metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A new Schiff base nickel(II) complex: {5,5′-dihydr­­oxy-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato}nickel(II) methanol disolvate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: niumeiju@163.com

(Received 7 September 2009; accepted 6 October 2009; online 13 October 2009)

The monomeric title nickel(II) complex of a salicylaldimine, [Ni(C20H14N2O4)]·2CH3OH, was obtained by the reaction of 2,4-dihydroxy­benzaldehyde and 1,2-phenyl­enediamine with nickel(II) acetate. The NiII atom is coordinated by two N atoms [Ni—N = 1.839 (2) Å] and two O atoms [Ni—O = 1.8253 (19) Å] in an approximately square-planar geometry. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a chain along [001].

Related literature

For related structures, see: Amirnasr et al. (2006[Amirnasr, M., Schenk, K. J., Meghdadi, S. & Morshedi, M. (2006). Polyhedron, 25, 671-677.]); Shi et al. (2004[Shi, Y. C., Shen, W. B., Yang, H. M., Song, H. B. & Hu, X. Y. (2004). Polyhedron, 23, 749-754.]); Chen et al. (2009[Chen, X. H., Liang, Z. Y., Zhan, C. R. & Yang, M. X. (2009). J. Fuqing Branch Fujian Normal Univ. 2, 7-11.]); Hermindez-Molina et al. (1997[Hermindez-Molina, R., Mederos, A., Gill, P., Domfnguez, S., Ndfiez, P., Germain, G. & Debaerdemaeker, T. (1997). Inorg. Chim. Acta, 256, 319-325.]); Zhang et al. (2009[Zhang, Q. F., Jiang, F. L., Huang, Y. G., Wei, W., Gao, Q., Yang, M., Xiong, K. C. & Hong, M. C. (2009). Dalton Trans. pp. 2673-2676.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C20H14N2O4)]·2CH4O

  • Mr = 469.13

  • Monoclinic, C 2/c

  • a = 15.673 (3) Å

  • b = 15.090 (2) Å

  • c = 8.8680 (2) Å

  • β = 104.593 (3)°

  • V = 2029.7 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 298 K

  • 0.31 × 0.14 × 0.13 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.747, Tmax = 0.881

  • 5206 measured reflections

  • 1788 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.081

  • S = 1.00

  • 1788 reflections

  • 141 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.82 1.97 2.734 (3) 154
O3—H3⋯O1ii 0.82 1.98 2.797 (3) 172
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) x, y, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Nickel complexes have attracted intensive interest in the past decade because they play important roles in bioinorganic chemistry and redox enzyme systems (Amirnasr et al., 2006). In a continuation of a study of Schiff base ligands and their nickel(II) complexes, we report here the title complex (Fig. 1), in which the main plane being formed by the three phenyl and the N2O2. The angles O1—Ni1—N1A and O1A—Ni1—N1 (177.30 (10)°) indicate that the coordination geometry of the nickel atom is four-coordinate in an approximately square planar, which acts as a tetradentate ligand through its o-phenylenediamine N atoms and its deprotonated phenol O atoms. This square planar geometry is the most usual for NiII complexes (Shi et al., 2004) in the N202 donor set with Schiff base ligands. The Ni—O distances of 1.8253 (19)Å are very close to the corresponding values in related structures(1.820 Å, Chen et al., 2009). However, the Ni—N distances of 1.8392 (2)Å are significantly shorter than that for a related complex (1.859 Å, Hemindez-Molina et al., 1997). As shown in Fig. 2, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into a one-dimensional chain along [0 0 1] direction (Zhang et al., 2009).

Related literature top

For related structures, see: Amirnasr et al. (2006); Shi et al. (2004); Chen et al. (2009); Hermindez-Molina et al. (1997); Zhang et al. (2009).

Experimental top

o-Phenylenediamine(1 mmol, 108.22 mg) was dissolved in hot methanol (20 ml) and added dropwise to a methanol solution (10 ml) of 2,4-dihydroxybenzaldehyde (2 mmol, 276.2 mg). The mixture was then stirred at 323 K for 4 h. The triethylamine solution (3 ml) of nickel (II) acetate (1.5 mmol, 292.2 mg) was then added dropwise and the mixture stirred for another 4 h, at which point a red precipitate collected by suction filtration and washed with ethanol and ether. Crystals of the title compound suitable for X-ray analysis were from the methanol and dimethylsulfoxide solution after about one week.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.96 Å (methylene) or 0.93 Å (aromatic), 0.82 Å (hydroxyl) and Uiso(H) = 1.2Ueq(C).

Structure description top

Nickel complexes have attracted intensive interest in the past decade because they play important roles in bioinorganic chemistry and redox enzyme systems (Amirnasr et al., 2006). In a continuation of a study of Schiff base ligands and their nickel(II) complexes, we report here the title complex (Fig. 1), in which the main plane being formed by the three phenyl and the N2O2. The angles O1—Ni1—N1A and O1A—Ni1—N1 (177.30 (10)°) indicate that the coordination geometry of the nickel atom is four-coordinate in an approximately square planar, which acts as a tetradentate ligand through its o-phenylenediamine N atoms and its deprotonated phenol O atoms. This square planar geometry is the most usual for NiII complexes (Shi et al., 2004) in the N202 donor set with Schiff base ligands. The Ni—O distances of 1.8253 (19)Å are very close to the corresponding values in related structures(1.820 Å, Chen et al., 2009). However, the Ni—N distances of 1.8392 (2)Å are significantly shorter than that for a related complex (1.859 Å, Hemindez-Molina et al., 1997). As shown in Fig. 2, intermolecular O—H···O hydrogen bonds (Table 1) link the molecules into a one-dimensional chain along [0 0 1] direction (Zhang et al., 2009).

For related structures, see: Amirnasr et al. (2006); Shi et al. (2004); Chen et al. (2009); Hermindez-Molina et al. (1997); Zhang et al. (2009).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Crystal packing of the compound, showing a one-dimensional chain linked by O—H···O hydrogen bonds (dashed lines).
{5,5'-dihydroxy-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}nickel(II) methanol disolvate top
Crystal data top
[Ni(C20H14N2O4)]·2CH4OF(000) = 976
Mr = 469.13Dx = 1.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1287 reflections
a = 15.673 (3) Åθ = 2.7–23.9°
b = 15.090 (2) ŵ = 1.00 mm1
c = 8.8680 (2) ÅT = 298 K
β = 104.593 (3)°Block, red
V = 2029.7 (5) Å30.31 × 0.14 × 0.13 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
1788 independent reflections
Radiation source: fine-focus sealed tube1333 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1518
Tmin = 0.747, Tmax = 0.881k = 1716
5206 measured reflectionsl = 910
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0294P)2]
where P = (Fo2 + 2Fc2)/3
1788 reflections(Δ/σ)max < 0.001
141 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni(C20H14N2O4)]·2CH4OV = 2029.7 (5) Å3
Mr = 469.13Z = 4
Monoclinic, C2/cMo Kα radiation
a = 15.673 (3) ŵ = 1.00 mm1
b = 15.090 (2) ÅT = 298 K
c = 8.8680 (2) Å0.31 × 0.14 × 0.13 mm
β = 104.593 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
1788 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1333 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.881Rint = 0.049
5206 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.00Δρmax = 0.35 e Å3
1788 reflectionsΔρmin = 0.35 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00000.21153 (3)0.25000.03428 (19)
N10.06329 (15)0.12289 (14)0.1294 (3)0.0322 (6)
O10.06161 (13)0.30290 (12)0.1384 (2)0.0407 (5)
O20.23991 (13)0.45598 (13)0.2855 (2)0.0538 (6)
H20.21360.49760.23480.081*
O30.11150 (15)0.42336 (14)0.6598 (3)0.0615 (7)
H30.09210.38950.71540.092*
C10.03571 (17)0.03697 (17)0.1846 (3)0.0340 (7)
C20.0716 (2)0.04279 (19)0.1201 (4)0.0438 (8)
H2A0.11940.04330.03320.053*
C30.0357 (2)0.12082 (19)0.1861 (4)0.0476 (9)
H3A0.05980.17440.14410.057*
C40.12589 (19)0.1350 (2)0.0019 (4)0.0384 (8)
H40.15290.08470.04940.046*
C50.15581 (18)0.21777 (19)0.0639 (3)0.0330 (7)
C60.12162 (18)0.2986 (2)0.0053 (3)0.0352 (7)
C70.1515 (2)0.3782 (2)0.0694 (4)0.0417 (8)
H70.12920.43150.02350.050*
C80.21309 (19)0.3788 (2)0.2092 (4)0.0385 (7)
C90.2494 (2)0.3000 (2)0.2786 (4)0.0461 (8)
H90.29250.30070.37230.055*
C100.22071 (19)0.2219 (2)0.2066 (4)0.0434 (8)
H100.24480.16930.25330.052*
C110.0943 (3)0.3892 (2)0.5095 (5)0.0717 (11)
H11A0.04310.41760.44540.107*
H11B0.08390.32660.51230.107*
H11C0.14400.39970.46710.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0358 (3)0.0298 (3)0.0330 (3)0.0000.0007 (2)0.000
N10.0334 (14)0.0260 (13)0.0370 (15)0.0003 (11)0.0083 (12)0.0010 (12)
O10.0474 (13)0.0288 (11)0.0357 (12)0.0001 (10)0.0088 (10)0.0008 (10)
O20.0578 (14)0.0451 (13)0.0460 (15)0.0056 (11)0.0101 (11)0.0067 (12)
O30.0716 (17)0.0518 (15)0.0575 (17)0.0104 (12)0.0094 (13)0.0108 (13)
C10.0379 (18)0.0288 (16)0.0376 (19)0.0023 (13)0.0138 (13)0.0020 (14)
C20.047 (2)0.0360 (18)0.046 (2)0.0054 (16)0.0088 (16)0.0085 (16)
C30.061 (2)0.0294 (16)0.054 (2)0.0048 (15)0.0172 (16)0.0030 (15)
C40.0375 (18)0.0372 (18)0.040 (2)0.0054 (15)0.0081 (15)0.0062 (16)
C50.0325 (16)0.0320 (16)0.0330 (16)0.0017 (15)0.0053 (13)0.0008 (15)
C60.0319 (16)0.0385 (18)0.0326 (17)0.0002 (15)0.0035 (13)0.0006 (15)
C70.046 (2)0.0350 (17)0.038 (2)0.0007 (15)0.0007 (15)0.0017 (15)
C80.0373 (18)0.0395 (18)0.0364 (19)0.0043 (15)0.0051 (15)0.0070 (16)
C90.0395 (18)0.054 (2)0.0352 (19)0.0037 (17)0.0088 (14)0.0008 (17)
C100.0420 (19)0.0410 (19)0.0409 (19)0.0068 (16)0.0014 (15)0.0055 (17)
C110.081 (3)0.064 (3)0.072 (3)0.010 (2)0.025 (2)0.000 (2)
Geometric parameters (Å, º) top
Ni1—O11.8253 (19)C3—H3A0.9300
Ni1—O1i1.8253 (19)C4—C51.408 (4)
Ni1—N1i1.839 (2)C4—H40.9300
Ni1—N11.839 (2)C5—C61.409 (4)
N1—C41.310 (4)C5—C101.411 (4)
N1—C11.414 (3)C6—C71.395 (4)
O1—C61.312 (3)C7—C81.366 (4)
O2—C81.360 (3)C7—H70.9300
O2—H20.8200C8—C91.393 (4)
O3—C111.391 (4)C9—C101.361 (4)
O3—H30.8200C9—H90.9300
C1—C21.389 (3)C10—H100.9300
C1—C1i1.394 (6)C11—H11A0.9600
C2—C31.371 (4)C11—H11B0.9600
C2—H2A0.9300C11—H11C0.9600
C3—C3i1.377 (6)
O1—Ni1—O1i81.88 (12)C4—C5—C6122.5 (3)
O1—Ni1—N1i177.30 (10)C4—C5—C10120.1 (3)
O1i—Ni1—N1i95.74 (9)C6—C5—C10117.5 (3)
O1—Ni1—N195.74 (9)O1—C6—C7117.6 (3)
O1i—Ni1—N1177.30 (10)O1—C6—C5122.9 (3)
N1i—Ni1—N186.67 (15)C7—C6—C5119.6 (3)
C4—N1—C1121.6 (3)C8—C7—C6120.8 (3)
C4—N1—Ni1125.3 (2)C8—C7—H7119.6
C1—N1—Ni1113.11 (19)C6—C7—H7119.6
C6—O1—Ni1127.69 (19)O2—C8—C7121.1 (3)
C8—O2—H2109.5O2—C8—C9118.1 (3)
C11—O3—H3109.5C7—C8—C9120.8 (3)
C2—C1—C1i119.95 (18)C10—C9—C8118.8 (3)
C2—C1—N1126.5 (3)C10—C9—H9120.6
C1i—C1—N1113.53 (15)C8—C9—H9120.6
C3—C2—C1119.2 (3)C9—C10—C5122.5 (3)
C3—C2—H2A120.4C9—C10—H10118.7
C1—C2—H2A120.4C5—C10—H10118.7
C2—C3—C3i120.81 (18)O3—C11—H11A109.5
C2—C3—H3A119.6O3—C11—H11B109.5
C3i—C3—H3A119.6H11A—C11—H11B109.5
N1—C4—C5125.5 (3)O3—C11—H11C109.5
N1—C4—H4117.2H11A—C11—H11C109.5
C5—C4—H4117.2H11B—C11—H11C109.5
Symmetry code: (i) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3ii0.821.972.734 (3)154
O3—H3···O1iii0.821.982.797 (3)172
Symmetry codes: (ii) x, y+1, z1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C20H14N2O4)]·2CH4O
Mr469.13
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)15.673 (3), 15.090 (2), 8.8680 (2)
β (°) 104.593 (3)
V3)2029.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.31 × 0.14 × 0.13
Data collection
DiffractometerSiemens SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.747, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
5206, 1788, 1333
Rint0.049
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.081, 1.00
No. of reflections1788
No. of parameters141
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.821.972.734 (3)154.2
O3—H3···O1ii0.821.982.797 (3)172.4
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1.
 

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (20671048).

References

First citationAmirnasr, M., Schenk, K. J., Meghdadi, S. & Morshedi, M. (2006). Polyhedron, 25, 671–677.  Web of Science CSD CrossRef CAS Google Scholar
First citationChen, X. H., Liang, Z. Y., Zhan, C. R. & Yang, M. X. (2009). J. Fuqing Branch Fujian Normal Univ. 2, 7–11.  Google Scholar
First citationHermindez-Molina, R., Mederos, A., Gill, P., Domfnguez, S., Ndfiez, P., Germain, G. & Debaerdemaeker, T. (1997). Inorg. Chim. Acta, 256, 319–325.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y. C., Shen, W. B., Yang, H. M., Song, H. B. & Hu, X. Y. (2004). Polyhedron, 23, 749–754.  Web of Science CSD CrossRef CAS Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, Q. F., Jiang, F. L., Huang, Y. G., Wei, W., Gao, Q., Yang, M., Xiong, K. C. & Hong, M. C. (2009). Dalton Trans. pp. 2673–2676.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds