Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Zn(C4H8N4)(H2O)2](C10H9N4O2S)2·H2O, the ZnII ion is octa­hedrally surrounded by two water O atoms [Zn—O = 2.68 (2) and 2.49 (2) Å] and the four N atoms of two ethylenediamine mol­ecules. Inter­molecular O—H...N, N—H...O and N—H...N hydrogen-bond inter­actions result in the formation of an intricate three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805029673/dn6244sup1.cif
Contains datablocks metzer, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805029673/dn6244Isup2.hkl
Contains datablock I

CCDC reference: 257361

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.041
  • wR factor = 0.115
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Zn1 - O42 .. 15.46 su PLAT420_ALERT_2_B D-H Without Acceptor O9 - H50 ... ?
Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT199_ALERT_1_C Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_C Check the Reported _diffrn_ambient_temperature . 293 K PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for C43 PLAT420_ALERT_2_C D-H Without Acceptor N6 - H6A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N40 - H40A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N42 - H42D ... ?
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Many sulfanilamide derivatives, such as 2-sulfanilamidopyrimidine (sulfadiazine), possess antibacterial activity. Thus, sulfadiazine compounds are widely used for their bacterial action (Nogrady, 1988; Silverman, 1992) and zinc salts of sulfadiazine are used to prevent bacterial infection in both humans and animals during the treatment of burns (Baezinger & Strauss, 1976; Cook & Turner, 1975). The pharmacological activity of these types of molecules is often enhanced by complexation with metal ions (Bult & Sigel, 1983; Casanova et al., 1993). These metal complexes are largely insoluble, working through the slow release of the metal ions from these materials. Because the slow release of the metal ions from these drugs is strongly dependent on their binding nature, it is important to understand the coordination environment around the metal. Although interesting structural results have been described in the literature (Baezinger et al., 1983; Built et al., 1981; Brown et al., 1987; Garcia Raso et al., 1997), mixed-ligand complexes of 2-sulfanilamidopyrimidine have not been prepared and investigated sufficiently to date. Therefore, in the present paper, we report on the synthesis and spectroscopic characterization of the title CuII ZnII?–2-sulfanilamidopyrimidine (H—SD)–ethylenediamine (en) mixed-ligand complex, (I).

The title complex contains octahedral elongated (ethylendiamine)zinc(II) cations counterbalanced with sulfadiazine anions. The two ethylendiamine moieties are trans to each other (Fig. 1). The ethylendiamine ligand and ZnII cation form a five-membered ring, as has already been observed in an analogous Pt complex (Reference?). The Zn—N bond distances are consistent with those in a related structure (Fu et al., 2005). The five-membered rings of the groups are in an envelope conformation with atoms C41 and C44 forming the flap, as shown in Fig. 1. Sulfadiazine molecules can exist in different conformations as a result of rotation across the C—S, S—N and N—C bonds (Kokila et al., 1995). The three dihedral angles describing these conformations of the sulfadiazine ligands in (I) are C15—S1—N4—C21/C7—S2—N1—C1 = 67.9 (2)/-58.9 (2)°, S1—N4—C21—N5/S2—N1—C1—N3 = −4.8 (3)/0.0 (4)° and C16—C15—S1—N4/C8—C7—S2—N1 = 25.8 (3)/-34.8 (3). Thus, both molecules have roughly the same gauche conformation when viewed along the S—N axis.

The H atoms of the coordinated water molecules are engaged in hydrogen bonding with the sulfadiazine anions, resulting in the formation of extended chains. Moreover, there are also N—H···O hydrogen bonds, resulting in an intricate three-dimensional network (Table 1, Fig. 2)

Experimental top

All reagents were purchased from commercial sources and used as supplied. An ethanol solution (20 ml) of 2-sulfanilamidopyrimidin (H—SD; 2 mmol) was added dropwise to a stirred solution of ZnII acetate (1 mmol) in distilled water (30 ml). A brown precipitate began to form and the reaction mixture was stirred overnight at 313 K. The products were isolated by filtration, washed with cold distilled water and ether, and dried in air. The 2-sulfanilamidopyrimidin–ethylenediamine (en) mixed-ligand complex was prepared as follows. A solution of en (2 mmol) in ethanol (30 ml) was added dropwise with stirring to a solution of [Zn(SD)2] (1 mmol) dissolved in ethanol (50 ml) and stirred for 4 h at 323 K in a temperature-controlled bath. A dark-violet polycrystalline precipitate was filtered off and crystals of (I) suitable for X-ray diffraction were co-crystallized as violet [Blue below?] crystals by slow diffusion of Et2O into the filtrate. Analysis, calculated: C 39.14, H 5.43, N 22.83%; found: C 39.10, H 5.45, N 22.87%.

Refinement top

Water H atoms were located in a difference Fourier map and refined using distance restraints of O—H = 0.85 Å and H···H = 1.39 Å, with Uiso(H) = 1.5Ueq(O). All other H atoms were placed in idealized positions and constrained to ride on their parent atoms (C or N), with C—H and N—H distances in the range 0.85–0.93 Å, and with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure of compound (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. A packing view, showing the intricate hydrogen-bonding three-dimensional network. H atoms not involved in the hydrogen bonding have been omitted for clarity.
Bis(ethylenediamine)zinc(II) bis(2-sulfanilamidopyrimidine) trihydrate top
Crystal data top
[Zn(C4H8N4)(H2O)2](C10H9N4O2S)2·H2OF(000) = 1544
Mr = 738.17Dx = 1.532 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 28720 reflections
a = 13.7400 (5) Åθ = 1.3–26.7°
b = 14.6581 (7) ŵ = 0.96 mm1
c = 15.9408 (6) ÅT = 293 K
β = 94.510 (3)°Prism, blue
V = 3200.6 (2) Å30.38 × 0.33 × 0.22 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
6655 independent reflections
Radiation source: fine-focus sealed tube4864 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
Detector resolution: 6.67 pixels mm-1θmax = 26.6°, θmin = 1.5°
ϕ scansh = 1717
Absorption correction: integration
X-RED32 (Stoe & Cie, 2002)
k = 1818
Tmin = 0.749, Tmax = 0.829l = 1919
32597 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0765P)2]
where P = (Fo2 + 2Fc2)/3
6655 reflections(Δ/σ)max = 0.009
433 parametersΔρmax = 0.41 e Å3
9 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Zn(C4H8N4)(H2O)2](C10H9N4O2S)2·H2OV = 3200.6 (2) Å3
Mr = 738.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7400 (5) ŵ = 0.96 mm1
b = 14.6581 (7) ÅT = 293 K
c = 15.9408 (6) Å0.38 × 0.33 × 0.22 mm
β = 94.510 (3)°
Data collection top
Stoe IPDS 2
diffractometer
6655 independent reflections
Absorption correction: integration
X-RED32 (Stoe & Cie, 2002)
4864 reflections with I > 2σ(I)
Tmin = 0.749, Tmax = 0.829Rint = 0.062
32597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0419 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.41 e Å3
6655 reflectionsΔρmin = 0.57 e Å3
433 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06781 (18)0.67120 (19)0.02078 (15)0.0434 (6)
C30.0219 (2)0.5794 (2)0.08450 (18)0.0495 (6)
H30.03770.54480.13260.059*
C40.0736 (2)0.5826 (2)0.05319 (19)0.0530 (7)
H40.12250.55150.07860.064*
C50.0932 (2)0.6343 (2)0.01778 (18)0.0509 (7)
H50.15740.63790.04070.061*
C70.07516 (19)0.70420 (18)0.21996 (16)0.0429 (6)
C80.0978 (2)0.61266 (19)0.22561 (17)0.0479 (6)
H80.13850.58550.18340.058*
C90.0608 (2)0.5615 (2)0.29293 (18)0.0516 (7)
H90.07600.49970.29570.062*
C100.0002 (2)0.60188 (19)0.35775 (16)0.0479 (6)
C110.0230 (2)0.6941 (2)0.35057 (16)0.0489 (6)
H110.06380.72180.39240.059*
C120.0137 (2)0.74465 (18)0.28235 (17)0.0461 (6)
H120.00270.80590.27820.055*
C130.2870 (2)0.8081 (2)0.38045 (17)0.0501 (6)
H130.25050.77940.33640.060*
C140.3139 (2)0.75970 (19)0.45267 (17)0.0469 (6)
H140.29490.69910.45730.056*
C150.36937 (18)0.80103 (18)0.51857 (15)0.0407 (5)
C160.3947 (2)0.89199 (18)0.51204 (16)0.0465 (6)
H160.43120.92020.55630.056*
C170.3663 (2)0.94113 (19)0.44062 (17)0.0495 (6)
H170.38231.00260.43760.059*
C180.3134 (2)0.8991 (2)0.37236 (16)0.0488 (6)
C210.36073 (18)0.84593 (17)0.72034 (14)0.0393 (5)
C230.3214 (2)0.9402 (2)0.82563 (17)0.0546 (7)
H230.33980.97450.87340.066*
C240.2250 (2)0.9402 (2)0.79683 (19)0.0577 (7)
H240.17840.97370.82280.069*
C250.2015 (2)0.8872 (2)0.72681 (18)0.0506 (6)
H250.13630.88370.70620.061*
C410.3382 (2)0.4158 (2)0.15489 (19)0.0560 (7)
H41A0.30980.46760.18200.067*
H41B0.34680.43200.09690.067*
C420.4343 (2)0.3914 (2)0.1997 (2)0.0561 (7)
H42A0.48120.43990.19340.067*
H42B0.42710.38270.25920.067*
C430.2744 (3)0.0709 (2)0.0375 (3)0.0807 (11)
H43A0.23020.01970.04060.097*
H43B0.27670.08740.02130.097*
C440.3721 (3)0.0445 (2)0.0725 (2)0.0719 (9)
H44A0.36760.01390.12600.086*
H44B0.40100.00260.03450.086*
Zn10.35190 (2)0.22955 (2)0.122342 (18)0.04256 (11)
N10.14466 (16)0.71224 (17)0.05535 (14)0.0504 (6)
N20.09345 (16)0.62316 (16)0.04985 (13)0.0462 (5)
N30.02492 (16)0.67951 (17)0.05559 (13)0.0496 (5)
N40.43436 (15)0.80125 (15)0.68476 (13)0.0430 (5)
N50.26707 (15)0.84091 (15)0.68728 (13)0.0433 (5)
N60.2860 (2)0.9473 (2)0.30043 (16)0.0658 (7)
H6A0.25200.92130.25960.079*
H6B0.30281.00350.29630.079*
N70.0355 (2)0.55217 (19)0.42562 (16)0.0660 (7)
H7A0.07290.57760.46470.079*
H7B0.02070.49540.42940.079*
N140.39019 (17)0.89462 (15)0.78988 (13)0.0461 (5)
N400.23749 (17)0.14946 (17)0.08463 (16)0.0554 (6)
H40A0.20800.12940.12960.066*
H40B0.19370.18130.05140.066*
N410.43332 (16)0.12584 (15)0.08443 (14)0.0458 (5)
H41C0.45860.14050.03580.055*
H41D0.48300.11470.12330.055*
N420.46835 (16)0.30603 (15)0.16217 (14)0.0461 (5)
H42C0.50660.27490.20070.055*
H42D0.50370.31910.11850.055*
N430.27380 (16)0.33553 (16)0.15799 (13)0.0477 (5)
H43C0.21980.34290.12290.057*
H43D0.25570.32710.21050.057*
O10.22794 (15)0.79241 (15)0.16018 (12)0.0591 (5)
O20.06869 (16)0.85104 (14)0.13044 (13)0.0615 (5)
O30.34000 (14)0.66618 (13)0.61940 (12)0.0529 (5)
O40.50671 (14)0.69867 (14)0.58861 (12)0.0535 (5)
O90.1364 (2)0.6342 (2)0.5904 (3)0.1116 (11)
H4O0.175 (4)0.671 (4)0.568 (3)0.167*
H500.150 (5)0.642 (4)0.6442 (9)0.167*
O410.36198 (16)0.14826 (17)0.27351 (13)0.0614 (5)
H41E0.3165 (18)0.178 (3)0.302 (2)0.092*
H41F0.4245 (8)0.151 (3)0.285 (2)0.092*
O420.35160 (16)0.31031 (16)0.01528 (13)0.0589 (5)
H42E0.3853 (16)0.282 (2)0.0495 (18)0.088*
H42F0.2910 (7)0.304 (3)0.031 (2)0.088*
S10.41217 (5)0.73535 (4)0.60728 (4)0.04159 (15)
S20.12941 (5)0.77162 (5)0.13779 (4)0.04671 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0375 (13)0.0555 (15)0.0370 (12)0.0045 (11)0.0018 (10)0.0053 (11)
C30.0516 (16)0.0493 (15)0.0480 (14)0.0007 (12)0.0058 (12)0.0010 (12)
C40.0480 (16)0.0512 (16)0.0612 (17)0.0071 (12)0.0142 (13)0.0059 (13)
C50.0350 (13)0.0644 (18)0.0537 (15)0.0048 (12)0.0049 (12)0.0113 (13)
C70.0406 (13)0.0473 (14)0.0411 (12)0.0004 (11)0.0059 (11)0.0046 (10)
C80.0463 (15)0.0514 (15)0.0462 (14)0.0058 (12)0.0050 (12)0.0041 (11)
C90.0576 (17)0.0444 (14)0.0539 (15)0.0032 (12)0.0121 (13)0.0002 (12)
C100.0494 (15)0.0537 (16)0.0420 (13)0.0088 (12)0.0133 (12)0.0031 (11)
C110.0508 (15)0.0541 (15)0.0410 (13)0.0027 (13)0.0004 (12)0.0028 (11)
C120.0506 (15)0.0426 (14)0.0444 (14)0.0002 (11)0.0006 (12)0.0034 (10)
C130.0480 (15)0.0576 (16)0.0434 (14)0.0026 (13)0.0052 (12)0.0087 (12)
C140.0471 (15)0.0474 (14)0.0456 (14)0.0009 (11)0.0006 (12)0.0060 (11)
C150.0385 (13)0.0440 (13)0.0395 (12)0.0036 (10)0.0023 (10)0.0035 (10)
C160.0485 (15)0.0468 (14)0.0436 (13)0.0010 (12)0.0002 (11)0.0057 (11)
C170.0549 (16)0.0440 (14)0.0493 (15)0.0023 (12)0.0021 (13)0.0021 (11)
C180.0432 (14)0.0584 (17)0.0447 (14)0.0108 (12)0.0032 (11)0.0004 (12)
C210.0388 (13)0.0437 (13)0.0352 (12)0.0001 (10)0.0008 (10)0.0064 (10)
C230.0610 (18)0.0622 (18)0.0409 (14)0.0006 (14)0.0062 (13)0.0079 (12)
C240.0513 (17)0.0659 (19)0.0581 (17)0.0049 (14)0.0181 (14)0.0030 (14)
C250.0394 (14)0.0604 (17)0.0524 (15)0.0028 (12)0.0067 (12)0.0071 (13)
C410.0642 (19)0.0492 (16)0.0539 (16)0.0057 (14)0.0003 (14)0.0075 (13)
C420.0551 (17)0.0502 (16)0.0618 (17)0.0040 (13)0.0039 (14)0.0110 (13)
C430.078 (2)0.059 (2)0.101 (3)0.0109 (18)0.020 (2)0.0162 (19)
C440.080 (2)0.0495 (18)0.086 (2)0.0042 (16)0.005 (2)0.0081 (16)
Zn10.03700 (17)0.04571 (18)0.04456 (18)0.00063 (13)0.00060 (12)0.00037 (13)
N10.0361 (11)0.0736 (16)0.0405 (11)0.0080 (11)0.0025 (9)0.0048 (11)
N20.0439 (12)0.0549 (13)0.0396 (11)0.0014 (10)0.0012 (9)0.0019 (9)
N30.0370 (12)0.0710 (16)0.0401 (11)0.0015 (10)0.0006 (9)0.0025 (10)
N40.0332 (10)0.0544 (12)0.0408 (11)0.0028 (9)0.0012 (9)0.0033 (9)
N50.0345 (11)0.0531 (12)0.0419 (11)0.0018 (9)0.0003 (9)0.0010 (9)
N60.0741 (18)0.0692 (17)0.0518 (14)0.0071 (14)0.0103 (13)0.0089 (12)
N70.086 (2)0.0615 (16)0.0506 (14)0.0084 (14)0.0059 (13)0.0157 (12)
N140.0475 (13)0.0536 (13)0.0367 (10)0.0028 (10)0.0009 (9)0.0021 (9)
N400.0436 (13)0.0655 (15)0.0561 (13)0.0103 (11)0.0021 (11)0.0073 (12)
N410.0472 (13)0.0459 (12)0.0436 (11)0.0027 (10)0.0007 (10)0.0002 (9)
N420.0387 (11)0.0485 (12)0.0504 (12)0.0005 (10)0.0004 (10)0.0025 (10)
N430.0419 (12)0.0616 (14)0.0393 (11)0.0076 (10)0.0008 (9)0.0010 (10)
O10.0468 (11)0.0807 (14)0.0499 (11)0.0163 (10)0.0052 (9)0.0066 (10)
O20.0672 (14)0.0574 (12)0.0597 (12)0.0004 (10)0.0029 (10)0.0115 (10)
O30.0524 (11)0.0454 (10)0.0608 (11)0.0035 (8)0.0029 (9)0.0025 (8)
O40.0456 (11)0.0605 (12)0.0545 (11)0.0147 (9)0.0058 (9)0.0026 (9)
O90.0672 (18)0.080 (2)0.189 (3)0.0044 (15)0.022 (2)0.003 (2)
O410.0508 (12)0.0792 (15)0.0537 (11)0.0074 (11)0.0019 (10)0.0073 (10)
O420.0486 (11)0.0738 (14)0.0539 (11)0.0004 (10)0.0008 (9)0.0062 (10)
S10.0385 (3)0.0445 (3)0.0416 (3)0.0035 (3)0.0019 (3)0.0010 (3)
S20.0422 (3)0.0576 (4)0.0401 (3)0.0059 (3)0.0016 (3)0.0005 (3)
Geometric parameters (Å, º) top
Zn—O412.68 (2)C25—N51.326 (4)
Zn—O422.49 (2)C25—H250.9300
C1—N21.351 (3)C41—N431.476 (4)
C1—N31.355 (3)C41—C421.494 (4)
C1—N11.368 (3)C41—H41A0.9700
C3—N21.330 (4)C41—H41B0.9700
C3—C41.368 (4)C42—N421.479 (4)
C3—H30.9300C42—H42A0.9700
C4—C51.371 (4)C42—H42B0.9700
C4—H40.9300C43—C441.465 (5)
C5—N31.331 (4)C43—N401.485 (5)
C5—H50.9300C43—H43A0.9700
C7—C81.382 (4)C43—H43B0.9700
C7—C121.386 (4)C44—N411.463 (4)
C7—S21.759 (3)C44—H44A0.9700
C8—C91.374 (4)C44—H44B0.9700
C8—H80.9300Zn1—N431.996 (2)
C9—C101.406 (4)Zn1—N412.009 (2)
C9—H90.9300Zn1—N422.015 (2)
C10—N71.363 (3)Zn1—N402.016 (2)
C10—C111.395 (4)N1—S21.576 (2)
C11—C121.379 (4)N4—S11.579 (2)
C11—H110.9300N6—H6A0.8600
C12—H120.9300N6—H6B0.8600
C13—C141.378 (4)N7—H7A0.8600
C13—C181.391 (4)N7—H7B0.8600
C13—H130.9300N40—H40A0.9000
C14—C151.387 (4)N40—H40B0.9000
C14—H140.9300N41—H41C0.9000
C15—C161.384 (4)N41—H41D0.9000
C15—S11.772 (3)N42—H42C0.9000
C16—C171.378 (4)N42—H42D0.9000
C16—H160.9300N43—H43C0.9000
C17—C181.403 (4)N43—H43D0.9000
C17—H170.9300O1—S21.459 (2)
C18—N61.374 (3)O2—S21.442 (2)
C21—N141.353 (3)O3—S11.442 (2)
C21—N51.354 (3)O4—S11.4581 (19)
C21—N41.366 (3)O9—H4O0.85 (6)
C23—N141.322 (4)O9—H500.87 (2)
C23—C241.367 (4)O41—H41E0.910 (16)
C23—H230.9300O41—H41F0.865 (10)
C24—C251.377 (4)O42—H42E0.85 (3)
C24—H240.9300O42—H42F0.855 (10)
N2—C1—N3124.3 (2)H42A—C42—H42B108.5
N2—C1—N1113.9 (2)C44—C43—N40110.5 (3)
N3—C1—N1121.8 (2)C44—C43—H43A109.5
N2—C3—C4123.5 (3)N40—C43—H43A109.5
N2—C3—H3118.3C44—C43—H43B109.5
C4—C3—H3118.3N40—C43—H43B109.5
C3—C4—C5116.1 (3)H43A—C43—H43B108.1
C3—C4—H4121.9N41—C44—C43109.6 (3)
C5—C4—H4121.9N41—C44—H44A109.8
N3—C5—C4123.3 (3)C43—C44—H44A109.8
N3—C5—H5118.3N41—C44—H44B109.8
C4—C5—H5118.3C43—C44—H44B109.8
C8—C7—C12119.7 (2)H44A—C44—H44B108.2
C8—C7—S2120.6 (2)N43—Zn1—N41178.06 (9)
C12—C7—S2119.5 (2)N43—Zn1—N4284.76 (9)
C9—C8—C7120.7 (2)N41—Zn1—N4293.93 (9)
C9—C8—H8119.7N43—Zn1—N4096.55 (10)
C7—C8—H8119.7N41—Zn1—N4084.79 (10)
C8—C9—C10120.3 (3)N42—Zn1—N40178.08 (10)
C8—C9—H9119.8C1—N1—S2121.48 (18)
C10—C9—H9119.8C3—N2—C1116.4 (2)
N7—C10—C11120.8 (3)C5—N3—C1116.3 (2)
N7—C10—C9120.9 (3)C21—N4—S1120.97 (17)
C11—C10—C9118.3 (2)C25—N5—C21116.6 (2)
C12—C11—C10120.9 (3)C18—N6—H6A120.0
C12—C11—H11119.5C18—N6—H6B120.0
C10—C11—H11119.5H6A—N6—H6B120.0
C11—C12—C7120.0 (3)C10—N7—H7A120.0
C11—C12—H12120.0C10—N7—H7B120.0
C7—C12—H12120.0H7A—N7—H7B120.0
C14—C13—C18121.1 (2)C23—N14—C21116.2 (2)
C14—C13—H13119.5C43—N40—Zn1108.2 (2)
C18—C13—H13119.5C43—N40—H40A110.0
C13—C14—C15120.2 (3)Zn1—N40—H40A110.0
C13—C14—H14119.9C43—N40—H40B110.0
C15—C14—H14119.9Zn1—N40—H40B110.0
C16—C15—C14119.3 (2)H40A—N40—H40B108.4
C16—C15—S1120.92 (19)C44—N41—Zn1109.12 (19)
C14—C15—S1119.7 (2)C44—N41—H41C109.9
C17—C16—C15120.6 (2)Zn1—N41—H41C109.9
C17—C16—H16119.7C44—N41—H41D109.9
C15—C16—H16119.7Zn1—N41—H41D109.9
C16—C17—C18120.5 (3)H41C—N41—H41D108.3
C16—C17—H17119.8C42—N42—Zn1109.26 (17)
C18—C17—H17119.8C42—N42—H42C109.8
N6—C18—C13121.0 (3)Zn1—N42—H42C109.8
N6—C18—C17120.8 (3)C42—N42—H42D109.8
C13—C18—C17118.2 (2)Zn1—N42—H42D109.8
N14—C21—N5124.2 (2)H42C—N42—H42D108.3
N14—C21—N4114.2 (2)C41—N43—Zn1105.90 (17)
N5—C21—N4121.7 (2)C41—N43—H43C110.6
N14—C23—C24124.1 (3)Zn1—N43—H43C110.6
N14—C23—H23117.9C41—N43—H43D110.6
C24—C23—H23117.9Zn1—N43—H43D110.6
C23—C24—C25115.6 (3)H43C—N43—H43D108.7
C23—C24—H24122.2H4O—O9—H50104 (5)
C25—C24—H24122.2H41E—O41—H41F126 (2)
N5—C25—C24123.3 (3)H42E—O42—H42F109 (3)
N5—C25—H25118.4O3—S1—O4113.65 (13)
C24—C25—H25118.4O3—S1—N4114.71 (12)
N43—C41—C42107.6 (2)O4—S1—N4105.36 (11)
N43—C41—H41A110.2O3—S1—C15107.48 (12)
C42—C41—H41A110.2O4—S1—C15106.41 (12)
N43—C41—H41B110.2N4—S1—C15108.86 (12)
C42—C41—H41B110.2O2—S2—O1113.89 (14)
H41A—C41—H41B108.5O2—S2—N1114.70 (13)
N42—C42—C41107.7 (2)O1—S2—N1104.72 (12)
N42—C42—H42A110.2O2—S2—C7107.46 (12)
C41—C42—H42A110.2O1—S2—C7106.39 (12)
N42—C42—H42B110.2N1—S2—C7109.35 (13)
C41—C42—H42B110.2
C15—S1—N4—C2167.9 (2)S2—N1—C1—N30.0 (4)
C7—S2—N1—C158.9 (3)C16—C15—S1—N425.8 (3)
S1—N4—C21—N54.8 (3)C8—C7—S2—N134.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O41i0.862.313.165 (4)173
N7—H7A···O90.862.283.114 (5)164
N7—H7B···O2ii0.862.433.124 (4)138
N7—H7B···N7iii0.862.593.046 (5)114
N40—H40B···N1iv0.902.373.204 (3)155
N41—H41C···O4v0.902.243.128 (3)167
N41—H41D···N14vi0.902.143.036 (3)172
N42—H42C···N4vi0.902.243.115 (3)165
N43—H43C···N2iv0.902.072.968 (3)172
N43—H43D···O1ii0.902.193.080 (3)172
O9—H4O···O30.85 (6)2.35 (6)2.839 (4)116 (5)
O41—H41E···O1ii0.91 (2)2.18 (2)3.046 (3)158 (4)
O41—H41F···N4vi0.87 (1)2.08 (2)2.920 (3)163 (3)
O42—H42E···O4v0.85 (3)2.06 (2)2.862 (3)158 (3)
O42—H42F···N1iv0.86 (1)2.03 (1)2.884 (3)174 (3)
O42—H42F···O1iv0.86 (1)2.59 (3)3.142 (3)123 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C4H8N4)(H2O)2](C10H9N4O2S)2·H2O
Mr738.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.7400 (5), 14.6581 (7), 15.9408 (6)
β (°) 94.510 (3)
V3)3200.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.38 × 0.33 × 0.22
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
X-RED32 (Stoe & Cie, 2002)
Tmin, Tmax0.749, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
32597, 6655, 4864
Rint0.062
(sin θ/λ)max1)0.630
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 0.96
No. of reflections6655
No. of parameters433
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.57

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6B···O41i0.862.313.165 (4)173
N7—H7A···O90.862.283.114 (5)164
N7—H7B···O2ii0.862.433.124 (4)138
N7—H7B···N7iii0.862.593.046 (5)114
N40—H40B···N1iv0.902.373.204 (3)155
N41—H41C···O4v0.902.243.128 (3)167
N41—H41D···N14vi0.902.143.036 (3)172
N42—H42C···N4vi0.902.243.115 (3)165
N43—H43C···N2iv0.902.072.968 (3)172
N43—H43D···O1ii0.902.193.080 (3)172
O9—H4O···O30.85 (6)2.35 (6)2.839 (4)116 (5)
O41—H41E···O1ii0.910 (16)2.18 (2)3.046 (3)158 (4)
O41—H41F···N4vi0.865 (10)2.082 (16)2.920 (3)163 (3)
O42—H42E···O4v0.85 (3)2.056 (15)2.862 (3)158 (3)
O42—H42F···N1iv0.855 (10)2.032 (10)2.884 (3)174 (3)
O42—H42F···O1iv0.855 (10)2.59 (3)3.142 (3)123 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z+1/2; (iii) x, y+1, z+1; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds