Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, 4C7H10NO+·P4O124−·6H2O, consists of two 1,4-anisidinium cations, two PO4 tetrahedra, which form one half of a cyclic P4O124− anion, and three water molecules. The P4O124− anion is disordered around an inversion centre and exhibits two forms, with occupancies of 0.55 and 0.45. Two-dimensional layers of P4O12 rings connected to water molecules via weak hydrogen bonds run parallel to the bc plane. The organic cations are linked to these inorganic layers only by N—H...O hydrogen bonds. The methoxy groups of the organic cations are not involved in significant intermolecular interactions, leading to a two-dimensional structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040419/dn6264sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040419/dn6264Isup2.hkl
Contains datablock I

CCDC reference: 296553

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.048
  • wR factor = 0.112
  • Data-to-parameter ratio = 11.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT301_ALERT_3_B Main Residue Disorder ......................... 38.00 Perc.
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Une étude bibliographique récente a montré que l'anisidine sous ses trois formes (ortho, méta, para) n'a fait l'objet jusqu'à présent que de peu d'investigations structurales. Ces investigations résultent de l'interaction avec l'anion (H2PO4) (Ben Amor et al., 1995; Ould Abdellahi & Jouini, 1995a,b), ou l'anion (H2P2O7)2− (Ould Abdellahi et al., 1999) ou encore avec l'anion (P6O18)6− (Ould Abdellahi et al., 1998). Cette molécule s'est distinguée dans ces composés par une passivation du rôle de l'oxygène du groupement méthoxy (CH3O–) dans la cohésion structurale, ce qui a conduit à des structures bidimensionnelles pour ces composés. L'interaction de ces anions phosphoriques avec les trois formes de l'anisidine prouve que cette passivation de l'oxygène est due probablement à l'effet donneur du groupement (CH3—O–) et non à son effet stérique. L'interaction de l'ortho- et du méta-anisidine avec des anions phosphates condensés s'est avérée beaucoup plus difficile et conduit généralement à des cristaux de très mauvaize qualité, inexploitables pour une étude structurale. Cette étude présente (Fig. 1) la structure d'un nouveau cyclotétraphosphate à base de para-anisidine, de formule (1,4-CH3O—C6H4—NH3)4(P4O12)·6H2O, (I). \sch

La résolution structurale de ce composé a mis en évidence l'existence d'un anion P4O12 désordonné autour d'un centre d'inversion avec deux taux d'occupation, l'un à 55% pour les atomes d'oxygène O2, O3, O4, O5, O6, et l'autre à 45% pour les atomes d'oxygène O2A, O3A, O4A, O5A, O6A.

La figure 2 représente la projection de la structure de (I) dans le plan (110). L'examen de cette dernière montre une alternance de couches inorganiques et organiques perpendiculairement à la direction [100]. Les anions (P4O12)4− sont répartis sur des plans perpendiculaires à l'axe [100], placés en x = 1/2. L'anion (P4O12)4− est centrosymétrique et est construit à partir de deux tétraèdres cristallographiquement indépendants. L'anion (P4O12)4− présente une forte distortion concernant surtout les distances P—O, qui varient de 1,431 (4) à 1,719 (4) Å. On note également que la valeur moyenne de ces distances [1,570 (4) Å] reste en bon accord avec celles rencontrées pour d'autres cyclotétraphosphates (Nahouane et al., 2005; Soumhi et al., 1998, 1999a, 1999b, 2001, 2005). Cependant, la moyenne des angles O—P—O pour les deux formes désordonnées est respectivement de 108,3(2) e t 108,9(2)°. Ces valeurs sont proches de celle d'un tétraèdre régulier (109,28°).

Les valeurs des angles P—P—P, 84,02 (3) e t 95,98 (3)°, restent quand même inférieures à celles trouvées (80,24 e t 99,76°) dans la structure du cyclotétraphosphate à base de 1,4,8,11 − tétraazacyclotétradécane, C10H24N4 (Soumhi et al., 2001), présentant jusqu'à présent la déformation la plus accentuée dans les cyclotétraphosphates à cations organiques.

Les groupements organiques pointent dans la même direction (Fig. 2) e t se connectent par liaison hydrogène de type N—H···OP, à la couche vers laquelle ils sont orientés. Il en résulte que les anions (P4O12)4− et les cations organiques avec lesquels ils sont liés forment des couches imbriquées parallèles au plan bc. La maille élémentaire contient huit de ces groupements organiques, disposés par moitié de part et d'autre d'une couche inorganique. Ces groupements ne sont pas directement liés entre eux car l'oxygène du groupement méthoxy n'intervient dans aucune liaison hydrogène. Ceci est probablement du à l'effet donneur de ce groupement qui provoque une déformation du nuage électronique vers le cycle benzénique. Les caractéristiques géométriques des deux cations organiques sont similaires à celles du même cation dans la structure de (1,4-CH3O—C6H4—NH3)H2PO4 (Ben Amor et al., 1995). La maille élémentaire renferme 12 molécules d'eau qui s'intercalent dans les couches inorganiques. Les molécules d'eau connectent par liaison hydrogène les anions (P4O12)4− entre eux, permettant ainsi la formation d'un réseau bidimensionnel parallèle au plan (011). Parmi l'ensemble des liaisons hydrogène qui se manifestent dans ce réseau, seulement deux liaisons sont fortes (Blessing, 1986; Brown, 1976): O8—O5 = 2,625 (5) Å e t O9—O2A = 2,544 (5) Å (Table 1).

Experimental top

Le phosphate condensé (1,4-CH3O—C6H4—NH3)4P4O12·6H2O a été obtenu par neutralization d'une solution de p-anisidine par une solution d'acide cyclotétraphosphorique H4P4O12. L'acide H4P4O12 a été préparé à partir de Na4P4O12 en utilisant une résine échangeuse d'ions de type Amberlite IR-120. La protonation de cette amine en milieu acide conduit au cation (1,4-CH3O—C6H4—NH3)+. Des cristaux incolores apparaissent après évaporation de la solution pendant quelques jours. [Please give brief details of quantities of reagents, reaction times, etc.]

Refinement top

Les atomes d'hydrogène des molécules d'eau ont été affinés avec des contraintes sur les distances O—H et H—H [Please state restrained values] ainsi que sur leurs coefficients d'agitation thermique [Please state values]. Pour les autres atomes d'hydrogène de la structure, ils ont été introduits en positions calculées [C—H = 0.93–0.96 Å] et contraints de se déplacer comme les atomes auxquels ils sont liés (riding model) [Uiso(H) = 1.2 où 1.5Ueq(C) Please check added text].

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and ATOMS for Windows (Dowty, 1995); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Représentation de l'anion P4O12 (55%) et de deux des quatre cations organiques qui l'entourent, avec la numérotation des atomes. Les liaisons hydrogène sont représentées en pointillé.
[Figure 2] Fig. 2. Projection selon l'axe c de la structure de (I) à 55%. Par ordre de taille croissant, les cercles désignent les atomes de carbone, d'azote et d'oxygène. Les atomes d'hydrogène sont omis.
Tetrakis(1,4-anisidinium) cyclotetraphosphate hexahydrate top
Crystal data top
4C7H10NO+·P4O124·6H2OF(000) = 968
Mr = 920.62Dx = 1.444 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 14.5706 (6) Åθ = 14–16°
b = 18.4117 (6) ŵ = 0.26 mm1
c = 8.0479 (5) ÅT = 298 K
β = 101.185 (4)°Plaquette, colourless
V = 2118.00 (17) Å30.40 × 0.40 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
Radiation source: fine-focus sealed tubeθmax = 25°, θmin = 1.4°
Graphite monochromatorh = 017
ω/2θ scansk = 021
3863 measured reflectionsl = 99
3713 independent reflections3 standard reflections every 60 min
3400 reflections with I > 2σ(I) intensity decay: 2.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.19 w = 1/[σ2(Fo2) + (0.0304P)2 + 2.1905P]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max = 0.001
330 parametersΔρmax = 0.37 e Å3
45 restraintsΔρmin = 0.41 e Å3
Crystal data top
4C7H10NO+·P4O124·6H2OV = 2118.00 (17) Å3
Mr = 920.62Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.5706 (6) ŵ = 0.26 mm1
b = 18.4117 (6) ÅT = 298 K
c = 8.0479 (5) Å0.40 × 0.40 × 0.20 mm
β = 101.185 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.012
3863 measured reflections3 standard reflections every 60 min
3713 independent reflections intensity decay: 2.4%
3400 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.04845 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.19Δρmax = 0.37 e Å3
3713 reflectionsΔρmin = 0.41 e Å3
330 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.43635 (6)0.60080 (5)0.88712 (11)0.0447 (3)
P20.60409 (6)0.55501 (5)1.13722 (10)0.0425 (3)
O10.37112 (17)0.64487 (13)0.9563 (3)0.0492 (6)
O20.5004 (3)0.6436 (2)0.7933 (5)0.0443 (10)0.55
O30.5070 (2)0.5808 (2)1.0772 (4)0.0371 (9)0.55
O40.4131 (3)0.5309 (2)0.8065 (5)0.0419 (10)0.55
O50.6516 (3)0.5853 (2)1.3006 (5)0.0442 (10)0.55
O60.6615 (3)0.5462 (2)0.9964 (5)0.0430 (10)0.55
O2A0.4256 (3)0.6081 (3)0.6883 (5)0.0418 (12)0.45
O3A0.5334 (3)0.5803 (3)0.9536 (5)0.0382 (11)0.45
O4A0.3763 (3)0.5199 (2)0.8929 (6)0.0355 (10)0.45
O5A0.6799 (3)0.6077 (3)1.1528 (7)0.0476 (13)0.45
O6A0.5367 (3)0.5670 (3)1.2664 (6)0.0467 (13)0.45
O70.59698 (19)0.54454 (17)0.6097 (3)0.0585 (7)
H710.5457 (18)0.559 (3)0.632 (5)0.088*
H720.596 (3)0.549 (3)0.506 (2)0.088*
O80.6218 (2)0.79134 (17)0.9449 (4)0.0689 (8)
H810.5621 (10)0.787 (3)0.925 (6)0.103*
H820.633 (3)0.823 (2)0.873 (5)0.103*
O90.4276 (2)0.79121 (15)0.9727 (4)0.0676 (8)
H910.404 (3)0.7489 (13)0.971 (6)0.101*
H920.426 (4)0.811 (2)1.067 (3)0.101*
O411.07349 (16)0.67701 (13)0.7769 (3)0.0487 (6)
O420.02851 (17)0.93579 (15)0.8454 (3)0.0552 (7)
N10.69704 (19)0.66724 (16)0.8251 (4)0.0478 (7)
H1A0.69140.63470.90420.072*
H1B0.66330.65320.72600.072*
H1C0.67660.71020.85340.072*
N20.34178 (19)0.90650 (15)0.7689 (4)0.0438 (7)
H2A0.34520.89500.66290.066*
H2B0.36830.87160.83860.066*
H2C0.37160.94820.79690.066*
C110.7951 (2)0.67325 (17)0.8115 (4)0.0350 (7)
C210.8339 (2)0.61922 (17)0.7280 (4)0.0402 (7)
H210.79730.58060.67890.048*
C310.9264 (2)0.62286 (18)0.7180 (4)0.0413 (8)
H310.95250.58660.66130.050*
C410.9817 (2)0.68026 (17)0.7916 (4)0.0360 (7)
C510.9426 (2)0.73450 (18)0.8729 (4)0.0428 (8)
H510.97890.77350.92100.051*
C610.8486 (2)0.73051 (18)0.8826 (4)0.0439 (8)
H610.82180.76690.93760.053*
C711.1351 (3)0.7325 (2)0.8520 (5)0.0561 (10)
H71A1.11380.77850.80280.084*
H71B1.19690.72290.83230.084*
H71C1.13640.73380.97160.084*
C120.2437 (2)0.91417 (16)0.7827 (4)0.0373 (7)
C220.2221 (2)0.92025 (19)0.9427 (4)0.0424 (8)
H220.26940.91931.03860.051*
C320.1308 (2)0.92764 (19)0.9586 (4)0.0431 (8)
H320.11610.93151.06560.052*
C420.0599 (2)0.92941 (17)0.8155 (4)0.0400 (7)
C520.0822 (3)0.92439 (18)0.6562 (4)0.0442 (8)
H520.03520.92600.55980.053*
C620.1751 (3)0.91687 (18)0.6414 (4)0.0437 (8)
H620.19050.91370.53480.052*
C720.1052 (3)0.9297 (3)0.7078 (6)0.0694 (12)
H72A0.10500.97020.63260.104*
H72B0.16260.92970.74990.104*
H72C0.10010.88530.64790.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0505 (5)0.0462 (5)0.0448 (5)0.0202 (4)0.0275 (4)0.0217 (4)
P20.0465 (5)0.0579 (6)0.0225 (4)0.0181 (4)0.0053 (3)0.0021 (4)
O10.0617 (15)0.0432 (13)0.0490 (14)0.0168 (11)0.0259 (12)0.0088 (11)
O20.040 (2)0.052 (3)0.043 (2)0.0013 (19)0.0150 (19)0.016 (2)
O30.0300 (19)0.057 (3)0.0245 (19)0.0088 (17)0.0063 (16)0.0042 (17)
O40.062 (3)0.036 (2)0.028 (2)0.0015 (19)0.009 (2)0.0029 (17)
O50.048 (2)0.047 (2)0.033 (2)0.0026 (19)0.0047 (18)0.0084 (18)
O60.037 (2)0.056 (3)0.040 (2)0.0065 (19)0.0174 (18)0.0075 (19)
O2A0.049 (3)0.053 (3)0.022 (2)0.005 (2)0.006 (2)0.011 (2)
O3A0.027 (2)0.061 (3)0.026 (2)0.001 (2)0.0057 (19)0.004 (2)
O4A0.033 (2)0.034 (3)0.042 (3)0.002 (2)0.016 (2)0.004 (2)
O5A0.037 (3)0.045 (3)0.054 (3)0.007 (2)0.006 (2)0.003 (2)
O6A0.050 (3)0.068 (4)0.024 (2)0.019 (3)0.011 (2)0.002 (2)
O70.0646 (17)0.0777 (19)0.0367 (13)0.0243 (15)0.0183 (12)0.0123 (13)
O80.0662 (18)0.0572 (18)0.083 (2)0.0063 (15)0.0144 (16)0.0039 (15)
O90.094 (2)0.0405 (15)0.0720 (19)0.0051 (15)0.0259 (17)0.0012 (14)
O410.0399 (13)0.0517 (14)0.0576 (15)0.0041 (11)0.0171 (11)0.0058 (12)
O420.0423 (13)0.0735 (18)0.0507 (14)0.0003 (12)0.0114 (11)0.0083 (13)
N10.0422 (16)0.0510 (18)0.0532 (17)0.0046 (13)0.0165 (13)0.0095 (14)
N20.0512 (17)0.0411 (15)0.0453 (16)0.0045 (13)0.0246 (13)0.0041 (12)
C110.0372 (16)0.0374 (17)0.0323 (15)0.0018 (13)0.0114 (13)0.0013 (13)
C210.0457 (18)0.0343 (17)0.0418 (18)0.0068 (14)0.0108 (14)0.0067 (14)
C310.0476 (19)0.0349 (17)0.0450 (18)0.0007 (14)0.0178 (15)0.0061 (14)
C410.0391 (17)0.0388 (17)0.0321 (15)0.0006 (13)0.0119 (13)0.0042 (13)
C510.0475 (19)0.0389 (18)0.0438 (18)0.0101 (15)0.0136 (15)0.0111 (15)
C610.0481 (19)0.0415 (19)0.0458 (19)0.0028 (15)0.0183 (15)0.0133 (15)
C710.046 (2)0.057 (2)0.067 (2)0.0125 (18)0.0140 (18)0.0013 (19)
C120.0474 (18)0.0313 (16)0.0375 (17)0.0055 (13)0.0189 (14)0.0037 (13)
C220.0446 (18)0.052 (2)0.0312 (16)0.0052 (15)0.0087 (14)0.0043 (14)
C320.0474 (19)0.055 (2)0.0300 (16)0.0019 (16)0.0151 (14)0.0037 (14)
C420.0456 (18)0.0357 (17)0.0405 (17)0.0007 (14)0.0128 (14)0.0030 (14)
C520.057 (2)0.0420 (18)0.0316 (16)0.0005 (16)0.0037 (15)0.0016 (14)
C620.061 (2)0.0438 (19)0.0301 (16)0.0027 (16)0.0173 (15)0.0021 (14)
C720.049 (2)0.086 (3)0.069 (3)0.004 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
P1—O11.441 (2)N2—H2A0.8900
P1—O41.452 (4)N2—H2B0.8900
P1—O3A1.462 (4)N2—H2C0.8900
P1—O21.529 (4)C11—C611.368 (4)
P1—O2A1.583 (4)C11—C211.381 (4)
P1—O31.710 (4)C21—C311.367 (4)
P1—O4A1.733 (5)C21—H210.9300
P2—O4Ai1.439 (5)C31—C411.391 (4)
P2—O5A1.457 (5)C31—H310.9300
P2—O51.472 (4)C41—C511.377 (4)
P2—O31.481 (4)C51—C611.390 (5)
P2—O61.542 (4)C51—H510.9300
P2—O6A1.578 (4)C61—H610.9300
P2—O4i1.677 (4)C71—H71A0.9600
P2—O3A1.694 (4)C71—H71B0.9600
O7—H710.85 (3)C71—H71C0.9600
O7—H720.839 (12)C12—C621.361 (5)
O8—H810.858 (12)C12—C221.389 (4)
O8—H820.86 (4)C22—C321.367 (5)
O9—H910.85 (3)C22—H220.9300
O9—H920.85 (3)C32—C421.390 (5)
O41—C411.366 (4)C32—H320.9300
O41—C711.416 (4)C42—C521.386 (4)
O42—C421.360 (4)C52—C621.389 (5)
O42—C721.417 (5)C52—H520.9300
N1—C111.458 (4)C62—H620.9300
N1—H1A0.8900C72—H72A0.9600
N1—H1B0.8900C72—H72B0.9600
N1—H1C0.8900C72—H72C0.9600
N2—C121.461 (4)
O1—P1—O4123.9 (2)C31—C21—H21120.2
O1—P1—O3A131.9 (2)C11—C21—H21120.2
O1—P1—O2114.3 (2)C21—C31—C41120.6 (3)
O4—P1—O2110.4 (2)C21—C31—H31119.7
O1—P1—O2A113.5 (2)C41—C31—H31119.7
O3A—P1—O2A106.9 (2)O41—C41—C51125.1 (3)
O1—P1—O395.94 (16)O41—C41—C31115.2 (3)
O4—P1—O3104.8 (2)C51—C41—C31119.6 (3)
O2—P1—O3103.5 (2)C41—C51—C61119.5 (3)
O1—P1—O4A95.69 (19)C41—C51—H51120.3
O3A—P1—O4A103.0 (3)C61—C51—H51120.3
O2A—P1—O4A98.5 (3)C11—C61—C51120.3 (3)
O4Ai—P2—O5A118.8 (3)C11—C61—H61119.8
O5—P2—O3115.1 (2)C51—C61—H61119.8
O5—P2—O6117.9 (2)O41—C71—H71A109.5
O3—P2—O6114.4 (2)O41—C71—H71B109.5
O4Ai—P2—O6A114.5 (3)H71A—C71—H71B109.5
O5A—P2—O6A114.1 (3)O41—C71—H71C109.5
O5—P2—O4i100.7 (2)H71A—C71—H71C109.5
O3—P2—O4i101.9 (2)H71B—C71—H71C109.5
O6—P2—O4i103.3 (2)C62—C12—C22120.6 (3)
O4Ai—P2—O3A102.9 (3)C62—C12—N2120.7 (3)
O5A—P2—O3A102.4 (3)C22—C12—N2118.6 (3)
O6A—P2—O3A100.7 (2)C32—C22—C12119.6 (3)
H71—O7—H72110 (3)C32—C22—H22120.2
H81—O8—H82105 (3)C12—C22—H22120.2
H91—O9—H92109 (3)C22—C32—C42120.4 (3)
C41—O41—C71118.8 (3)C22—C32—H32119.8
C42—O42—C72119.1 (3)C42—C32—H32119.8
C11—N1—H1A109.5O42—C42—C52124.7 (3)
C11—N1—H1B109.5O42—C42—C32115.7 (3)
H1A—N1—H1B109.5C52—C42—C32119.6 (3)
C11—N1—H1C109.5C42—C52—C62119.6 (3)
H1A—N1—H1C109.5C42—C52—H52120.2
H1B—N1—H1C109.5C62—C52—H52120.2
C12—N2—H2A109.5C12—C62—C52120.1 (3)
C12—N2—H2B109.5C12—C62—H62119.9
H2A—N2—H2B109.5C52—C62—H62119.9
C12—N2—H2C109.5O42—C72—H72A109.5
H2A—N2—H2C109.5O42—C72—H72B109.5
H2B—N2—H2C109.5H72A—C72—H72B109.5
C61—C11—C21120.3 (3)O42—C72—H72C109.5
C61—C11—N1120.9 (3)H72A—C72—H72C109.5
C21—C11—N1118.8 (3)H72B—C72—H72C109.5
C31—C21—C11119.7 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O2A0.85 (3)2.10 (2)2.936 (6)173 (5)
O7—H72···O6Aii0.84 (1)1.98 (2)2.763 (5)155 (4)
O7—H72···O5ii0.84 (1)2.08 (2)2.855 (5)153 (4)
O8—H81···O90.86 (1)2.07 (2)2.880 (5)158 (5)
O8—H82···O5iii0.86 (4)1.83 (3)2.625 (5)154 (5)
O8—H82···O5Aiii0.86 (4)2.39 (2)3.236 (6)169 (5)
O9—H91···O10.85 (3)1.97 (2)2.813 (4)169 (5)
O9—H92···O2iv0.85 (3)2.10 (3)2.857 (5)148 (5)
O9—H92···O2Aiv0.85 (3)1.78 (3)2.544 (5)149 (4)
N1—H1A···O60.891.882.722 (5)158
N1—H1A···O5A0.892.102.911 (6)151
N1—H1B···O70.892.343.042 (4)136
N1—H1B···O8iii0.892.453.137 (5)135
N1—H1C···O80.891.912.786 (4)169
N2—H2A···O1iii0.891.922.797 (3)168
N2—H2B···O90.891.932.822 (4)175
N2—H2C···O7v0.891.952.806 (4)162
Symmetry codes: (ii) x, y, z1; (iii) x, y+3/2, z1/2; (iv) x, y+3/2, z+1/2; (v) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula4C7H10NO+·P4O124·6H2O
Mr920.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.5706 (6), 18.4117 (6), 8.0479 (5)
β (°) 101.185 (4)
V3)2118.00 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3863, 3713, 3400
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.112, 1.19
No. of reflections3713
No. of parameters330
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.41

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), CAD-4 EXPRESS, MolEN (Fair, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and ATOMS for Windows (Dowty, 1995), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H71···O2A0.85 (3)2.096 (15)2.936 (6)173 (5)
O7—H72···O6Ai0.839 (12)1.98 (2)2.763 (5)155 (4)
O7—H72···O5i0.839 (12)2.08 (2)2.855 (5)153 (4)
O8—H81···O90.858 (12)2.07 (2)2.880 (5)158 (5)
O8—H82···O5ii0.86 (4)1.83 (3)2.625 (5)154 (5)
O8—H82···O5Aii0.86 (4)2.392 (16)3.236 (6)169 (5)
O9—H91···O10.85 (3)1.971 (15)2.813 (4)169 (5)
O9—H92···O2iii0.85 (3)2.10 (3)2.857 (5)148 (5)
O9—H92···O2Aiii0.85 (3)1.78 (3)2.544 (5)149 (4)
N1—H1A···O60.891.882.722 (5)158
N1—H1A···O5A0.892.102.911 (6)151
N1—H1B···O70.892.343.042 (4)136
N1—H1B···O8ii0.892.453.137 (5)135
N1—H1C···O80.891.912.786 (4)169
N2—H2A···O1ii0.891.922.797 (3)168
N2—H2B···O90.891.932.822 (4)175
N2—H2C···O7iv0.891.952.806 (4)162
Symmetry codes: (i) x, y, z1; (ii) x, y+3/2, z1/2; (iii) x, y+3/2, z+1/2; (iv) x+1, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds