Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C18H19N5O7S, can be considered as a synthetic analogue of nucleosides. The mol­ecule displays an anti conformation. The occurrence of N—H...O hydrogen bonds results in the formation of centrosymmetric dimers. The crystal packing is characterized by π–π stacking inter­actions between the purine systems.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805030175/dn6253sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805030175/dn6253Isup2.hkl
Contains datablock I

CCDC reference: 287552

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.056
  • wR factor = 0.129
  • Data-to-parameter ratio = 16.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

The present crystallographic analysis of the title compound, (I), extends our ongoing investigation of the synthesis of C-6 aryl purine derivatives using the Suzuki–Miyaura reaction, i.e. the Pd-mediated cross-coupling of haloaromatics or aryltriflates with an aryl boronic acid (Miyaura & Suzuki 1995; Suzuki, 1999). This method has led to the development of several biologically active nucleoside analogues, which are generally prepared using 6-chloropurines as substrates (Česnek et al., 2000). Commercially available 6-chloroguanosine derivatives are expensive, but their preparation via chlorination of 6-oxopurines proceeds mostly with low yields. Therefore, the development of O6-tosylated guanine derivatives as alternative substrates for cross-coupling reactions is important (Lakshman et al., 2002). We report here the single-crystal structure of an O6-tosylate derivative, (I), of acyclic guanosine, as a typical example of the class of intermediates synthesized by tosylation of N2-amidine-protected 9-(2-acetoxyethoxymethyl)guanine and related analogues. The chemical structures of O6-tosylates of acyclic guanosine analogues have not been confirmed in the literature by single-crystal X-ray diffraction analysis.

The molecular structure of (I) is shown in Fig. 1. The bond lengths and angles of (I) compare well with those of related compounds extracted from the Cambridge Structural Database (CSD, Version 5.26; Allen, 2002). Only 18 entries containing 9-oxymethylpurine derivatives could be found. Selected torsion angles for (I) are reported in Table 1. The value of 77.1 (3)° observed for C8—N9—C24—O25 indicates that the purine system exhibits the anti conformation across the pseudo-glycosidic bond.

The packing of the molecules in the crystal structure of (I) viewed down the a axis is shown in Fig. 2. Intermolecular N—H···O hydrogen bonds result in the formation of centrosymmetric dimers. Slipped ππ stacking interactions are observed between purine systems related by an inversion centre (Fig. 2). The distance between the planes of these overlaped purine fragments is 3.358 (3) Å, whereas the centroid-to-centroid distance is 3.658 Å [symmetry code: −x + 2, −y + 1, −z + 1].

Experimental top

4-Toluenesulfonylchloride (0.25 g, 1.3 mmol) was added at 273 K to a solution containing 9-(2-acetoxyethoxymethyl)-2-(N,N-dimethylimidoformamido)-6-oxopurine (0.16 g, 0.5 mmol), DMAP (Please define; 15.3 mg, 0.13 mmol), NEt3 (0.19 g, 1.85 mmol) and dichloromethane (10 ml). After the mixture had been allowed to reach ambient temperature, stirring was continued for 4 h. It was then washed with aqueous NaHCO3 (1 × 2 ml) and water (2 × 2 ml). The organic layer was dried (MgSO4) and evaporated under reduced pressure. The residue was dissolved in dichloromethane and subjected to column chromatography (silica gel, CH2Cl2–EtOH 100:1), and crystallized from ethanol (yield 0.29 g, 79%; m.p. 436–438 K). Spectroscopic analysis: 1H NMR (200 MHz, DMSO-d6, δ): 11.26 (d, 1H, J = 10.3 Hz, NH), 9.08 (d, 1H, J = 10.3 Hz, CH), 8.58 (s, 1H, CH), 8.09 (d, 2H, C6H4), 7.51 (d, 2H, C6H4), 5.59 (s, 2H, NCH2), 4.09–4.01 (m, 2H, CH2), 3.75–3.68 (m, 2H, CH2), 2.43 (s, 3H, CH3), 1.88 (s, 3H, OAc). Analysis calculated for C18H19N5O7S: C 48.10, H 4.26, N 15.58%: found: C 48.47, H 4.31, N 15.73%. Crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation from an EtOH–H2O (2:1) solution at room temperature.

Refinement top

All H atoms were introduced in calculated positions and treated as riding atoms, with C—H distances of 0.93 (aromatic), 0.96 (methyl) and 0.97 Å (CH2), and N—H = 0.86 Å, with Uiso(H)= 1.2Ueq(aromatic C, CH2 or N) and 1.5Ueq(methyl C).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1999); cell refinement: HKL SCALEPACK (Otwinowski & Minor 1997); data reduction: DENZO and SCALEPAK (Otwinowski & Minor, 1997); program(s) used to solve structure: DIRDIF96 (Beurskens et al., 1996); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003); software used to prepare material for publication: maXus (Mackay et al., 1999) and SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are represented by spheres of arbitrary radii.
[Figure 2] Fig. 2. A packing diagram for (I), viewed down the a axis. Dashed lines show hydrogen bonding. For the sake of clarity, H atoms not involved in the hydrogen bonds have been omitted.
9-(2-Acetoxyethoxymethyl)-2-formamido-6-(4-toluenesulfonyl)oxypurine top
Crystal data top
C18H19N5O7SF(000) = 936
Mr = 449.44Dx = 1.486 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4435 reflections
a = 10.4397 (3) Åθ = 1.0–27.5°
b = 10.8046 (3) ŵ = 0.21 mm1
c = 17.8259 (7) ÅT = 293 K
β = 92.5932 (12)°Needle, colourless
V = 2008.65 (11) Å30.31 × 0.08 × 0.07 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
Rint = 0.036
Radiation source: fine-focus sealed tubeθmax = 27.5°
ϕ and ω scansh = 1313
8435 measured reflectionsk = 1213
4539 independent reflectionsl = 2323
3215 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0341P)2 + 1.0912P]
where P = (Fo2 + 2Fc2)/3
4539 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C18H19N5O7SV = 2008.65 (11) Å3
Mr = 449.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4397 (3) ŵ = 0.21 mm1
b = 10.8046 (3) ÅT = 293 K
c = 17.8259 (7) Å0.31 × 0.08 × 0.07 mm
β = 92.5932 (12)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3215 reflections with I > 2σ(I)
8435 measured reflectionsRint = 0.036
4539 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.13Δρmax = 0.22 e Å3
4539 reflectionsΔρmin = 0.26 e Å3
282 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S140.55890 (6)0.68629 (6)0.39233 (4)0.0506 (2)
N31.05770 (17)0.63145 (16)0.43073 (10)0.0361 (4)
O251.24505 (17)0.42047 (16)0.30720 (10)0.0523 (5)
O130.66492 (15)0.57651 (14)0.40495 (11)0.0492 (4)
O281.43384 (17)0.35773 (16)0.20441 (10)0.0526 (4)
O121.16224 (17)0.95714 (15)0.52254 (11)0.0548 (5)
N70.8559 (2)0.38003 (17)0.36786 (12)0.0458 (5)
N10.83974 (18)0.70322 (16)0.43803 (11)0.0396 (4)
N91.06760 (18)0.41967 (16)0.38531 (11)0.0406 (4)
N101.00882 (18)0.82823 (17)0.47505 (11)0.0408 (5)
H100.95220.88560.47790.049*
O301.4215 (2)0.5537 (2)0.16451 (14)0.0794 (7)
C41.0053 (2)0.52569 (19)0.40496 (12)0.0344 (5)
O150.44770 (18)0.6167 (2)0.37159 (13)0.0698 (6)
O160.6090 (2)0.77441 (19)0.34273 (12)0.0670 (6)
C20.9682 (2)0.71425 (19)0.44615 (13)0.0360 (5)
C80.9720 (2)0.3373 (2)0.36364 (14)0.0467 (6)
H80.98910.25750.34730.056*
C220.6035 (2)0.8581 (2)0.50152 (17)0.0514 (6)
H220.65760.89660.46870.062*
C111.1299 (2)0.8557 (2)0.49892 (14)0.0438 (6)
H111.19180.79390.49720.053*
C50.8751 (2)0.50019 (19)0.39418 (13)0.0369 (5)
C60.7953 (2)0.5964 (2)0.41197 (13)0.0385 (5)
C210.5839 (3)0.9083 (2)0.57099 (18)0.0573 (7)
H210.62620.98110.58500.069*
C170.5415 (2)0.7494 (2)0.48142 (16)0.0455 (6)
C261.2329 (3)0.3137 (3)0.26141 (16)0.0533 (6)
H26A1.14310.29470.25080.064*
H26B1.27290.24330.28690.064*
C200.5025 (3)0.8534 (2)0.62082 (17)0.0556 (7)
C180.4610 (3)0.6914 (3)0.53024 (18)0.0598 (7)
H180.42020.61780.51660.072*
C291.4836 (3)0.4699 (3)0.19077 (16)0.0538 (7)
C190.4423 (3)0.7442 (3)0.59913 (19)0.0665 (8)
H190.38790.70560.63180.080*
C271.2982 (3)0.3398 (3)0.18940 (16)0.0590 (7)
H27A1.28440.27110.15500.071*
H27B1.26140.41350.16600.071*
C241.2059 (2)0.4027 (2)0.38036 (14)0.0479 (6)
H24A1.25050.46090.41370.057*
H24B1.22890.31970.39680.057*
C230.4792 (4)0.9119 (3)0.6961 (2)0.0776 (9)
H23A0.42770.85740.72480.116*
H23B0.43520.98920.68840.116*
H23C0.55980.92610.72270.116*
C311.6233 (3)0.4727 (3)0.2095 (2)0.0732 (9)
H31A1.65310.55670.20870.110*
H31B1.66730.42480.17330.110*
H31C1.63990.43840.25870.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S140.0394 (3)0.0482 (4)0.0632 (4)0.0016 (3)0.0079 (3)0.0005 (3)
N30.0369 (10)0.0326 (9)0.0388 (11)0.0047 (7)0.0026 (8)0.0014 (8)
O250.0519 (11)0.0483 (10)0.0577 (11)0.0042 (8)0.0136 (9)0.0107 (8)
O130.0346 (9)0.0385 (9)0.0746 (12)0.0058 (7)0.0020 (8)0.0050 (8)
O280.0502 (10)0.0513 (10)0.0569 (11)0.0032 (8)0.0109 (8)0.0041 (8)
O120.0498 (10)0.0421 (10)0.0722 (13)0.0128 (8)0.0011 (9)0.0115 (9)
N70.0466 (12)0.0347 (10)0.0566 (13)0.0090 (9)0.0083 (10)0.0074 (9)
N10.0354 (10)0.0344 (10)0.0494 (12)0.0029 (8)0.0044 (8)0.0013 (8)
N90.0425 (11)0.0332 (9)0.0465 (12)0.0004 (8)0.0061 (9)0.0028 (8)
N100.0394 (11)0.0319 (9)0.0511 (12)0.0042 (8)0.0025 (9)0.0065 (8)
O300.0832 (16)0.0523 (12)0.1022 (18)0.0074 (11)0.0002 (13)0.0137 (12)
C40.0381 (12)0.0331 (11)0.0323 (11)0.0021 (9)0.0058 (9)0.0019 (9)
O150.0430 (11)0.0746 (13)0.0901 (16)0.0087 (9)0.0172 (10)0.0156 (11)
O160.0708 (13)0.0638 (12)0.0658 (13)0.0003 (10)0.0031 (10)0.0128 (10)
C20.0384 (12)0.0320 (11)0.0381 (12)0.0042 (9)0.0057 (9)0.0002 (9)
C80.0537 (15)0.0345 (12)0.0526 (15)0.0063 (10)0.0108 (12)0.0052 (10)
C220.0408 (14)0.0410 (13)0.0724 (19)0.0064 (10)0.0034 (12)0.0033 (12)
C110.0440 (14)0.0371 (12)0.0505 (14)0.0068 (10)0.0053 (11)0.0019 (10)
C50.0386 (12)0.0322 (11)0.0401 (12)0.0056 (9)0.0036 (9)0.0004 (9)
C60.0358 (12)0.0370 (12)0.0428 (13)0.0062 (9)0.0034 (10)0.0025 (9)
C210.0514 (16)0.0432 (14)0.077 (2)0.0048 (12)0.0004 (14)0.0073 (13)
C170.0324 (12)0.0375 (12)0.0661 (17)0.0008 (9)0.0026 (11)0.0003 (11)
C260.0498 (15)0.0529 (15)0.0577 (16)0.0057 (12)0.0083 (12)0.0093 (12)
C200.0460 (15)0.0495 (15)0.0711 (19)0.0112 (12)0.0000 (13)0.0015 (13)
C180.0532 (16)0.0461 (14)0.080 (2)0.0163 (12)0.0061 (15)0.0018 (14)
C290.0627 (17)0.0498 (15)0.0497 (16)0.0016 (13)0.0112 (13)0.0026 (12)
C190.0610 (19)0.0642 (18)0.076 (2)0.0102 (14)0.0183 (16)0.0060 (16)
C270.0508 (16)0.0748 (19)0.0517 (16)0.0028 (14)0.0056 (13)0.0055 (14)
C240.0438 (14)0.0519 (14)0.0480 (15)0.0062 (11)0.0014 (11)0.0068 (11)
C230.084 (2)0.073 (2)0.076 (2)0.0162 (18)0.0094 (18)0.0101 (17)
C310.0613 (19)0.086 (2)0.072 (2)0.0131 (17)0.0022 (16)0.0008 (17)
Geometric parameters (Å, º) top
S14—O161.416 (2)C22—C171.380 (3)
S14—O151.4180 (19)C22—H220.9300
S14—O131.6310 (17)C11—H110.9300
S14—C171.745 (3)C5—C61.379 (3)
N3—C21.331 (3)C21—C201.389 (4)
N3—C41.339 (3)C21—H210.9300
O25—C241.398 (3)C17—C181.387 (4)
O25—C261.416 (3)C26—C271.507 (4)
O13—C61.378 (3)C26—H26A0.9700
O28—C291.345 (3)C26—H26B0.9700
O28—C271.442 (3)C20—C191.384 (4)
O12—C111.217 (3)C20—C231.512 (4)
N7—C81.302 (3)C18—C191.376 (4)
N7—C51.392 (3)C18—H180.9300
N1—C61.321 (3)C29—C311.481 (4)
N1—C21.348 (3)C19—H190.9300
N9—C41.371 (3)C27—H27A0.9700
N9—C81.379 (3)C27—H27B0.9700
N9—C241.462 (3)C24—H24A0.9700
N10—C111.348 (3)C24—H24B0.9700
N10—C21.393 (3)C23—H23A0.9600
N10—H100.8600C23—H23B0.9600
O30—C291.197 (3)C23—H23C0.9600
C4—C51.391 (3)C31—H31A0.9600
C8—H80.9300C31—H31B0.9600
C22—C211.376 (4)C31—H31C0.9600
O16—S14—O15121.01 (14)C18—C17—S14119.0 (2)
O16—S14—O13107.91 (11)O25—C26—C27107.8 (2)
O15—S14—O13101.12 (11)O25—C26—H26A110.1
O16—S14—C17111.22 (12)C27—C26—H26A110.1
O15—S14—C17109.08 (13)O25—C26—H26B110.1
O13—S14—C17104.86 (11)C27—C26—H26B110.1
C2—N3—C4111.39 (18)H26A—C26—H26B108.5
C24—O25—C26113.80 (19)C19—C20—C21117.9 (3)
C6—O13—S14124.08 (14)C19—C20—C23121.0 (3)
C29—O28—C27118.1 (2)C21—C20—C23121.1 (3)
C8—N7—C5103.31 (19)C19—C18—C17119.2 (3)
C6—N1—C2116.58 (19)C19—C18—H18120.4
C4—N9—C8105.38 (19)C17—C18—H18120.4
C4—N9—C24126.99 (19)O30—C29—O28123.0 (3)
C8—N9—C24127.3 (2)O30—C29—C31125.7 (3)
C11—N10—C2125.2 (2)O28—C29—C31111.2 (3)
C11—N10—H10117.4C18—C19—C20121.4 (3)
C2—N10—H10117.4C18—C19—H19119.3
N3—C4—N9127.6 (2)C20—C19—H19119.3
N3—C4—C5126.7 (2)O28—C27—C26110.2 (2)
N9—C4—C5105.73 (18)O28—C27—H27A109.6
N3—C2—N1128.51 (19)C26—C27—H27A109.6
N3—C2—N10117.76 (19)O28—C27—H27B109.6
N1—C2—N10113.73 (19)C26—C27—H27B109.6
N7—C8—N9114.7 (2)H27A—C27—H27B108.1
N7—C8—H8122.6O25—C24—N9111.8 (2)
N9—C8—H8122.6O25—C24—H24A109.3
C21—C22—C17118.8 (3)N9—C24—H24A109.3
C21—C22—H22120.6O25—C24—H24B109.3
C17—C22—H22120.6N9—C24—H24B109.3
O12—C11—N10123.3 (2)H24A—C24—H24B107.9
O12—C11—H11118.4C20—C23—H23A109.5
N10—C11—H11118.4C20—C23—H23B109.5
C6—C5—C4114.58 (19)H23A—C23—H23B109.5
C6—C5—N7134.6 (2)C20—C23—H23C109.5
C4—C5—N7110.85 (19)H23A—C23—H23C109.5
N1—C6—O13119.9 (2)H23B—C23—H23C109.5
N1—C6—C5122.2 (2)C29—C31—H31A109.5
O13—C6—C5117.81 (19)C29—C31—H31B109.5
C22—C21—C20121.8 (3)H31A—C31—H31B109.5
C22—C21—H21119.1C29—C31—H31C109.5
C20—C21—H21119.1H31A—C31—H31C109.5
C22—C17—C18120.8 (3)H31B—C31—H31C109.5
C22—C17—S14120.1 (2)
N1—C2—N10—C11169.5 (2)C8—N9—C24—O2577.6 (3)
C2—N10—C11—O12178.6 (2)N9—C24—O25—C2684.9 (3)
C6—O13—S14—O15167.0 (2)C24—O25—C26—C27170.8 (2)
C6—O13—S14—O1639.0 (2)O25—C26—C27—O2864.6 (3)
C6—O13—S14—C1779.6 (2)C26—C27—O28—C29115.3 (3)
O13—S14—C17—C1882.3 (2)C27—O28—C29—O302.6 (4)
O13—S14—C17—C22100.1 (2)C27—O28—C29—C31179.7 (2)
C4—N9—C24—O2594.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O12i0.862.082.928 (3)171
Symmetry code: (i) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC18H19N5O7S
Mr449.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.4397 (3), 10.8046 (3), 17.8259 (7)
β (°) 92.5932 (12)
V3)2008.65 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.31 × 0.08 × 0.07
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8435, 4539, 3215
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.129, 1.13
No. of reflections4539
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: KappaCCD Server Software (Nonius, 1999), HKL SCALEPACK (Otwinowski & Minor 1997), DENZO and SCALEPAK (Otwinowski & Minor, 1997), DIRDIF96 (Beurskens et al., 1996), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2003), maXus (Mackay et al., 1999) and SHELXL97.

Selected torsion angles (º) top
N1—C2—N10—C11169.5 (2)C8—N9—C24—O2577.6 (3)
C2—N10—C11—O12178.6 (2)N9—C24—O25—C2684.9 (3)
C6—O13—S14—O15167.0 (2)C24—O25—C26—C27170.8 (2)
C6—O13—S14—O1639.0 (2)O25—C26—C27—O2864.6 (3)
C6—O13—S14—C1779.6 (2)C26—C27—O28—C29115.3 (3)
O13—S14—C17—C1882.3 (2)C27—O28—C29—O302.6 (4)
O13—S14—C17—C22100.1 (2)C27—O28—C29—C31179.7 (2)
C4—N9—C24—O2594.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10—H10···O12i0.862.082.928 (3)171
Symmetry code: (i) x+2, y+2, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds