organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Butyryl-5-hy­dr­oxy-4-phenyl­seselin

aDepartment of Chemistry, Faculty of Science, Chulalongkorn University, Phyathai Road, Pathumwan, Bangkok 10330, Thailand
*Correspondence e-mail: thammarat.aree@gmail.com

(Received 12 August 2010; accepted 24 August 2010; online 28 August 2010)

In the title coumarin compound (systematic name: 6-butyryl-5-hy­droxy-8,8-dimethyl-4-phenyl-2H,8H-benzo[1,2-b;3,4-b′]dipyran-2-one), C24H22O5, also known as mammea A/AC cyclo D, the chromene and pyran rings are almost coplanar with a maximum deviation from the mean plane of 0.295 (2) Å. The attached phenyl group is inclined at 53.49 (8)° with respect to the chromene ring. The mol­ecular structure is stabilized by an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are linked into sheets parallel to (101) by inter­molecular C—H⋯O hydrogen bonds. Adjacent sheets are sustained by inter­molecular C—H⋯π and ππ [centroid–centroid distance = 4.471 (2) Å] inter­actions.

Related literature

For the structural characterization of mammea A/AC cyclo D, see: Thebtaranonth et al. (1981[Thebtaranonth, C., Imraporn, S. & Padungkul, N. (1981). Phytochemistry, 20, 2305-2306.]); Morel et al. (1999[Morel, C., Guilet, D., Oger, J.-M., Séraphin, D., Sévenet, T., Wiart, C., Hadi, A. H. A., Richomme, P. & Bruneton, J. (1999). Phytochemistry, 50, 1243-1247.]); Kaweetripob et al. (2000[Kaweetripob, W., Mahidol, C., Prawat, H. & Ruchirawat, S. (2000). Pharm. Biol. 38, 55-57.]). For its anti-HIV activity, see: Márquez et al. (2005[Márquez, N., Sancho, R., Bedoya, L. M., Alcamí, J., López-Pérez, J. L., San Feliciano, A., Fiebich, B. L. & Muñoz, E. (2005). Antivir. Res. 66, 137-145.]); Bedoya et al. (2005[Bedoya, L. M., Beltrán, M., Sancho, R., Olmedo, D. A., Sánchez-Palomino, S., Del Olmo, E., López-Pérez, J. L., Muñoz, E. & San Feliciano, A. (2005). Bioorg. Med. Chem. Lett. 15, 4447-4450.]) and for its anti­cancer activity, see: Reyes-Chilpa et al. (2004[Reyes-Chilpa, R., Estrada-Muñiz, E., Ramírez Apan, T., Amekraz, B., Aumelas, A., Jankowski, C. K. & Vázquez-Torres, M. (2004). Life Sci. 75, 1635-1647.]). For related coumarins, see: Mahidol et al. (2002[Mahidol, C., Kaweetripob, W., Prawat, H. & Ruchirawat, S. (2002). J. Nat. Prod. 65, 757-760.]). For a review on the cytotoxic activity of coumarins, see: Kostova (2005[Kostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29-46.]).

[Scheme 1]

Experimental

Crystal data
  • C24H22O5

  • Mr = 390.42

  • Monoclinic, C c

  • a = 17.0746 (4) Å

  • b = 13.4170 (4) Å

  • c = 8.7607 (3) Å

  • β = 90.341 (1)°

  • V = 2006.95 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.32 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.965, Tmax = 0.986

  • 5484 measured reflections

  • 2115 independent reflections

  • 1714 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.03

  • 2115 reflections

  • 265 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1′–C6′ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1"′ 0.82 1.73 2.464 (3) 149
C3"′—H32⋯O2i 0.97 2.71 3.522 (5) 142
C4′—H4′⋯O2ii 0.93 2.70 3.396 (4) 132
C6"—H61"⋯Cg1iii 0.96 2.75 3.646 (4) 156
Symmetry codes: (i) x, y+1, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al. 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title coumarin compound, 6-butyryl-5-hydroxy-4-phenylseselin or mammea A/AC cyclo D (Fig. 1) was isolated from the hexane crude extract of the flowers of Mammea siamensis (Sarapee in Thai). Several coumarins derived from the same flowers have been reported, see for example Mahidol et al. 2002 and other references cited therein. In this work, we report the crystal structure of mammea A/AC cyclo D.

The molecular structure consists of one chromene ring, one pyran ring and one phenyl ring (Fig. 1). The chromene and pyran rings are almost coplanar. Atoms C2, C2", C4" and O1" most deviate from the mean plane by 0.133 (3), 0.295 (2), –0.154 (3) and –0.172 (2) Å, respectively. The butyraldehyde group, hydroxy group and atom O2 displace from the chromene plane to greater extents: 0.326 (3) Å, O3; 0.307 (4) Å, O1"'; and –0.303 (7) Å, C3"'. The methyl C4"', C5" and C6" atoms point upwards and downwards the chromene ring with torsion angles of –73.8 (6)° for C1"'—C2"'—C3"'—C4"', –142.8 (3)° for C4"—C3"—C2"—C5" and 91.7 (4)° for C4"—C3"—C2"—C6". The attached phenyl group inclines by 53.49 (8)° against the chromene ring. The molecular structure is stabilized by intramolecular O3—H···O1"' hydrogen bond.

In the crystal, the molecules are linked into sheets parallel to (101) by intermolecular, bifurcated C3"'—H32···O2(x, y + 1, z) and C4'—H4'···O2(x – 0.5, –y + 0.5, z + 0.5) hydrogen bonds (Fig. 2 and Table 1). The adjacent sheets are sustained by intermolecular C6"—H61"···π (ring C1'—C2'—C3'—C4'—C5'—C6') and ππ (two adjacent rings of C4a—C5—C6—C7—C8—C8a) interactions (Fig. 3). The corresponding distance from atom H to the phenyl-ring center is 2.75 Å and the interplanar spacing is 3.54 Å.

Related literature top

For the structural characterization of mammea A/AC cyclo D, see: Thebtaranonth et al. (1981); Morel et al. (1999); Kaweetripob et al. (2000). For its anti-HIV activity, see: Márquez et al. (2005); Bedoya et al. (2005) and for its anticancer activity, see: Reyes-Chilpa et al. (2004). For related coumarins, see: Mahidol et al. (2002). For a review on the cytotoxic activity of coumarins, see: Kostova (2005).

Experimental top

The title coumarin compound was isolated from the hexane crude extract of the flowers of Mammea siamensis, which is a Thai medicinal plant, locally known as Sarapee. This coumarin mammea A/AC cyclo D was known for almost 30 years. Its structure was ambigously characterized by spectroscopic techniques (Thebtaranonth et al., 1981; Morel et al., 1999; and Kaweetripob et al., 2000). Other coumarins were also isolated from the same flower (Mahidol et al., 2002 and other references cited therein).

The light yellow, block-like single crystals were obtained by slow evaporation of a hexane–dichloromethane solution at room temperature.

Refinement top

All H atoms were located in a difference Fourier map and then refined using a riding model: C–H = 0.97 Å(secondary), 0.93 Å (aromatic), 0.96 Å (methyl), O–H = 0.82 Å (hydroxy), and Uiso(H) = 1.2Ueq(C,O) and Uiso(H) = 1.5Ueq(methyl C). In the absence of significant anomalous scattering effects, Friedel pairs were averaged and therefore, the absolute structure could not be determined.

Structure description top

The title coumarin compound, 6-butyryl-5-hydroxy-4-phenylseselin or mammea A/AC cyclo D (Fig. 1) was isolated from the hexane crude extract of the flowers of Mammea siamensis (Sarapee in Thai). Several coumarins derived from the same flowers have been reported, see for example Mahidol et al. 2002 and other references cited therein. In this work, we report the crystal structure of mammea A/AC cyclo D.

The molecular structure consists of one chromene ring, one pyran ring and one phenyl ring (Fig. 1). The chromene and pyran rings are almost coplanar. Atoms C2, C2", C4" and O1" most deviate from the mean plane by 0.133 (3), 0.295 (2), –0.154 (3) and –0.172 (2) Å, respectively. The butyraldehyde group, hydroxy group and atom O2 displace from the chromene plane to greater extents: 0.326 (3) Å, O3; 0.307 (4) Å, O1"'; and –0.303 (7) Å, C3"'. The methyl C4"', C5" and C6" atoms point upwards and downwards the chromene ring with torsion angles of –73.8 (6)° for C1"'—C2"'—C3"'—C4"', –142.8 (3)° for C4"—C3"—C2"—C5" and 91.7 (4)° for C4"—C3"—C2"—C6". The attached phenyl group inclines by 53.49 (8)° against the chromene ring. The molecular structure is stabilized by intramolecular O3—H···O1"' hydrogen bond.

In the crystal, the molecules are linked into sheets parallel to (101) by intermolecular, bifurcated C3"'—H32···O2(x, y + 1, z) and C4'—H4'···O2(x – 0.5, –y + 0.5, z + 0.5) hydrogen bonds (Fig. 2 and Table 1). The adjacent sheets are sustained by intermolecular C6"—H61"···π (ring C1'—C2'—C3'—C4'—C5'—C6') and ππ (two adjacent rings of C4a—C5—C6—C7—C8—C8a) interactions (Fig. 3). The corresponding distance from atom H to the phenyl-ring center is 2.75 Å and the interplanar spacing is 3.54 Å.

For the structural characterization of mammea A/AC cyclo D, see: Thebtaranonth et al. (1981); Morel et al. (1999); Kaweetripob et al. (2000). For its anti-HIV activity, see: Márquez et al. (2005); Bedoya et al. (2005) and for its anticancer activity, see: Reyes-Chilpa et al. (2004). For related coumarins, see: Mahidol et al. (2002). For a review on the cytotoxic activity of coumarins, see: Kostova (2005).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al. 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atomic numbering scheme and 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. An infinite sheet parallel to (101) formed by intermolecular C—H···O hydrogen bonds (dotted lines).
[Figure 3] Fig. 3. Parallel, infinite sheets are sustained by intermolecular C—H···π and ππ interactions.
6-Butyryl-5-hydroxy-8,8-dimethyl-4-phenyl-2H,8H- benzo[1,2-b;3,4-b']dipyran-2-one top
Crystal data top
C24H22O5F(000) = 824
Mr = 390.42Dx = 1.292 Mg m3
Monoclinic, CcMelting point = 412–413 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 17.0746 (4) ÅCell parameters from 2083 reflections
b = 13.4170 (4) Åθ = 2.4–24.3°
c = 8.7607 (3) ŵ = 0.09 mm1
β = 90.341 (1)°T = 298 K
V = 2006.95 (10) Å3Block, light yellow
Z = 40.40 × 0.32 × 0.16 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2115 independent reflections
Radiation source: fine-focus sealed tube1714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 26.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.965, Tmax = 0.986k = 1612
5484 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0539P)2 + 0.3001P]
where P = (Fo2 + 2Fc2)/3
2115 reflections(Δ/σ)max < 0.001
265 parametersΔρmax = 0.13 e Å3
2 restraintsΔρmin = 0.14 e Å3
Crystal data top
C24H22O5V = 2006.95 (10) Å3
Mr = 390.42Z = 4
Monoclinic, CcMo Kα radiation
a = 17.0746 (4) ŵ = 0.09 mm1
b = 13.4170 (4) ÅT = 298 K
c = 8.7607 (3) Å0.40 × 0.32 × 0.16 mm
β = 90.341 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2115 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1714 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.986Rint = 0.023
5484 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.13 e Å3
2115 reflectionsΔρmin = 0.14 e Å3
265 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.37812 (12)0.33800 (15)0.0704 (2)0.0539 (5)
C20.33746 (18)0.2581 (2)0.1325 (4)0.0585 (8)
C30.26471 (17)0.2825 (2)0.2042 (4)0.0527 (7)
H30.23350.23040.23820.063*
C40.23882 (15)0.3763 (2)0.2253 (3)0.0417 (6)
C4A0.28947 (13)0.4585 (2)0.1797 (3)0.0381 (6)
C50.27705 (14)0.5596 (2)0.2138 (3)0.0401 (6)
C60.32418 (15)0.6360 (2)0.1496 (3)0.0418 (6)
C70.38818 (14)0.6053 (2)0.0584 (3)0.0430 (6)
C80.40587 (14)0.5060 (2)0.0336 (3)0.0426 (6)
C8A0.35629 (14)0.4350 (2)0.0958 (3)0.0413 (6)
O20.36629 (16)0.17743 (18)0.1167 (4)0.0866 (8)
O30.22095 (11)0.58102 (16)0.3131 (2)0.0545 (5)
H3O0.21870.64150.32540.065*
C1'0.15739 (15)0.3906 (2)0.2792 (3)0.0423 (6)
C2'0.12989 (18)0.3393 (2)0.4053 (3)0.0517 (7)
H2'0.16390.29980.46230.062*
C3'0.0518 (2)0.3467 (3)0.4467 (3)0.0634 (9)
H3'0.03350.31150.53070.076*
C4'0.00155 (18)0.4058 (3)0.3643 (4)0.0651 (9)
H4'0.05050.41150.39360.078*
C5'0.02778 (17)0.4563 (2)0.2394 (4)0.0613 (8)
H5'0.00660.49580.18310.074*
C6'0.10527 (16)0.4491 (2)0.1961 (3)0.0518 (7)
H6'0.12270.48360.11070.062*
O1"0.43245 (11)0.67654 (16)0.0081 (2)0.0583 (6)
C2"0.51443 (16)0.6551 (2)0.0456 (3)0.0512 (7)
C3"0.52184 (19)0.5511 (3)0.1026 (4)0.0659 (9)
H3"0.56240.53550.16890.079*
C4"0.47252 (17)0.4806 (3)0.0619 (3)0.0590 (8)
H4"0.48020.41520.09380.071*
C5"0.5349 (2)0.7323 (4)0.1653 (5)0.0883 (13)
H51"0.50190.72340.25330.132*
H53"0.58870.72460.19410.132*
H52"0.52710.79790.12420.132*
C6"0.56228 (19)0.6696 (3)0.0983 (4)0.0650 (9)
H61"0.55310.73520.13830.098*
H62"0.61690.66210.07540.098*
H63"0.54730.62070.17260.098*
O1"'0.25223 (16)0.75871 (17)0.2771 (3)0.0754 (7)
C1"'0.30374 (18)0.7407 (2)0.1820 (4)0.0534 (7)
C2"'0.3419 (2)0.8263 (2)0.1013 (5)0.0707 (9)
H210.33950.81420.00780.085*
H220.39680.82850.13060.085*
C3"'0.3056 (3)0.9268 (3)0.1337 (8)0.1047 (16)
H310.29880.93380.24300.126*
H320.34130.97860.10070.126*
C4"'0.2279 (3)0.9421 (4)0.0562 (8)0.131 (2)
H410.23500.94280.05240.197*
H420.20591.00450.08820.197*
H430.19310.88890.08320.197*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0436 (10)0.0447 (11)0.0734 (13)0.0010 (8)0.0108 (9)0.0126 (9)
C20.0485 (16)0.0413 (17)0.086 (2)0.0067 (13)0.0061 (16)0.0075 (15)
C30.0431 (15)0.0435 (15)0.0716 (19)0.0084 (12)0.0022 (13)0.0007 (14)
C40.0370 (13)0.0426 (14)0.0456 (15)0.0053 (11)0.0006 (11)0.0026 (11)
C4A0.0330 (13)0.0428 (14)0.0386 (13)0.0045 (11)0.0004 (10)0.0006 (11)
C50.0347 (12)0.0447 (15)0.0410 (13)0.0012 (11)0.0023 (10)0.0002 (12)
C60.0329 (12)0.0441 (15)0.0482 (14)0.0034 (11)0.0063 (10)0.0018 (11)
C70.0322 (12)0.0518 (16)0.0450 (14)0.0107 (11)0.0031 (10)0.0063 (12)
C80.0368 (12)0.0485 (15)0.0426 (13)0.0060 (11)0.0001 (10)0.0046 (12)
C8A0.0357 (14)0.0437 (15)0.0444 (14)0.0024 (11)0.0000 (11)0.0062 (11)
O20.0718 (15)0.0470 (14)0.141 (2)0.0045 (12)0.0231 (15)0.0142 (15)
O30.0476 (11)0.0509 (12)0.0652 (13)0.0020 (9)0.0161 (9)0.0061 (10)
C1'0.0368 (13)0.0457 (15)0.0445 (13)0.0097 (11)0.0020 (10)0.0001 (12)
C2'0.0556 (17)0.0551 (18)0.0443 (15)0.0095 (14)0.0012 (12)0.0048 (13)
C3'0.0620 (19)0.082 (2)0.0466 (17)0.0215 (17)0.0152 (14)0.0053 (16)
C4'0.0436 (16)0.083 (2)0.069 (2)0.0096 (15)0.0154 (14)0.0080 (18)
C5'0.0419 (15)0.071 (2)0.071 (2)0.0020 (14)0.0005 (14)0.0055 (16)
C6'0.0408 (14)0.0583 (18)0.0564 (16)0.0082 (12)0.0040 (11)0.0115 (13)
O1"0.0438 (11)0.0547 (13)0.0765 (14)0.0081 (9)0.0076 (10)0.0172 (10)
C2"0.0376 (14)0.0625 (18)0.0537 (17)0.0125 (12)0.0047 (11)0.0103 (14)
C3"0.0513 (17)0.086 (3)0.0604 (18)0.0193 (16)0.0220 (14)0.0193 (17)
C4"0.0473 (16)0.066 (2)0.0637 (19)0.0107 (15)0.0178 (13)0.0189 (16)
C5"0.059 (2)0.117 (3)0.089 (3)0.016 (2)0.0098 (18)0.045 (2)
C6"0.0623 (19)0.066 (2)0.067 (2)0.0040 (15)0.0097 (15)0.0067 (16)
O1"'0.0721 (15)0.0505 (13)0.1036 (19)0.0059 (11)0.0179 (14)0.0090 (12)
C1"'0.0393 (14)0.0468 (16)0.0739 (19)0.0003 (12)0.0069 (14)0.0006 (15)
C2"'0.0588 (19)0.0437 (18)0.110 (3)0.0058 (14)0.0009 (18)0.0087 (18)
C3"'0.089 (3)0.047 (2)0.178 (5)0.001 (2)0.006 (3)0.011 (3)
C4"'0.107 (4)0.086 (4)0.200 (6)0.037 (3)0.002 (4)0.023 (4)
Geometric parameters (Å, º) top
O1—C8A1.372 (3)C5'—C6'1.382 (4)
O1—C21.389 (4)C5'—H5'0.9300
C2—O21.198 (4)C6'—H6'0.9300
C2—C31.433 (4)O1"—C2"1.468 (3)
C3—C41.347 (4)C2"—C3"1.488 (5)
C3—H30.9300C2"—C6"1.510 (4)
C4—C4A1.458 (3)C2"—C5"1.516 (5)
C4—C1'1.483 (4)C3"—C4"1.317 (4)
C4A—C8A1.397 (3)C3"—H3"0.9300
C4A—C51.406 (3)C4"—H4"0.9300
C5—O31.329 (3)C5"—H51"0.9600
C5—C61.421 (4)C5"—H53"0.9600
C6—C71.418 (4)C5"—H52"0.9600
C6—C1"'1.476 (4)C6"—H61"0.9600
C7—O1"1.353 (3)C6"—H62"0.9600
C7—C81.385 (4)C6"—H63"0.9600
C8—C8A1.388 (4)O1"'—C1"'1.239 (4)
C8—C4"1.457 (4)C1"'—C2"'1.500 (5)
O3—H3O0.8200C2"'—C3"'1.511 (6)
C1'—C2'1.385 (4)C2"'—H210.9700
C1'—C6'1.389 (4)C2"'—H220.9700
C2'—C3'1.387 (4)C3"'—C4"'1.501 (7)
C2'—H2'0.9300C3"'—H310.9700
C3'—C4'1.371 (5)C3"'—H320.9700
C3'—H3'0.9300C4"'—H410.9600
C4'—C5'1.365 (4)C4"'—H420.9600
C4'—H4'0.9300C4"'—H430.9600
C8A—O1—C2122.1 (2)C7—O1"—C2"119.6 (2)
O2—C2—O1116.5 (3)O1"—C2"—C3"110.0 (2)
O2—C2—C3127.9 (3)O1"—C2"—C6"107.5 (2)
O1—C2—C3115.6 (3)C3"—C2"—C6"110.7 (3)
C4—C3—C2124.1 (3)O1"—C2"—C5"104.2 (3)
C4—C3—H3118.0C3"—C2"—C5"112.8 (3)
C2—C3—H3118.0C6"—C2"—C5"111.3 (3)
C3—C4—C4A118.2 (2)C4"—C3"—C2"121.8 (3)
C3—C4—C1'118.3 (2)C4"—C3"—H3"119.1
C4A—C4—C1'123.2 (2)C2"—C3"—H3"119.1
C8A—C4A—C5117.0 (2)C3"—C4"—C8119.4 (3)
C8A—C4A—C4117.5 (2)C3"—C4"—H4"120.3
C5—C4A—C4125.5 (2)C8—C4"—H4"120.3
O3—C5—C4A117.2 (2)C2"—C5"—H51"109.5
O3—C5—C6121.0 (2)C2"—C5"—H53"109.5
C4A—C5—C6121.7 (2)H51"—C5"—H53"109.5
C7—C6—C5117.0 (2)C2"—C5"—H52"109.5
C7—C6—C1"'124.6 (3)H51"—C5"—H52"109.5
C5—C6—C1"'118.4 (3)H53"—C5"—H52"109.5
O1"—C7—C8119.3 (2)C2"—C6"—H61"109.5
O1"—C7—C6118.2 (2)C2"—C6"—H62"109.5
C8—C7—C6122.5 (2)H61"—C6"—H62"109.5
C7—C8—C8A117.7 (2)C2"—C6"—H63"109.5
C7—C8—C4"119.1 (3)H61"—C6"—H63"109.5
C8A—C8—C4"123.1 (3)H62"—C6"—H63"109.5
O1—C8A—C8114.8 (2)O1"'—C1"'—C6119.0 (3)
O1—C8A—C4A121.5 (2)O1"'—C1"'—C2"'118.7 (3)
C8—C8A—C4A123.7 (2)C6—C1"'—C2"'122.3 (3)
C5—O3—H3O109.5C1"'—C2"'—C3"'114.5 (3)
C2'—C1'—C6'118.6 (2)C1"'—C2"'—H21108.6
C2'—C1'—C4120.8 (3)C3"'—C2"'—H21108.6
C6'—C1'—C4120.3 (2)C1"'—C2"'—H22108.6
C1'—C2'—C3'120.2 (3)C3"'—C2"'—H22108.6
C1'—C2'—H2'119.9H21—C2"'—H22107.6
C3'—C2'—H2'119.9C4"'—C3"'—C2"'113.6 (4)
C4'—C3'—C2'120.2 (3)C4"'—C3"'—H31108.9
C4'—C3'—H3'119.9C2"'—C3"'—H31108.9
C2'—C3'—H3'119.9C4"'—C3"'—H32108.9
C5'—C4'—C3'120.1 (3)C2"'—C3"'—H32108.9
C5'—C4'—H4'119.9H31—C3"'—H32107.7
C3'—C4'—H4'119.9C3"'—C4"'—H41109.5
C4'—C5'—C6'120.3 (3)C3"'—C4"'—H42109.5
C4'—C5'—H5'119.9H41—C4"'—H42109.5
C6'—C5'—H5'119.9C3"'—C4"'—H43109.5
C5'—C6'—C1'120.5 (3)H41—C4"'—H43109.5
C5'—C6'—H6'119.8H42—C4"'—H43109.5
C1'—C6'—H6'119.8
C8A—O1—C2—O2172.2 (3)C4—C4A—C8A—O16.5 (3)
C8A—O1—C2—C39.4 (4)C5—C4A—C8A—C86.3 (3)
O2—C2—C3—C4175.7 (4)C4—C4A—C8A—C8174.1 (2)
O1—C2—C3—C46.1 (5)C3—C4—C1'—C2'50.3 (4)
C2—C3—C4—C4A3.2 (4)C4A—C4—C1'—C2'136.1 (3)
C2—C3—C4—C1'170.7 (3)C3—C4—C1'—C6'124.1 (3)
C3—C4—C4A—C8A9.5 (3)C4A—C4—C1'—C6'49.6 (4)
C1'—C4—C4A—C8A164.1 (2)C6'—C1'—C2'—C3'0.0 (4)
C3—C4—C4A—C5170.0 (2)C4—C1'—C2'—C3'174.5 (3)
C1'—C4—C4A—C516.3 (4)C1'—C2'—C3'—C4'0.8 (5)
C8A—C4A—C5—O3169.6 (2)C2'—C3'—C4'—C5'1.1 (5)
C4—C4A—C5—O39.9 (3)C3'—C4'—C5'—C6'0.7 (5)
C8A—C4A—C5—C68.1 (3)C4'—C5'—C6'—C1'0.2 (5)
C4—C4A—C5—C6172.4 (2)C2'—C1'—C6'—C5'0.5 (4)
O3—C5—C6—C7173.0 (2)C4—C1'—C6'—C5'175.0 (3)
C4A—C5—C6—C74.6 (3)C8—C7—O1"—C2"27.2 (3)
O3—C5—C6—C1"'6.8 (3)C6—C7—O1"—C2"153.9 (2)
C4A—C5—C6—C1"'175.5 (2)C7—O1"—C2"—C3"38.7 (3)
C5—C6—C7—O1"177.9 (2)C7—O1"—C2"—C6"81.9 (3)
C1"'—C6—C7—O1"2.3 (4)C7—O1"—C2"—C5"159.9 (3)
C5—C6—C7—C81.1 (3)O1"—C2"—C3"—C4"27.0 (4)
C1"'—C6—C7—C8178.8 (2)C6"—C2"—C3"—C4"91.7 (4)
O1"—C7—C8—C8A176.1 (2)C5"—C2"—C3"—C4"142.8 (3)
C6—C7—C8—C8A2.9 (4)C2"—C3"—C4"—C84.1 (5)
O1"—C7—C8—C4"0.9 (4)C7—C8—C4"—C3"10.7 (4)
C6—C7—C8—C4"179.8 (2)C8A—C8—C4"—C3"172.5 (3)
C2—O1—C8A—C8176.2 (3)C7—C6—C1"'—O1"'171.8 (3)
C2—O1—C8A—C4A3.2 (4)C5—C6—C1"'—O1"'8.1 (4)
C7—C8—C8A—O1178.4 (2)C7—C6—C1"'—C2"'9.6 (4)
C4"—C8—C8A—O14.7 (3)C5—C6—C1"'—C2"'170.5 (3)
C7—C8—C8A—C4A0.9 (4)O1"'—C1"'—C2"'—C3"'6.7 (5)
C4"—C8—C8A—C4A175.9 (2)C6—C1"'—C2"'—C3"'171.9 (3)
C5—C4A—C8A—O1173.1 (2)C1"'—C2"'—C3"'—C4"'73.8 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1'–C6'ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1"0.821.732.464 (3)149
C3"—H32···O2i0.972.713.522 (5)142
C4—H4···O2ii0.932.703.396 (4)132
C6"—H61"···Cg1iii0.962.753.646 (4)156
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC24H22O5
Mr390.42
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)17.0746 (4), 13.4170 (4), 8.7607 (3)
β (°) 90.341 (1)
V3)2006.95 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.32 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.965, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
5484, 2115, 1714
Rint0.023
(sin θ/λ)max1)0.632
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.03
No. of reflections2115
No. of parameters265
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al. 2006).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1'–C6'ring.
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1"'0.821.732.464 (3)148.7
C3"'—H32···O2i0.972.713.522 (5)142.2
C4'—H4'···O2ii0.932.703.396 (4)132.1
C6"—H61"···Cg1iii0.962.753.646 (4)156
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z+1/2; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the Thai Government Stimulus Package 2 (TKK2555), under the Project for the Establishment of a Comprehensive Center for Innovative Food, Health Products and Agriculture (PERFECTA), the Center for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University (to TA), the National Research University Project of CHE and the Ratchadaphiseksomphot Endowment Fund (FW001A) (to ST).

References

First citationBedoya, L. M., Beltrán, M., Sancho, R., Olmedo, D. A., Sánchez-Palomino, S., Del Olmo, E., López-Pérez, J. L., Muñoz, E. & San Feliciano, A. (2005). Bioorg. Med. Chem. Lett. 15, 4447–4450.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaweetripob, W., Mahidol, C., Prawat, H. & Ruchirawat, S. (2000). Pharm. Biol. 38, 55–57.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKostova, I. (2005). Curr. Med. Chem. Anti-Cancer Agents, 5, 29–46.  CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMahidol, C., Kaweetripob, W., Prawat, H. & Ruchirawat, S. (2002). J. Nat. Prod. 65, 757–760.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMárquez, N., Sancho, R., Bedoya, L. M., Alcamí, J., López-Pérez, J. L., San Feliciano, A., Fiebich, B. L. & Muñoz, E. (2005). Antivir. Res. 66, 137–145.  Web of Science PubMed Google Scholar
First citationMorel, C., Guilet, D., Oger, J.-M., Séraphin, D., Sévenet, T., Wiart, C., Hadi, A. H. A., Richomme, P. & Bruneton, J. (1999). Phytochemistry, 50, 1243–1247.  Web of Science CrossRef CAS Google Scholar
First citationReyes-Chilpa, R., Estrada-Muñiz, E., Ramírez Apan, T., Amekraz, B., Aumelas, A., Jankowski, C. K. & Vázquez-Torres, M. (2004). Life Sci. 75, 1635–1647.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThebtaranonth, C., Imraporn, S. & Padungkul, N. (1981). Phytochemistry, 20, 2305–2306.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds