 (14)
C19—C14—Ti1122.2 (3)C21—Ti2—C2234.96 (14)
C14—C15—C11108.2 (3)N12—Ti2—C25139.28 (15)
C14—C15—C20126.1 (4)N1—Ti2—C25133.84 (15)
C11—C15—C20125.6 (4)N23—Ti2—C2589.61 (14)
C14—C15—Ti172.1 (2)C21—Ti2—C2534.94 (14)
C11—C15—Ti174.4 (2)C22—Ti2—C2557.50 (13)
C20—C15—Ti1122.1 (3)N12—Ti2—C2388.62 (14)
C11—C16—H16A109.5N1—Ti2—C23138.12 (15)
C11—C16—H16B109.5N23—Ti2—C23135.51 (15)
H16A—C16—H16B109.5C21—Ti2—C2357.35 (14)
C11—C16—H16C109.5C22—Ti2—C2333.73 (15)
H16A—C16—H16C109.5C25—Ti2—C2357.17 (14)
H16B—C16—H16C109.5N12—Ti2—C24104.82 (15)
C12—C17—H17A109.5N1—Ti2—C24164.61 (14)
C12—C17—H17B109.5N23—Ti2—C24101.76 (15)
H17A—C17—H17B109.5C21—Ti2—C2457.55 (14)
C12—C17—H17C109.5C22—Ti2—C2456.71 (15)
H17A—C17—H17C109.5C25—Ti2—C2434.46 (15)
H17B—C17—H17C109.5C23—Ti2—C2434.17 (16)
C13—C18—H18A109.5N12—Ti2—Ti143.28 (9)
C13—C18—H18B109.5N1—Ti2—Ti142.90 (9)
H18A—C18—H18B109.5N23—Ti2—Ti193.21 (10)
C13—C18—H18C109.5C21—Ti2—Ti1140.46 (10)
H18A—C18—H18C109.5C22—Ti2—Ti1119.09 (10)
H18B—C18—H18C109.5C25—Ti2—Ti1175.37 (11)
C14—C19—H19A109.5C23—Ti2—Ti1122.22 (11)
C14—C19—H19B109.5C24—Ti2—Ti1147.69 (12)
H19A—C19—H19B109.5N12—Ti2—Ti393.17 (9)
C14—C19—H19C109.5N1—Ti2—Ti342.90 (9)
H19A—C19—H19C109.5N23—Ti2—Ti343.21 (10)
H19B—C19—H19C109.5C21—Ti2—Ti3121.19 (10)
C15—C20—H20A109.5C22—Ti2—Ti3145.85 (11)
C15—C20—H20B109.5C25—Ti2—Ti3120.88 (10)
H20A—C20—H20B109.5C23—Ti2—Ti3178.05 (10)
C15—C20—H20C109.5C24—Ti2—Ti3144.27 (12)
H20A—C20—H20C109.5Ti1—Ti2—Ti359.72 (2)
H20B—C20—H20C109.5N12—Ti2—K151.09 (9)
C25—C21—C22107.1 (4)N1—Ti2—K195.81 (9)
C25—C21—C26126.8 (4)N23—Ti2—K154.90 (9)
C22—C21—C26126.0 (4)C21—Ti2—K1153.33 (10)
C25—C21—Ti273.4 (2)C22—Ti2—K1145.50 (11)
C22—C21—Ti273.2 (2)C25—Ti2—K1118.42 (11)
C26—C21—Ti2121.5 (3)C23—Ti2—K1112.49 (11)
C23—C22—C21108.9 (4)C24—Ti2—K199.51 (11)
C23—C22—C27127.2 (5)Ti1—Ti2—K166.19 (2)
C21—C22—C27123.9 (4)Ti3—Ti2—K168.20 (3)
C23—C22—Ti274.2 (2)N1—Ti3—C33102.49 (13)
C21—C22—Ti271.9 (2)N13—Ti3—C33121.54 (15)
C27—C22—Ti2120.6 (3)N23—Ti3—C33133.87 (15)
C22—C23—C24108.4 (4)N1—Ti3—C34114.67 (15)
C22—C23—C28127.4 (5)N13—Ti3—C34149.01 (14)
C24—C23—C28124.1 (5)N23—Ti3—C34100.17 (15)
C22—C23—Ti272.1 (2)C33—Ti3—C3435.00 (16)
C24—C23—Ti272.9 (2)N1—Ti3—C32122.40 (13)
C28—C23—Ti2124.0 (3)N13—Ti3—C3292.55 (14)
C23—C24—C25108.1 (4)N23—Ti3—C32148.31 (14)
C23—C24—C29126.4 (5)C33—Ti3—C3234.56 (14)
C25—C24—C29125.5 (5)C34—Ti3—C3257.28 (14)
C23—C24—Ti272.9 (2)N1—Ti3—C35148.16 (15)
C25—C24—Ti272.0 (2)N13—Ti3—C35124.88 (16)
C29—C24—Ti2122.3 (3)N23—Ti3—C3591.74 (14)
C24—C25—C21107.6 (3)C33—Ti3—C3557.79 (16)
C24—C25—C30126.9 (5)C34—Ti3—C3534.66 (16)
C21—C25—C30125.4 (5)C32—Ti3—C3556.85 (14)
C24—C25—Ti273.5 (2)N1—Ti3—C31156.50 (14)
C21—C25—Ti271.6 (2)N13—Ti3—C3194.16 (14)
C30—C25—Ti2124.3 (3)N23—Ti3—C31116.50 (14)
C21—C26—H26A109.5C33—Ti3—C3157.55 (14)
C21—C26—H26B109.5C34—Ti3—C3157.37 (14)
H26A—C26—H26B109.5C32—Ti3—C3134.10 (14)
C21—C26—H26C109.5C35—Ti3—C3134.26 (15)
H26A—C26—H26C109.5N1—Ti3—Ti143.11 (9)
H26B—C26—H26C109.5N13—Ti3—Ti143.35 (10)
C22—C27—H27A109.5N23—Ti3—Ti193.52 (10)
C22—C27—H27B109.5C33—Ti3—Ti1123.62 (12)
H27A—C27—H27B109.5C34—Ti3—Ti1153.18 (13)
C22—C27—H27C109.5C32—Ti3—Ti1116.55 (10)
H27A—C27—H27C109.5C35—Ti3—Ti1168.10 (12)
H27B—C27—H27C109.5C31—Ti3—Ti1134.54 (11)
C23—C28—H28A109.5N1—Ti3—Ti243.00 (9)
C23—C28—H28B109.5N13—Ti3—Ti293.50 (10)
H28A—C28—H28B109.5N23—Ti3—Ti243.22 (10)
C23—C28—H28C109.5C33—Ti3—Ti2131.53 (10)
H28A—C28—H28C109.5C34—Ti3—Ti2117.45 (11)
H28B—C28—H28C109.5C32—Ti3—Ti2163.59 (10)
C24—C29—H29A109.5C35—Ti3—Ti2129.35 (11)
C24—C29—H29B109.5C31—Ti3—Ti2159.66 (11)
H29A—C29—H29B109.5Ti1—Ti3—Ti260.06 (2)
C24—C29—H29C109.5N1—Ti3—K195.36 (9)
H29A—C29—H29C109.5N13—Ti3—K151.42 (10)
H29B—C29—H29C109.5N23—Ti3—K154.48 (9)
C25—C30—H30A109.5C33—Ti3—K1160.53 (10)
C25—C30—H30B109.5C34—Ti3—K1140.15 (13)
H30A—C30—H30B109.5C32—Ti3—K1127.31 (10)
C25—C30—H30C109.5C35—Ti3—K1109.04 (12)
H30A—C30—H30C109.5C31—Ti3—K1103.25 (10)
H30B—C30—H30C109.5Ti1—Ti3—K166.02 (3)
C32—C31—C35107.8 (4)Ti2—Ti3—K167.58 (3)
C32—C31—C36124.9 (4)N101—K1—Ti1136.19 (8)
C35—C31—C36127.3 (4)N12—K1—Ti131.75 (6)
C32—C31—Ti372.6 (2)N13—K1—Ti131.69 (6)
C35—C31—Ti372.4 (2)N23—K1—Ti162.05 (6)
C36—C31—Ti3122.4 (3)I1—K1—Ti197.43 (3)
C31—C32—C33108.7 (4)I1i—K1—Ti195.95 (3)
C31—C32—C37124.8 (4)N101—K1—Ti2107.91 (8)
C33—C32—C37126.4 (4)N12—K1—Ti230.57 (6)
C31—C32—Ti373.3 (2)N13—K1—Ti261.99 (7)
C33—C32—Ti371.1 (2)N23—K1—Ti231.09 (6)
C37—C32—Ti3122.4 (3)I1—K1—Ti2140.55 (3)
C32—C33—C34107.4 (4)I1i—K1—Ti295.99 (3)
C32—C33—C38126.1 (5)Ti1—K1—Ti244.717 (18)
C34—C33—C38126.4 (5)N101—K1—Ti391.75 (8)
C32—C33—Ti374.4 (2)N12—K1—Ti361.62 (6)
C34—C33—Ti372.8 (2)N13—K1—Ti330.64 (6)
C38—C33—Ti3120.3 (3)N23—K1—Ti330.90 (6)
C33—C34—C35108.1 (4)I1—K1—Ti3103.91 (3)
C33—C34—C39125.4 (5)I1i—K1—Ti3135.79 (3)
C35—C34—C39126.5 (5)Ti1—K1—Ti344.441 (19)
C33—C34—Ti372.2 (2)Ti2—K1—Ti344.217 (19)
C35—C34—Ti373.9 (2)N101—K1—K1i118.42 (8)
C39—C34—Ti3121.0 (3)N12—K1—K1i101.95 (7)
C31—C35—C34107.9 (4)N13—K1—K1i107.45 (7)
C31—C35—C40125.4 (5)N23—K1—K1i161.73 (7)
C34—C35—C40126.6 (5)I1—K1—K1i50.19 (2)
C31—C35—Ti373.3 (2)I1i—K1—K1i49.21 (2)
C34—C35—Ti371.4 (2)Ti1—K1—K1i100.37 (3)
C40—C35—Ti3122.7 (3)Ti2—K1—K1i132.37 (3)
C31—C36—H36A109.5Ti3—K1—K1i137.95 (4)
C31—C36—H36B109.5N101—C102—C103123.0 (5)
H36A—C36—H36B109.5N101—C102—H102118.5
C31—C36—H36C109.5C103—C102—H102118.5
H36A—C36—H36C109.5C104—C103—C102119.6 (5)
H36B—C36—H36C109.5C104—C103—H103120.2
C32—C37—H37A109.5C102—C103—H103120.2
C32—C37—H37B109.5C103—C104—C105118.5 (4)
H37A—C37—H37B109.5C103—C104—H104120.7
C32—C37—H37C109.5C105—C104—H104120.7
H37A—C37—H37C109.5C106—C105—C104119.3 (5)
H37B—C37—H37C109.5C106—C105—H105120.4
C33—C38—H38A109.5C104—C105—H105120.4
C33—C38—H38B109.5N101—C106—C105123.6 (5)
H38A—C38—H38B109.5N101—C106—H106118.2
C33—C38—H38C109.5C105—C106—H106118.2
H38A—C38—H38C109.5C106—N101—C102116.0 (4)
H38B—C38—H38C109.5C106—N101—K1114.1 (3)
C34—C39—H39A109.5C102—N101—K1129.7 (3)
Symmetry code: (i) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[K2Ti6(C10H15)6I2N2(NH)6(C5H5N)2]
Mr1707.05
Crystal system, space groupTriclinic, P1
Temperature (K)200
a, b, c (Å)11.298 (2), 11.346 (2), 18.391 (3)
α, β, γ (°)101.66 (1), 93.46 (1), 115.55 (1)
V3)2053.8 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.32 × 0.29 × 0.23
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.594, 0.827
No. of measured, independent and
observed [I > 2σ(I)] reflections
34701, 9150, 6034
Rint0.045
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 0.98
No. of reflections9150
No. of parameters433
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.10, 0.82

Computer programs: COLLECT (Nonius, 1998), DIRAX/LSQ (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
K1—N122.962 (3)Ti2—N121.936 (3)
K1—N132.986 (3)Ti2—N231.950 (3)
K1—N233.089 (3)Ti3—N131.947 (3)
K1—N1012.896 (4)Ti3—N231.949 (3)
K1—I13.553 (1)Ti1—N11.936 (3)
K1—I1i3.605 (1)Ti2—N11.943 (3)
Ti1—N121.949 (3)Ti3—N11.939 (3)
Ti1—N131.944 (3)
N12—K1—N1362.09 (9)N1—Ti1—N1285.8 (1)
N12—K1—N2360.70 (9)N1—Ti1—N1386.4 (1)
N13—K1—N2360.71 (9)N1—Ti2—N1286.0 (1)
N12—K1—I1123.11 (6)N1—Ti2—N2385.9 (1)
N12—K1—I1i74.18 (6)N1—Ti3—N1386.3 (1)
N12—K1—N101138.2 (1)N1—Ti3—N2386.0 (1)
N13—K1—I179.45 (7)Ti1—N1—Ti294.0 (1)
N13—K1—I1i124.46 (7)Ti1—N1—Ti393.7 (1)
N13—K1—N101111.3 (1)Ti2—N1—Ti394.1 (1)
N23—K1—I1132.43 (7)Ti1—N12—Ti293.8 (1)
N23—K1—I1i123.68 (6)Ti1—N12—K195.2 (1)
N23—K1—N10179.8 (1)Ti2—N12—K198.3 (1)
N101—K1—I192.89 (9)Ti1—N13—Ti393.2 (1)
N101—K1—I1i124.17 (8)Ti1—N13—K194.5 (1)
I1—K1—I1i99.39 (3)Ti3—N13—K197.9 (1)
K1—I1—K1i80.61 (3)Ti2—N23—Ti393.6 (1)
N12—Ti1—N13104.0 (1)Ti2—N23—K194.0 (1)
N12—Ti2—N23103.9 (1)Ti3—N23—K194.6 (1)
N13—Ti3—N23104.1 (1)
Symmetry code: (i) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds