Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The rate of water vaporization in the vapor-diffusion method is critical for the protein crystallization process. Present methods, however, allow little or no control of the equilibration rates. This paper presents a relatively simple innovation of the conventional vapor-diffusion method by introducing a capillary barrier (for hanging drop) or a punched film barrier (for both hanging and sitting drop) between drop and reservoir, which can be beneficial in controlling the water vaporization rate, thereby promoting growth of large protein crystals. The crystallization experiments for lysozyme, trichosanthin and a novel neurotoxin BmK Mu9 show that this modified vapor-controlling-diffusion method is very effective for producing large protein crystals. The improved technique can be routinely used as a method for the preparation of other macromolecular and small-molecule crystals whose crystallization involves vaporization of water.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds