organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(6R*,10R*)-Di­methyl 1,4-dioxa­spiro­[4.5]decane-6,10-di­carboxyl­ate

aCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 124, 221 00 Lund, Sweden, and bCentre for Analysis and Synthesis, Department of Chemistry, Lund University, Box 123, 221 00 Lund, Sweden
*Correspondence e-mail: daniel.strand@chem.lu.se

(Received 5 December 2012; accepted 16 January 2013; online 19 January 2013)

The title compound, C12H18O6, is in the usual chair conformation with the two ester functions in a 1,3-trans orientation. With a value of 1.439 (2) Å, the pseudo-axial C—O bond of the 1,3-dioxolane ring is slightly longer than the corresponding equatorial C—O bond of 1.424 (3) Å. The O—C—O angle of the dioxolane ring is 106.25 (17)°.

Related literature

The starting material (1R,3S)-dimethyl 2-oxocyclo­hexane-1,3-dicarboxyl­ate was prepared following a known procedure (Blicke & McCarty, 1959[Blicke, F. F. & McCarty, F. J. (1959). J. Org. Chem. 24, 1069-1076.]). Alternative methods for the synthesis of this coumpound include alkyl­ation of cyclo­hexa­none (Balasubrahmanyam & Balasubramanian, 1969[Balasubrahmanyam, S. N. & Balasubramanian, M. (1969). Org. Synth. 49, 56-61.]; Beckman & Munshi, 2011[Beckman, E. J. & Munshi, P. (2011). Green Chem. 13, 376-383.]). Synthesis and characterization of a related 1,3-trans-dicarboxyl­ate cyclo­hexa­none has been reported (Scaric & Turjak-Cebic, 1982[Scaric, V. & Turjak-Cebic, V. (1982). Croat. Chem. Acta, 55, 457-65.]). The acetal formation follows standard procedures (Wuts & Greene, 2007[Wuts, P. G. M. & Greene, T. W. (2007). In Greene's Protective Groups in Organic Synthesis. Hoboken, NJ: Wiley Interscience.]).

[Scheme 1]

Experimental

Crystal data
  • C12H18O6

  • Mr = 258.26

  • Monoclinic, P c

  • a = 8.6243 (9) Å

  • b = 7.3203 (6) Å

  • c = 10.1704 (9) Å

  • β = 91.719 (8)°

  • V = 641.79 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.2 × 0.2 × 0.05 mm

Data collection
  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.919, Tmax = 1.000

  • 5645 measured reflections

  • 2717 independent reflections

  • 2329 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.148

  • S = 1.03

  • 2717 reflections

  • 163 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (CrystalMaker, 2011[CrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The cyclohexane ring is in the usual chair conformation. All intramolecular distances and angles display expected values. The dioxolane occupies a pseudo-twist form oriented towards the axial ester group of the cyclohexane ring. Presumably to reduce unfavorable interactions with the carbonyl group of the equatorial ester moiety.

Related literature top

The starting material (1R,3S)-dimethyl 2-oxocyclohexane-1,3-dicarboxylate was prepared following a known procedure (Blicke & McCarty, 1959). Alternative methods for the synthesis of this coumpound include alkylation of cyclohexanone (Balasubrahmanyam & Balasubramanian, 1969; Beckman & Munshi, 2011). Synthesis and characterization of a related 1,3-trans-dicarboxylate cyclohexanone has been reported (Scaric & Turjak-Cebic, 1982). The acetal formation follows standard procedures (Wuts & Greene, 2007).

Experimental top

(1R,3S)-dimethyl 2-oxocyclohexane-1,3-dicarboxylate (0.5 g, 2.5 mmol) was dissolved in toluene (10 mL). Ethylene glycol (1.6 g, 25.7 mmol) and a catalytic amount of p-toluene sulfonic acid were then added sequentially. The vessel was fitted with a Dean-Stark trap, heated to reflux for 3 h, and then cooled to RT. The reaction mixture was washed with NaHCO3 (10 ml, sat. aq.) and water (10 ml). The organic phase was dried (MgSO4), filtered, and concentrated under reduced pressure. 1H NMR of the crude shows a single diastereomer. The crude product was purified by flash chromatography (6.25% EtOAc/pet. ether) to give (6R*,10R*)dimethyl-1,4-dioxosparo[4,5]decane-6,10-dicarboxylate as a colorless oil (0.30 g, 46%), which crystallized under vaccuum upon standing.

Rf: 0.3 in 6.25% EtOAc/pet. ether 1H-NMR: (400 MHz, CDCl3) δ: 4.0–3.8 (m, 4H), 3.69 (s, 6H), 3.17 (t, 2H), 2.6 (dd, J = 8, 2H), 2.0–1.8 (m, 2H) p.p.m.. 13C-NMR: (101 MHz, CDCl3) δ: 66.2, 65.1, 52.1, 51.8, 51.7, 47.5, 27.1, 26.6, 23.5, 19.8 p.p.m.. IR: (CHCl3, film): 1727 (s), 1434 (m), 1161 (s) cm-1.

Refinement top

The H atoms were positioned geometrically and treated as riding on their parent atoms with C–H distances of 0.93–0.97 Å, and Uiso(H) = 1.2 Ueq. The highest difference peak in the Fourier map is located 0.87 Å from C12 and the lowest is located 0.30 Å from H12B.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 30% probability displacement ellipsoids. H-atoms were omitted for clarity.
(6R*,10R*)-Dimethyl 1,4-dioxaspiro[4.5]decane-6,10-dicarboxylate top
Crystal data top
C12H18O6F(000) = 276
Mr = 258.26Dx = 1.336 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 1887 reflections
a = 8.6243 (9) Åθ = 2.8–28.6°
b = 7.3203 (6) ŵ = 0.11 mm1
c = 10.1704 (9) ÅT = 293 K
β = 91.719 (8)°Plate, colourless
V = 641.79 (10) Å30.2 × 0.2 × 0.05 mm
Z = 2
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2717 independent reflections
Radiation source: Enhance (Mo) X-ray Source2329 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 16.1829 pixels mm-1θmax = 28.7°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 99
Tmin = 0.919, Tmax = 1.000l = 1313
5645 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
2717 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H18O6V = 641.79 (10) Å3
Mr = 258.26Z = 2
Monoclinic, PcMo Kα radiation
a = 8.6243 (9) ŵ = 0.11 mm1
b = 7.3203 (6) ÅT = 293 K
c = 10.1704 (9) Å0.2 × 0.2 × 0.05 mm
β = 91.719 (8)°
Data collection top
Agilent Xcalibur Sapphire3
diffractometer
2717 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2329 reflections with I > 2σ(I)
Tmin = 0.919, Tmax = 1.000Rint = 0.025
5645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0472 restraints
wR(F2) = 0.148H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
2717 reflectionsΔρmin = 0.23 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4569 (2)0.2366 (3)0.86367 (19)0.0350 (5)
O10.2305 (3)0.1361 (4)1.0635 (2)0.0837 (8)
C20.2830 (3)0.1979 (3)0.8327 (2)0.0397 (5)
H20.27750.10930.76050.048*
O20.0836 (3)0.0069 (3)0.9057 (2)0.0618 (6)
C30.1999 (3)0.3712 (4)0.7846 (3)0.0527 (6)
H3A0.08990.34600.77330.063*
H3B0.23880.40530.69950.063*
O30.7232 (3)0.5536 (4)0.9408 (3)0.0847 (8)
O40.7037 (2)0.3362 (3)1.09499 (18)0.0544 (5)
C40.2227 (4)0.5314 (4)0.8801 (3)0.0589 (7)
H4A0.17420.64000.84270.071*
H4B0.17280.50390.96200.071*
O50.52831 (19)0.2833 (2)0.74210 (15)0.0452 (4)
C50.3944 (4)0.5677 (3)0.9073 (3)0.0535 (7)
H5A0.40590.66660.97030.064*
H5B0.44200.60570.82650.064*
O60.53266 (19)0.0753 (2)0.91042 (16)0.0431 (4)
C60.4790 (3)0.3956 (3)0.9621 (2)0.0398 (5)
H60.43010.36071.04410.048*
C70.2023 (3)0.1132 (4)0.9483 (2)0.0442 (5)
C80.6476 (3)0.4376 (4)0.9939 (2)0.0473 (6)
C90.0086 (5)0.0765 (5)1.0061 (4)0.0781 (10)
H9A0.08990.14810.96510.117*
H9B0.05330.01711.05910.117*
H9C0.05620.15391.06060.117*
C100.8590 (4)0.3810 (5)1.1422 (4)0.0701 (9)
H10A0.88810.30151.21380.105*
H10B0.86170.50541.17190.105*
H10C0.93010.36571.07220.105*
C110.6241 (5)0.1332 (5)0.7054 (3)0.0690 (8)
H11A0.59740.09380.61650.083*
H11B0.73260.16850.70930.083*
C120.5965 (6)0.0107 (5)0.7970 (4)0.0818 (12)
H12A0.69260.07300.82080.098*
H12B0.52410.09900.75940.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0413 (12)0.0341 (10)0.0298 (10)0.0001 (8)0.0028 (8)0.0031 (8)
O10.0846 (17)0.124 (2)0.0432 (11)0.0515 (15)0.0057 (10)0.0031 (12)
C20.0429 (12)0.0414 (12)0.0346 (11)0.0009 (9)0.0037 (8)0.0019 (9)
O20.0594 (12)0.0623 (12)0.0638 (12)0.0207 (9)0.0007 (9)0.0022 (9)
C30.0543 (15)0.0568 (15)0.0465 (14)0.0105 (12)0.0066 (11)0.0056 (11)
O30.0750 (16)0.0944 (18)0.0845 (17)0.0420 (15)0.0001 (12)0.0270 (14)
O40.0454 (10)0.0592 (11)0.0580 (11)0.0120 (8)0.0054 (8)0.0028 (9)
C40.0665 (19)0.0498 (14)0.0601 (16)0.0181 (13)0.0012 (13)0.0003 (13)
O50.0594 (11)0.0409 (8)0.0360 (8)0.0035 (7)0.0103 (7)0.0046 (7)
C50.0700 (19)0.0319 (11)0.0586 (16)0.0019 (11)0.0038 (13)0.0062 (11)
O60.0502 (10)0.0344 (8)0.0445 (9)0.0041 (7)0.0009 (7)0.0060 (7)
C60.0458 (13)0.0375 (11)0.0364 (11)0.0049 (9)0.0048 (9)0.0009 (9)
C70.0359 (12)0.0505 (13)0.0459 (13)0.0015 (9)0.0030 (9)0.0030 (10)
C80.0532 (15)0.0479 (13)0.0412 (12)0.0141 (11)0.0058 (10)0.0059 (10)
C90.073 (2)0.069 (2)0.093 (3)0.0289 (17)0.0185 (18)0.0040 (18)
C100.0461 (17)0.086 (2)0.078 (2)0.0110 (15)0.0106 (14)0.0074 (18)
C110.087 (2)0.0631 (18)0.0581 (17)0.0159 (16)0.0190 (15)0.0070 (15)
C120.107 (3)0.0574 (18)0.082 (2)0.0358 (18)0.031 (2)0.0060 (16)
Geometric parameters (Å, º) top
C1—O61.424 (3)O5—C111.431 (4)
C1—O51.439 (2)C5—C61.551 (4)
C1—C61.544 (3)C5—H5A0.9700
C1—C21.549 (3)C5—H5B0.9700
O1—C71.201 (3)O6—C121.438 (4)
C2—C71.516 (4)C6—C81.511 (4)
C2—C31.530 (3)C6—H60.9800
C2—H20.9800C9—H9A0.9600
O2—C71.347 (3)C9—H9B0.9600
O2—C91.448 (4)C9—H9C0.9600
C3—C41.531 (4)C10—H10A0.9600
C3—H3A0.9700C10—H10B0.9600
C3—H3B0.9700C10—H10C0.9600
O3—C81.208 (3)C11—C121.431 (5)
O4—C81.346 (3)C11—H11A0.9700
O4—C101.446 (3)C11—H11B0.9700
C4—C51.522 (4)C12—H12A0.9700
C4—H4A0.9700C12—H12B0.9700
C4—H4B0.9700
O6—C1—O5106.25 (17)C8—C6—C5110.5 (2)
O6—C1—C6111.21 (17)C1—C6—C5109.36 (19)
O5—C1—C6109.28 (17)C8—C6—H6107.9
O6—C1—C2110.39 (17)C1—C6—H6107.9
O5—C1—C2107.80 (17)C5—C6—H6107.9
C6—C1—C2111.70 (18)O1—C7—O2121.6 (2)
C7—C2—C3111.5 (2)O1—C7—C2128.0 (2)
C7—C2—C1112.39 (17)O2—C7—C2110.4 (2)
C3—C2—C1110.79 (19)O3—C8—O4122.8 (2)
C7—C2—H2107.3O3—C8—C6125.2 (3)
C3—C2—H2107.3O4—C8—C6111.9 (2)
C1—C2—H2107.3O2—C9—H9A109.5
C7—O2—C9116.4 (2)O2—C9—H9B109.5
C2—C3—C4112.48 (19)H9A—C9—H9B109.5
C2—C3—H3A109.1O2—C9—H9C109.5
C4—C3—H3A109.1H9A—C9—H9C109.5
C2—C3—H3B109.1H9B—C9—H9C109.5
C4—C3—H3B109.1O4—C10—H10A109.5
H3A—C3—H3B107.8O4—C10—H10B109.5
C8—O4—C10115.9 (2)H10A—C10—H10B109.5
C5—C4—C3110.8 (2)O4—C10—H10C109.5
C5—C4—H4A109.5H10A—C10—H10C109.5
C3—C4—H4A109.5H10B—C10—H10C109.5
C5—C4—H4B109.5C12—C11—O5106.7 (3)
C3—C4—H4B109.5C12—C11—H11A110.4
H4A—C4—H4B108.1O5—C11—H11A110.4
C11—O5—C1107.9 (2)C12—C11—H11B110.4
C4—C5—C6111.6 (2)O5—C11—H11B110.4
C4—C5—H5A109.3H11A—C11—H11B108.6
C6—C5—H5A109.3C11—C12—O6106.0 (3)
C4—C5—H5B109.3C11—C12—H12A110.5
C6—C5—H5B109.3O6—C12—H12A110.5
H5A—C5—H5B108.0C11—C12—H12B110.5
C1—O6—C12106.2 (2)O6—C12—H12B110.5
C8—C6—C1113.1 (2)H12A—C12—H12B108.7

Experimental details

Crystal data
Chemical formulaC12H18O6
Mr258.26
Crystal system, space groupMonoclinic, Pc
Temperature (K)293
a, b, c (Å)8.6243 (9), 7.3203 (6), 10.1704 (9)
β (°) 91.719 (8)
V3)641.79 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.2 × 0.2 × 0.05
Data collection
DiffractometerAgilent Xcalibur Sapphire3
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.919, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5645, 2717, 2329
Rint0.025
(sin θ/λ)max1)0.675
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.03
No. of reflections2717
No. of parameters163
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalMaker (CrystalMaker, 2011).

 

Acknowledgements

Lund University, the Swedish Research Council, the Knut and Alice Wallenberg Foundation and the Royal Physiographic Society in Lund are gratefully acknowledged for financial support.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBalasubrahmanyam, S. N. & Balasubramanian, M. (1969). Org. Synth. 49, 56–61.  CAS Google Scholar
First citationBeckman, E. J. & Munshi, P. (2011). Green Chem. 13, 376–383.  Web of Science CrossRef CAS Google Scholar
First citationBlicke, F. F. & McCarty, F. J. (1959). J. Org. Chem. 24, 1069–1076.  CrossRef CAS Web of Science Google Scholar
First citationCrystalMaker (2011). CrystalMaker. CrystalMaker Software Ltd, Oxfordshire, England.  Google Scholar
First citationScaric, V. & Turjak-Cebic, V. (1982). Croat. Chem. Acta, 55, 457–65.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWuts, P. G. M. & Greene, T. W. (2007). In Greene's Protective Groups in Organic Synthesis. Hoboken, NJ: Wiley Interscience.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds