research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Structure of 2-chloro-N-(p-tol­yl)propanamide

CROSSMARK_Color_square_no_text.svg

aSynthesis and Solid State Pharmaceutical Centre (SSPC), School of Chemical and, Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland, and bSchool of Chemistry, Trinity College Dublin, University of Dublin, College Green, Dublin 2, Ireland
*Correspondence e-mail: roderick.jones@ucd.ie

Edited by P. Dastidar, Indian Association for the Cultivation of Science, India (Received 15 August 2018; accepted 1 October 2018; online 16 October 2018)

Two independent samples of the title compound, alternatively 2-chloro-N-(4-methylphenyl)prop­an­amide, C10H12ClNO, 1, were studied using Cu Kα, 1a, and Mo Kα, 1b, radiation as part of a continuous crystallization study. The mol­ecule crystallizes with disorder in the Cl/terminal methyl positions [occupancies for the major disorder component of 0.783 (2) in 1a and and 0.768 (2) in 1b] and exhibits N—C bond lengths of 1.3448 (19), 1.344 (2) Å, C=O bond lengths of 1.2233 (18) and 1.2245 (19) Å and an acetamide moiety C—N—C—C torsion angle of 179.00 (13), 178.97 (14) ° for 1a and 1b, respectively. In the crystal, chains along the a axis are formed via N—H⋯O hydrogen bonds between acetamide groups, as well as C—H⋯O inter­actions. These chains arrange themselves into parallel running stacks which display weak C—Cl⋯O=C halogen bonding as well as weak C—H⋯π inter­actions.

1. Chemical context

The introduction of continuous processing has been a paradigm shift in safety and productivity in the synthesis and isolation of active pharmaceutical ingredients (APIs) in both industry and academic research (Mascia et al., 2013[Mascia, S., Heider, P. L., Zhang, H., Lakerveld, R., Benyahia, B., Barton, P. I., Braatz, R. D., Cooney, C. L., Evans, J. M. B., Jamison, T. F., Jensen, K. F., Myerson, A. S. & Trout, B. L. (2013). Angew. Chem. Int. Ed. 52, 12359-12363.] and Lee et al., 2015[Lee, S. L., O'Connor, T. F., Yang, X., Cruz, C. N., Chatterjee, S., Madurawe, R. D., Moore, C. M. V., Yu, L. X. & Woodcock, J. (2015). J. Pharm. Innov. 10, 191-199.] and references contained therein). A major focus of our current research is developing design and optimization strategies to deliver robust, scalable and tunable continuous processes for API manufacturing, which can deliver specific API characteristics (Power et al., 2015[Power, G., Hou, G., Kamaraju, V. K., Morris, G., Zhao, Y. & Glennon, B. (2015). Chem. Eng. Sci. 133, 125-139.]; Zhao et al., 2015[Zhao, Y., Kamaraju, V. K., Hou, G., Power, G., Donnellan, P. & Glennon, B. (2015). Chem. Eng. Sci. 133, 106-115.]; O'Mahony et al., 2017[O'Mahony, R. M., Lynch, D., Hayes, H. L. D., Ní Thuama, E., Donnellan, P., Jones, R. C., Glennon, B., Collins, S. G. & Maguire, A. R. (2017). Eur. J. Org. Chem. pp. 6533-6539.]; Simon et al., 2018[Simon, M., Donnellan, P., Glennon, B. & Jones, R. C. (2018). Chem. Eng. Technol. 41, 921-927.]). As part of this work we have been examining the continuous crystallization of 2-chloro-N-(p-tol­yl)propanamide, 1, a key inter­mediate of α-thio-β-chloro­acryl­amides, a class of compound that has shown importance in the literature as synthetically viable APIs (Murphy et al., 2007[Murphy, M., Lynch, D., Schaeffer, M., Kissane, M., Chopra, J., O'Brien, E., Ford, A., Ferguson, G. & Maguire, A. R. (2007). Org. Biomol. Chem. 5, 1228-1241.]; Foley et al., 2011[Foley, D. A., Doecke, C. W., Buser, J. Y., Merritt, J. M., Murphy, L., Kissane, M., Collins, S. G., Maguire, A. R. & Kaerner, A. (2011). J. Org. Chem. 76, 9630-9640.]; Kissane & Maguire, 2011[Kissane, M. & Maguire, A. R. (2011). Synlett, pp. 1212-1232.]) that can undergo transformations; such as Diels–Alder cyclo­additions (Kissane et al., 2010a[Kissane, M., Lynch, D., Chopra, J., Lawrence, S. E. & Maguire, A. R. (2010a). Org. Biomol. Chem. 8, 5602-5613.]), 1,3-dipolar cyclo­additions (Kissane et al., 2010b[Kissane, M., Lawrence, S. E. & Maguire, A. R. (2010b). Tetrahedron, 66, 4564-4572.]), sulfide group (Kissane et al., 2010c[Kissane, M., Lawrence, S. E. & Maguire, A. R. (2010c). Tetrahedron Asymmetry, 21, 871-884.],d[Kissane, M., Murphy, M., Lawrence, S. E. & Maguire, A. R. (2010d). Tetrahedron Asymmetry, 21, 2550-2558.]) and nucleophilic substitution (Kissane et al., 2011[Kissane, M., Murphy, M., O'Brien, E., Chopra, J., Murphy, L., Collins, S. G., Lawrence, S. E. & Maguire, A. R. (2011). Org. Biomol. Chem. 9, 2452-2472.]). To design and understand a continuous crystallization process for 1, an extensive solubility study was conducted examining the compound's solubility characteristics in common organic solvents (Pascual et al., 2017[Pascual, G. K., Donnellan, P., Glennon, B., Kamaraju, V. K. & Jones, R. C. (2017). J. Chem. Eng. Data, 62, 3193-3205.]). During this study, an improved bi-phasic synthesis was developed and crystals from two different continuous crystallization process runs were isolated to detect and characterize any variability of the crystalline material produced. These samples, 1a and 1b, of 2-chloro-N-(p-tol­yl)propanamide, see Fig. 1[link], are described herein.

[Scheme 1]
[Figure 1]
Figure 1
Mol­ecular structures 1a and 1b showing the atom-numbering scheme. Only the major occupancy disorder components [1a 0.793 (4) and 1b 0.768 (2)] of the Cl1 and C12 positions are shown. Displacement ellipsoids drawn at the 50% probability level.

2. Structural commentary

Compound 1a and 1b both crystallize with one mol­ecule in the asymmetric unit in the ortho­rhom­bic space group Pbca and exhibit normal bond lengths and angles compared to similar compounds (2-chloro-N-phenyl­propanamide, IQOHOL, Gowda et al., 2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A Phys. Sci. 58A, 225-230.] and references below). The disorder observed in 1 between the meth­yl/chloro positions is similarly displayed in IQOHOL. The aryl ring-to-amide backbone plane is twisted with a C1—C7—N8—C9 torsion angle of 45.3 (2) in 1a and 45.6 (2)° in 1b (Table 1[link]).

Table 1
Selected geometric parameters (Å, °) for 1a, 1b and IQOHOL

  1a 1b IQOHOLa
Cl1—C11 1.7861 (17) 1.7845 (18) 1.785 (16)
O10—C9 1.2233 (18) 1.2245 (19) 1.219 (15)
N8—C7 1.4226 (19) 1.421 (2) 1.421 (16)
N8—C9 1.3448 (19) 1.344 (2) 1.341 (16)
C9—C11 1.524 (2) 1.523 (2) 1.522 (18)
O10—C9—C11—C12 −60.4 (5) −60.2 (6) 61.35 (1)
C9—N8—C7—C1 45.3 (2) 45.6 (2) −44.19 (1)
Note: (a) Equivalent geometric parameters are given for IQOHOL as atom labels do not matchthose of 1a and 1b.

An overlay of the mol­ecular structures of 1a and 1b without inversion and an r.m.s. fit of 0.040 Å is shown in Fig. 2[link]. The data, collected using different sources (Cu Kα for 1a and Mo Kα for 1b), show remarkable similarity even down to the hydrogen-bonding metrics seen in Tables 2[link] and 3[link]. Data were collected on crystals of a similar size and at 100 K. As can be seen in Table 1[link], a comparison between several bond lengths and angles in 1a, 1b and IQOHOL show how the metrics are similar, even with data that was collected at room temperature (IQOHOL). The disorder occupancy is different in 1a, 1b and in IQOHOL, but to no great extent with the occupancy of the major component being 0.783 (2) for 1a, 0.768 (2) for 1b and for 0.899 IQOHOL.

Table 2
Hydrogen-bond geometry (Å, °) for 1a[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O10i 0.80 (2) 2.03 (2) 2.8295 (16) 174.8 (17)
C11—H11⋯O10i 1.00 2.48 3.3574 (18) 146
C12—H12ECg1ii 0.98 2.61 3.503 (11) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1.

Table 3
Hydrogen-bond geometry (Å, °) for 1b[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯O10i 0.83 (2) 2.00 (2) 2.8255 (18) 174.2 (19)
C11—H11⋯O10i 1.00 2.48 3.353 (2) 146
C12—H12ECg1ii 0.98 2.62 3.493 (13) 149
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
Overlay image of both mol­ecules of 2-chloro-N-(p-tol­yl)propanamide (1a is shown in red and 1b in green) with an r.m.s. fit of 0.040 Å (no inversion). Displacement ellipsoids shown at the 50% probability level. Selected atom numbering only for clarity.

3. Supra­molecular features

In the extended structure there is, as expected, a strong amide hydrogen bond, between the N—H group and the ketone oxygen (N8⋯O10i, see Tables 2[link] and 3[link]). This feature can be seen in many of the known phenyl­acetamides and the donor–acceptor distance in similar congeners below range from 2.8175 (8) Å (XIHMOQ; Gowda et al., 2001[Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A Phys. Sci. 56A, 386-394.]) to the longer inter­action in CEXPOK of 3.2576 (6) Å. The distance in IQOHOL is 2.8632 (6) Å, slightly longer than that found in 1.

There is also a weaker inter­action between the methine group and the ketone (C11—H11⋯O10i, see Tables 2[link] and 3[link]). This type of chelate hydrogen bonding is also seen in IQOHOL and XIHMOQ [DA = 3.2699 (8) and 2.8632 (6) Å respectively)] The head-to-tail packing and the chelate hydrogen bonding allows an approximately linear arrangement of 1, forming ribbons propagating along the [100] direction, see Fig. 3[link]. Only IQOHOL and XIHMOQ exhibit similar characteristics with head-to-tail and approximately linear packing [0.21367 (6) and 3.5472 (14)° respectively, as measured by the amide OCN and aryl carbon plane normal to plane normal angle, compared to 1.80942 (8)° in 1a and 1.71940 (13)° in 1b).

[Figure 3]
Figure 3
Hydrogen-bonding network represented by dotted lines of one layer in the cell viewed normal to the (001) plane. Displacement ellipsoids are shown at the 50% probability level.

There are other supra­molecular inter­actions that assist in the packing of 1. Complimenting the hydrogen bonding above, there is a weak C—Cl⋯Oii=Cii halogen bond between the terminal chlorine and the ketone, with distances of 1a, 3.1761 (14) and 1b, 3.1734 (18) Å [symmetry code: (ii) [{3\over 2}] − x, −[{1\over 2}] + y, z]. A very weak example of a C—H⋯πiii inter­action is also present in 1, with the methyl group C12 directed towards the centroid of ring C1–C6 (see Tables 2[link] and 3[link]).

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.39, February 2018 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar systems (R-PhNHCOCH–, where R = H, methyl, halogen) yielded several similar substituted phenyl­acetamides: CLACTN (Subramanian, 1966[Subramanian, E. (1966). Z. Kristallogr. 123, 222-234.]), CLACTN01 (Gowda et al., 2007a[Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3392.]), CLACTN02 (Naumov et al., 2007[Naumov, P., Sakurai, K., Tanaka, M. & Hara, H. (2007). J. Phys. Chem. B, 111, 10373-10378.]), CLACTN03 [Coles (née Huth) et al., 2008[Coles (née Huth), S. L., Threlfall, T. L. & Hursthouse, M. B. (2008). University of Southampton, Crystal Structure Report Archive, 1387.]], CEXPOK (Banks et al., 1999[Banks, J. W., Batsanov, A. S., Howard, J. A. K., O'Hagan, D., Rzepa, H. S. & Martin-Santamaria, S. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2409-2411.]), FOWYIA (Gowda et al., 2009[Gowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.]), IFALIK (Frohberg et al., 2002[Frohberg, P., Drutkowski, G., Wagner, C. & Lichtenberger, O. (2002). J. Chem. Res. (S), pp. 13-14.]), IQOHOL (Gowda et al., 2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A Phys. Sci. 58A, 225-230.]), JODQEZ (Si-shun Kang et al., 2008[Kang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194.]), NIYYEB (Pathak et al., 2014[Pathak, S., Kundu, A. & Pramanik, A. (2014). RSC Adv. 4, 10180-10187.]), NUWQUT (Hursthouse et al., 2009[Hursthouse, M. B., Huth, S. L. & Threlfall, T. L. (2009). Org. Process Res. Dev. 13, 1231-1240.]), NUZBUF (Pal et al., 1998[Pal, A. K., Bera, A. K. & Banerjee, A. (1998). Z. Kristallogr. New Cryst. Struct. 213, 249-.]), NUZBUF01 (Gowda et al., 2001[Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A Phys. Sci. 56A, 386-394.]), RIYWIG (Gowda et al., 2008[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.]), SALYIN (Chekhlov et al., 1987[Chekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1987). Russ. Chem. Bull. 36, 1198-1201.]), WINSUI (Gowda et al., 2007b[Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.]), XEKNEJ (Gupta et al., 2017[Gupta, E., Kant, R. & Mohanan, K. (2017). Org. Lett. 19, 6016-6019.]), XICMAY (Gowda et al., 2007c[Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2333-o2334.]), XIHMIK and XIHMOQ (Gowda et al., 2001[Gowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A Phys. Sci. 56A, 386-394.]) and XIQNIV (Staples & Vidnovio, 2007[Staples, R. J. & Vidnovio, N. (2007). Z. Kristallogr. New Cryst. Struct. 222, 269-270.]).

5. Synthesis and crystallization

A solution of α-chloro­propionyl chloride (1.16 mL, 12mmol 1.2 equiv.) in toluene (30 mL) was added dropwise (with extreme caution) to a vigorously stirred bi-phasic suspension of p-toluidine (1.07 g, 10 mmol) in toluene (50 mL) and 40 mL of aqueous NaOH (1.20 g, 30 mmol, 3 equiv.) at 273 K. After the addition was complete, the biphasic suspension was warmed to room temperature and stirred vigorously for 1 h. The organic phase was separated, and the aqueous layer extracted with ethyl acetate (3 × 15 mL). The organic layers were then combined, dried with Na2SO4, filtered and the solvent removed under vacuum. The resulting off-white solid was collected and washed with thoroughly with cold cyclo­hexane (1.89 g, 96%). Single crystals for X-ray analysis were grown by slow evaporation of a toluene solution at room temperature. Spectroscopic data for the obtained product matched that reported in the literature (Pascual et al., 2017[Pascual, G. K., Donnellan, P., Glennon, B., Kamaraju, V. K. & Jones, R. C. (2017). J. Chem. Eng. Data, 62, 3193-3205.]).

1H NMR (300 MHz, CDCl3): δ 8.21 (s, 1H), 7.42 (d, J = 8.2 Hz, 2H), 7.15 (d, J = 8.2 Hz, 2H), 4.54 (q, J = 7.1 Hz, 1H) 2.13 (s, 3H), 1.83 (d, J = 7.1 Hz, 3H). 13C NMR (100 MHz, CDCl3): δ 166.9 134.4, 134.0, 129.1, 119.7, 55.9, 22.4, 20.5. MS (EI) m/z 197 [M]+, [12C10H1235Cl14N16O 197]. HRMS (EI) m/z Found: [M]+ 197.0604, [C10H12ClNO]+ requires 197.0607.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. In both 1a and 1b, Cl1/Cl1a and C12/C12a were modelled as disordered over two positions using restraints (DFIX for C11—C12, C11—C12a distances) and constraints (EADP, Cl atoms). The occupancy was allowed to refine with a population parameter of 1a = 0.783 (2), and 1b = 0.768 (2). The amide N—H H atom was located in a difference-Fourier map and freely refined. H atoms bonded to carbon were placed with idealized geometry and refined using a riding model with C—H = 0.95 Å aromatic, C—H = 0.90 Å methine, with Uiso(H) = 1.2Ueq(C) and C—H = 0.98 Å methyl with Uiso(H) = 1.5Ueq(C).

Table 4
Experimental details

  (1a) (1b)
Crystal data
Chemical formula C10H12ClNO C10H12ClNO
Mr 197.66 197.66
Crystal system, space group Orthorhombic, Pbca Orthorhombic, Pbca
Temperature (K) 100 100
a, b, c (Å) 9.5119 (3), 9.6885 (4), 21.8439 (8) 9.5053 (6), 9.6793 (5), 21.8380 (13)
V3) 2013.05 (13) 2009.2 (2)
Z 8 8
Radiation type Cu Kα Mo Kα
μ (mm−1) 3.03 0.34
Crystal size (mm) 0.27 × 0.14 × 0.10 0.25 × 0.11 × 0.1
 
Data collection
Diffractometer Bruker APEXII Kappa Duo Bruker D8 Quest ECO
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.565, 0.753 0.702, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 18191, 1892, 1819 19741, 2061, 1668
Rint 0.045 0.051
(sin θ/λ)max−1) 0.608 0.627
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.103, 1.06 0.037, 0.089, 1.10
No. of reflections 1892 2061
No. of parameters 138 138
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.26 0.30, −0.31
Computer programs: APEX3 (Bruker, 2016[Bruker (2016). APEX3 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2015[Bruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

For both structures, data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2015); data reduction: SAINT (Bruker, 2015); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

2-Chloro-N-(4-methylphenyl)propanamide (1a) top
Crystal data top
C10H12ClNODx = 1.304 Mg m3
Mr = 197.66Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, PbcaCell parameters from 9895 reflections
a = 9.5119 (3) Åθ = 4.1–69.6°
b = 9.6885 (4) ŵ = 3.03 mm1
c = 21.8439 (8) ÅT = 100 K
V = 2013.05 (13) Å3Irregular, clear colourless
Z = 80.27 × 0.14 × 0.10 mm
F(000) = 832
Data collection top
Bruker APEXII Kappa Duo
diffractometer
1892 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs1819 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.045
Detector resolution: 7.9 pixels mm-1θmax = 69.7°, θmin = 4.1°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1111
Tmin = 0.565, Tmax = 0.753l = 2626
18191 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.2115P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1892 reflectionsΔρmax = 0.29 e Å3
138 parametersΔρmin = 0.26 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The terminal chloro/methyl groups are disordered and overlap with an occupancy of 78:22%. The disorder was modelled with restraints (DFIX) and constraints (EADP for the Cl atoms).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.60104 (11)0.01803 (8)0.42660 (5)0.0298 (2)0.783 (2)
Cl1A0.6006 (11)0.2847 (11)0.3649 (4)0.0328 (12)0.217 (2)
O100.74965 (11)0.26055 (12)0.48882 (5)0.0281 (3)
N80.53542 (13)0.31060 (13)0.52846 (6)0.0208 (3)
H80.453 (2)0.2949 (17)0.5247 (7)0.016 (4)*
C10.69159 (16)0.46725 (17)0.58476 (7)0.0257 (4)
H10.73920.49060.54800.031*
C20.73137 (17)0.52711 (18)0.63985 (8)0.0303 (4)
H20.80670.59150.64020.036*
C30.66349 (18)0.49513 (17)0.69457 (8)0.0286 (4)
C40.7043 (2)0.5651 (2)0.75375 (9)0.0408 (5)
H4A0.72360.49510.78500.061*
H4B0.62720.62460.76750.061*
H4C0.78880.62120.74710.061*
C50.55361 (18)0.40046 (17)0.69264 (7)0.0286 (4)
H50.50580.37710.72940.034*
C60.51263 (16)0.33958 (16)0.63802 (7)0.0253 (3)
H60.43740.27510.63760.030*
C70.58167 (15)0.37290 (16)0.58389 (7)0.0208 (3)
C90.62129 (15)0.25772 (15)0.48554 (7)0.0204 (3)
C110.54665 (16)0.19425 (16)0.43058 (7)0.0223 (3)
H110.44260.19880.43690.027*0.783 (2)
H11A0.44280.20500.43580.027*0.217 (2)
C12A0.582 (2)0.0409 (11)0.4215 (10)0.035 (2)0.217 (2)
H12A0.54370.01270.45580.053*0.217 (2)
H12B0.68380.02900.41970.053*0.217 (2)
H12C0.53950.00840.38310.053*0.217 (2)
C120.5856 (12)0.2688 (11)0.3711 (4)0.035 (2)0.783 (2)
H12D0.68710.26100.36410.053*0.783 (2)
H12E0.55970.36640.37430.053*0.783 (2)
H12F0.53500.22660.33680.053*0.783 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0401 (5)0.0204 (4)0.0290 (4)0.0037 (2)0.0030 (3)0.0030 (3)
Cl1A0.034 (2)0.036 (2)0.0278 (15)0.0036 (14)0.0033 (13)0.0100 (13)
O100.0158 (6)0.0365 (7)0.0320 (6)0.0011 (5)0.0005 (4)0.0073 (5)
N80.0125 (6)0.0255 (7)0.0244 (6)0.0016 (5)0.0002 (5)0.0020 (5)
C10.0207 (7)0.0299 (8)0.0266 (8)0.0025 (6)0.0027 (6)0.0026 (6)
C20.0215 (8)0.0348 (9)0.0347 (9)0.0034 (7)0.0014 (7)0.0071 (7)
C30.0281 (8)0.0310 (8)0.0266 (8)0.0070 (7)0.0060 (7)0.0037 (6)
C40.0409 (10)0.0500 (11)0.0315 (9)0.0061 (9)0.0089 (8)0.0112 (9)
C50.0332 (8)0.0295 (8)0.0233 (7)0.0048 (7)0.0034 (6)0.0033 (6)
C60.0242 (7)0.0230 (7)0.0286 (8)0.0005 (6)0.0032 (6)0.0016 (6)
C70.0181 (7)0.0215 (7)0.0229 (7)0.0032 (6)0.0005 (5)0.0003 (6)
C90.0182 (7)0.0195 (7)0.0235 (7)0.0001 (5)0.0010 (5)0.0024 (6)
C110.0175 (7)0.0244 (8)0.0250 (7)0.0020 (6)0.0010 (5)0.0016 (6)
C12A0.034 (3)0.030 (3)0.042 (4)0.006 (2)0.007 (2)0.005 (2)
C120.034 (3)0.030 (3)0.042 (4)0.006 (2)0.007 (2)0.005 (2)
Geometric parameters (Å, º) top
Cl1—C111.7861 (17)C5—H50.9500
Cl1A—C111.758 (8)C5—C61.387 (2)
O10—C91.2233 (18)C6—H60.9500
N8—H80.80 (2)C6—C71.391 (2)
N8—C71.4226 (19)C9—C111.524 (2)
N8—C91.3448 (19)C11—H111.0000
C1—H10.9500C11—H11A1.0000
C1—C21.388 (2)C11—C12A1.536 (9)
C1—C71.389 (2)C11—C121.532 (7)
C2—H20.9500C12A—H12A0.9800
C2—C31.394 (2)C12A—H12B0.9800
C3—C41.511 (2)C12A—H12C0.9800
C3—C51.391 (2)C12—H12D0.9800
C4—H4A0.9800C12—H12E0.9800
C4—H4B0.9800C12—H12F0.9800
C4—H4C0.9800
C7—N8—H8118.0 (12)O10—C9—N8123.83 (14)
C9—N8—H8116.7 (12)O10—C9—C11121.34 (13)
C9—N8—C7124.55 (13)N8—C9—C11114.82 (13)
C2—C1—H1120.3Cl1—C11—H11109.6
C2—C1—C7119.47 (15)Cl1A—C11—H11A109.2
C7—C1—H1120.3C9—C11—Cl1106.80 (10)
C1—C2—H2119.2C9—C11—Cl1A107.8 (4)
C1—C2—C3121.63 (16)C9—C11—H11109.6
C3—C2—H2119.2C9—C11—H11A109.2
C2—C3—C4121.00 (16)C9—C11—C12A113.1 (8)
C5—C3—C2117.95 (15)C9—C11—C12111.4 (5)
C5—C3—C4121.02 (16)C12A—C11—Cl1A108.3 (9)
C3—C4—H4A109.5C12A—C11—H11A109.2
C3—C4—H4B109.5C12—C11—Cl1109.8 (4)
C3—C4—H4C109.5C12—C11—H11109.6
H4A—C4—H4B109.5C11—C12A—H12A109.5
H4A—C4—H4C109.5C11—C12A—H12B109.5
H4B—C4—H4C109.5C11—C12A—H12C109.5
C3—C5—H5119.4H12A—C12A—H12B109.5
C6—C5—C3121.17 (15)H12A—C12A—H12C109.5
C6—C5—H5119.4H12B—C12A—H12C109.5
C5—C6—H6120.0C11—C12—H12D109.5
C5—C6—C7120.01 (15)C11—C12—H12E109.5
C7—C6—H6120.0C11—C12—H12F109.5
C1—C7—N8121.58 (14)H12D—C12—H12E109.5
C1—C7—C6119.77 (14)H12D—C12—H12F109.5
C6—C7—N8118.63 (14)H12E—C12—H12F109.5
O10—C9—C11—Cl159.49 (17)C2—C1—C7—C60.1 (2)
O10—C9—C11—Cl1A59.4 (4)C2—C3—C5—C60.0 (2)
O10—C9—C11—C12A60.2 (10)C3—C5—C6—C70.0 (2)
O10—C9—C11—C1260.4 (5)C4—C3—C5—C6177.74 (16)
N8—C9—C11—Cl1121.40 (12)C5—C6—C7—N8178.85 (14)
N8—C9—C11—Cl1A119.7 (4)C5—C6—C7—C10.0 (2)
N8—C9—C11—C12A120.7 (10)C7—N8—C9—O101.9 (2)
N8—C9—C11—C12118.7 (5)C7—N8—C9—C11179.00 (13)
C1—C2—C3—C4177.66 (16)C7—C1—C2—C30.1 (3)
C1—C2—C3—C50.1 (3)C9—N8—C7—C145.3 (2)
C2—C1—C7—N8178.89 (14)C9—N8—C7—C6135.93 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N8—H8···O10i0.80 (2)2.03 (2)2.8295 (16)174.8 (17)
C11—H11···O10i1.002.483.3574 (18)146
C12—H12E···Cg1ii0.982.613.503 (11)151
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
(1b) top
Crystal data top
C10H12ClNODx = 1.307 Mg m3
Mr = 197.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 6677 reflections
a = 9.5053 (6) Åθ = 2.8–26.5°
b = 9.6793 (5) ŵ = 0.34 mm1
c = 21.8380 (13) ÅT = 100 K
V = 2009.2 (2) Å3Fragment, clear colourless
Z = 80.25 × 0.11 × 0.1 mm
F(000) = 832
Data collection top
Bruker D8 Quest ECO
diffractometer
2061 independent reflections
Radiation source: sealed X-ray tube, Siemens, KFF Mo 2K -90 C1668 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 5.12 pixels mm-1θmax = 26.5°, θmin = 3.5°
ω and φ scansh = 119
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1212
Tmin = 0.702, Tmax = 0.745l = 2627
19741 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.4949P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2061 reflectionsΔρmax = 0.30 e Å3
138 parametersΔρmin = 0.31 e Å3
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. The terminal chloro/methyl groups are disordered and overlap with an occupancy of 77:23%. The disorder was modelled with restraints (DFIX) and constraints (EADP for the Cl atoms).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.60085 (14)0.01841 (9)0.42661 (6)0.0233 (2)0.768 (2)
Cl1A0.5999 (11)0.2831 (11)0.3648 (4)0.0253 (12)0.232 (2)
O100.74993 (12)0.26099 (13)0.48878 (5)0.0217 (3)
N80.53537 (14)0.31069 (14)0.52838 (6)0.0141 (3)
H80.450 (2)0.2946 (19)0.5248 (9)0.019 (5)*
C10.69140 (18)0.46745 (18)0.58487 (8)0.0186 (4)
H10.73890.49130.54810.022*
C20.73115 (18)0.52705 (19)0.63992 (8)0.0236 (4)
H20.80640.59160.64040.028*
C30.66346 (19)0.49466 (19)0.69465 (8)0.0217 (4)
C40.7041 (2)0.5647 (2)0.75373 (9)0.0331 (5)
H4A0.62360.61700.76950.050*
H4B0.78290.62780.74620.050*
H4C0.73230.49490.78380.050*
C50.5537 (2)0.39994 (18)0.69253 (8)0.0220 (4)
H50.50590.37630.72930.026*
C60.51244 (18)0.33931 (18)0.63806 (8)0.0187 (4)
H60.43700.27500.63760.022*
C70.58171 (16)0.37265 (16)0.58381 (7)0.0140 (3)
C90.62137 (16)0.25791 (16)0.48549 (7)0.0135 (3)
C110.54663 (17)0.19470 (17)0.43051 (8)0.0158 (3)
H110.44250.19950.43670.019*0.768 (2)
H11A0.44260.20440.43570.019*0.232 (2)
C12A0.585 (3)0.0413 (12)0.4233 (12)0.033 (3)0.232 (2)
H12A0.55270.00980.45950.049*0.232 (2)
H12B0.68670.03170.41910.049*0.232 (2)
H12C0.53830.00410.38670.049*0.232 (2)
C120.5869 (14)0.2707 (13)0.3713 (4)0.033 (3)0.768 (2)
H12D0.68830.26150.36430.049*0.768 (2)
H12E0.56250.36870.37520.049*0.768 (2)
H12F0.53550.23030.33680.049*0.768 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0348 (6)0.0136 (3)0.0214 (4)0.0023 (3)0.0026 (3)0.0033 (3)
Cl1A0.032 (2)0.027 (2)0.0167 (16)0.0008 (15)0.0042 (14)0.0061 (13)
O100.0104 (6)0.0306 (7)0.0242 (7)0.0017 (5)0.0004 (5)0.0076 (5)
N80.0078 (7)0.0183 (7)0.0161 (7)0.0014 (5)0.0005 (6)0.0017 (6)
C10.0156 (8)0.0216 (9)0.0185 (9)0.0030 (7)0.0031 (6)0.0029 (7)
C20.0166 (9)0.0273 (10)0.0268 (10)0.0046 (7)0.0006 (7)0.0077 (8)
C30.0216 (9)0.0238 (9)0.0196 (9)0.0063 (7)0.0061 (7)0.0040 (7)
C40.0351 (11)0.0407 (12)0.0234 (10)0.0051 (9)0.0089 (8)0.0098 (9)
C50.0293 (10)0.0222 (9)0.0145 (8)0.0042 (7)0.0041 (7)0.0040 (7)
C60.0195 (8)0.0166 (8)0.0201 (9)0.0017 (7)0.0029 (7)0.0015 (7)
C70.0130 (8)0.0144 (8)0.0145 (8)0.0023 (6)0.0001 (6)0.0001 (6)
C90.0124 (8)0.0131 (7)0.0151 (8)0.0007 (6)0.0012 (6)0.0014 (6)
C110.0125 (7)0.0179 (8)0.0169 (8)0.0009 (6)0.0018 (6)0.0017 (7)
C12A0.028 (3)0.031 (4)0.039 (5)0.009 (3)0.007 (3)0.006 (3)
C120.028 (3)0.031 (4)0.039 (5)0.009 (3)0.007 (3)0.006 (3)
Geometric parameters (Å, º) top
Cl1—C111.7845 (18)C5—H50.9500
Cl1A—C111.746 (8)C5—C61.383 (2)
O10—C91.2245 (19)C6—H60.9500
N8—H80.83 (2)C6—C71.393 (2)
N8—C71.421 (2)C9—C111.523 (2)
N8—C91.344 (2)C11—H111.0000
C1—H10.9500C11—H11A1.0000
C1—C21.386 (2)C11—C12A1.536 (9)
C1—C71.389 (2)C11—C121.535 (7)
C2—H20.9500C12A—H12A0.9800
C2—C31.393 (3)C12A—H12B0.9800
C3—C41.508 (2)C12A—H12C0.9800
C3—C51.390 (3)C12—H12D0.9800
C4—H4A0.9800C12—H12E0.9800
C4—H4B0.9800C12—H12F0.9800
C4—H4C0.9800
C7—N8—H8117.6 (13)O10—C9—N8123.83 (15)
C9—N8—H8117.2 (14)O10—C9—C11121.43 (14)
C9—N8—C7124.44 (14)N8—C9—C11114.73 (14)
C2—C1—H1120.2Cl1—C11—H11109.7
C2—C1—C7119.60 (16)Cl1A—C11—H11A109.5
C7—C1—H1120.2C9—C11—Cl1106.68 (12)
C1—C2—H2119.2C9—C11—Cl1A108.4 (4)
C1—C2—C3121.64 (17)C9—C11—H11109.7
C3—C2—H2119.2C9—C11—H11A109.5
C2—C3—C4120.96 (17)C9—C11—C12A111.1 (9)
C5—C3—C2117.83 (16)C9—C11—C12110.8 (5)
C5—C3—C4121.17 (17)C12A—C11—Cl1A108.8 (10)
C3—C4—H4A109.5C12A—C11—H11A109.5
C3—C4—H4B109.5C12—C11—Cl1110.2 (5)
C3—C4—H4C109.5C12—C11—H11109.7
H4A—C4—H4B109.5C11—C12A—H12A109.5
H4A—C4—H4C109.5C11—C12A—H12B109.5
H4B—C4—H4C109.5C11—C12A—H12C109.5
C3—C5—H5119.3H12A—C12A—H12B109.5
C6—C5—C3121.41 (16)H12A—C12A—H12C109.5
C6—C5—H5119.3H12B—C12A—H12C109.5
C5—C6—H6120.0C11—C12—H12D109.5
C5—C6—C7119.94 (16)C11—C12—H12E109.5
C7—C6—H6120.0C11—C12—H12F109.5
C1—C7—N8121.71 (14)H12D—C12—H12E109.5
C1—C7—C6119.58 (15)H12D—C12—H12F109.5
C6—C7—N8118.69 (14)H12E—C12—H12F109.5
O10—C9—C11—Cl159.75 (18)C2—C1—C7—C60.4 (2)
O10—C9—C11—Cl1A58.9 (4)C2—C3—C5—C60.1 (3)
O10—C9—C11—C12A60.5 (11)C3—C5—C6—C70.2 (3)
O10—C9—C11—C1260.2 (6)C4—C3—C5—C6177.51 (17)
N8—C9—C11—Cl1121.32 (14)C5—C6—C7—N8178.85 (15)
N8—C9—C11—Cl1A120.0 (4)C5—C6—C7—C10.4 (2)
N8—C9—C11—C12A120.6 (11)C7—N8—C9—O102.1 (3)
N8—C9—C11—C12118.7 (6)C7—N8—C9—C11178.97 (14)
C1—C2—C3—C4177.50 (17)C7—C1—C2—C30.2 (3)
C1—C2—C3—C50.0 (3)C9—N8—C7—C145.6 (2)
C2—C1—C7—N8178.82 (16)C9—N8—C7—C6136.01 (17)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N8—H8···O10i0.83 (2)2.00 (2)2.8255 (18)174.2 (19)
C11—H11···O10i1.002.483.353 (2)146
C12—H12E···Cg1ii0.982.623.493 (13)149
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1, y+1, z+1.
Selected geometric parameters (Å, °) for 1a, 1b and IQOHOL top
1a1bIQOHOLa
Cl1—C111.7861 (17)1.7845 (18)1.785 (16)
O10—C91.2233 (18)1.2245 (19)1.219 (15)
N8—C71.4226 (19)1.421 (2)1.421 (16)
N8—C91.3448 (19)1.344 (2)1.341 (16)
C9—C111.524 (2)1.523 (2)1.522 (18)
O10—C9—C11—C12-60.4 (5)-60.2 (6)61.35 (1)
C9—N8—C7—C145.3 (2)45.6 (2)-44.19 (1)
Note: (a) Equivalent geometric parameters are given for IQOHOL as atom labels do not matchthose of 1a and 1b.
 

Acknowledgements

RCJ would like to thank Professor Brian Glennon for the use of the lab and experimental assistance.

Funding information

Funding for this research was provided by: Synthesis and Solid State Pharmaceutical Center (SSPC); Science Foundation Ireland (grant No. SFI, 12/RC/2275).

References

First citationBanks, J. W., Batsanov, A. S., Howard, J. A. K., O'Hagan, D., Rzepa, H. S. & Martin-Santamaria, S. (1999). J. Chem. Soc. Perkin Trans. 2, pp. 2409–2411.  Web of Science CrossRef Google Scholar
First citationBruker (2015). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2016). APEX3 and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChekhlov, A. N., Yurtanov, A. I. & Martynov, I. V. (1987). Russ. Chem. Bull. 36, 1198–1201.  CrossRef Web of Science Google Scholar
First citationColes (née Huth), S. L., Threlfall, T. L. & Hursthouse, M. B. (2008). University of Southampton, Crystal Structure Report Archive, 1387.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFoley, D. A., Doecke, C. W., Buser, J. Y., Merritt, J. M., Murphy, L., Kissane, M., Collins, S. G., Maguire, A. R. & Kaerner, A. (2011). J. Org. Chem. 76, 9630–9640.  Web of Science CrossRef PubMed Google Scholar
First citationFrohberg, P., Drutkowski, G., Wagner, C. & Lichtenberger, O. (2002). J. Chem. Res. (S), pp. 13–14.  CrossRef Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o3392.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o4488.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2333–o2334.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A Phys. Sci. 58A, 225–230.  Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Paulus, H. & Fuess, H. (2001). Z. Naturforsch. Teil A Phys. Sci. 56A, 386–394.  Google Scholar
First citationGowda, B. T., Svoboda, I., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o1955.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGupta, E., Kant, R. & Mohanan, K. (2017). Org. Lett. 19, 6016–6019.  Web of Science CrossRef PubMed Google Scholar
First citationHursthouse, M. B., Huth, S. L. & Threlfall, T. L. (2009). Org. Process Res. Dev. 13, 1231–1240.  Web of Science CrossRef Google Scholar
First citationKang, S., Zeng, H., Li, H. & Wang, H. (2008). Acta Cryst. E64, o1194.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKissane, M., Lawrence, S. E. & Maguire, A. R. (2010b). Tetrahedron, 66, 4564–4572.  Web of Science CrossRef Google Scholar
First citationKissane, M., Lawrence, S. E. & Maguire, A. R. (2010c). Tetrahedron Asymmetry, 21, 871–884.  Web of Science CrossRef Google Scholar
First citationKissane, M., Lynch, D., Chopra, J., Lawrence, S. E. & Maguire, A. R. (2010a). Org. Biomol. Chem. 8, 5602–5613.  Web of Science CrossRef PubMed Google Scholar
First citationKissane, M. & Maguire, A. R. (2011). Synlett, pp. 1212–1232.  Google Scholar
First citationKissane, M., Murphy, M., Lawrence, S. E. & Maguire, A. R. (2010d). Tetrahedron Asymmetry, 21, 2550–2558.  Web of Science CrossRef Google Scholar
First citationKissane, M., Murphy, M., O'Brien, E., Chopra, J., Murphy, L., Collins, S. G., Lawrence, S. E. & Maguire, A. R. (2011). Org. Biomol. Chem. 9, 2452–2472.  Web of Science CrossRef PubMed Google Scholar
First citationLee, S. L., O'Connor, T. F., Yang, X., Cruz, C. N., Chatterjee, S., Madurawe, R. D., Moore, C. M. V., Yu, L. X. & Woodcock, J. (2015). J. Pharm. Innov. 10, 191–199.  Web of Science CrossRef Google Scholar
First citationMascia, S., Heider, P. L., Zhang, H., Lakerveld, R., Benyahia, B., Barton, P. I., Braatz, R. D., Cooney, C. L., Evans, J. M. B., Jamison, T. F., Jensen, K. F., Myerson, A. S. & Trout, B. L. (2013). Angew. Chem. Int. Ed. 52, 12359–12363.  Web of Science CrossRef Google Scholar
First citationMurphy, M., Lynch, D., Schaeffer, M., Kissane, M., Chopra, J., O'Brien, E., Ford, A., Ferguson, G. & Maguire, A. R. (2007). Org. Biomol. Chem. 5, 1228–1241.  Web of Science CrossRef PubMed Google Scholar
First citationNaumov, P., Sakurai, K., Tanaka, M. & Hara, H. (2007). J. Phys. Chem. B, 111, 10373–10378.  Web of Science CrossRef PubMed Google Scholar
First citationO'Mahony, R. M., Lynch, D., Hayes, H. L. D., Ní Thuama, E., Donnellan, P., Jones, R. C., Glennon, B., Collins, S. G. & Maguire, A. R. (2017). Eur. J. Org. Chem. pp. 6533–6539.  Google Scholar
First citationPal, A. K., Bera, A. K. & Banerjee, A. (1998). Z. Kristallogr. New Cryst. Struct. 213, 249–.  Google Scholar
First citationPascual, G. K., Donnellan, P., Glennon, B., Kamaraju, V. K. & Jones, R. C. (2017). J. Chem. Eng. Data, 62, 3193–3205.  Web of Science CrossRef Google Scholar
First citationPathak, S., Kundu, A. & Pramanik, A. (2014). RSC Adv. 4, 10180–10187.  Web of Science CrossRef Google Scholar
First citationPower, G., Hou, G., Kamaraju, V. K., Morris, G., Zhao, Y. & Glennon, B. (2015). Chem. Eng. Sci. 133, 125–139.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSimon, M., Donnellan, P., Glennon, B. & Jones, R. C. (2018). Chem. Eng. Technol. 41, 921–927.  Web of Science CrossRef Google Scholar
First citationStaples, R. J. & Vidnovio, N. (2007). Z. Kristallogr. New Cryst. Struct. 222, 269–270.  Google Scholar
First citationSubramanian, E. (1966). Z. Kristallogr. 123, 222–234.  CrossRef CAS Web of Science Google Scholar
First citationZhao, Y., Kamaraju, V. K., Hou, G., Power, G., Donnellan, P. & Glennon, B. (2015). Chem. Eng. Sci. 133, 106–115.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds