Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the new iron(III) arsenate, viz. tricaesium diiron(III) tris(arsenate), Cs3Fe2(AsO4)3, is built up from corner-sharing AsO4 tetrahedra and FeO5 trigonal bipyramids forming a three-dimensional open framework, which contains two channels running along the c axis where the Cs+ cations are located. This compound is a rare example of an oxide possessing Fe exclusively in trigonal-bipyramidal coordination.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805021616/dn6220sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805021616/dn6220Isup2.hkl
Contains datablock I

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](Fe-O) = 0.004 Å
  • R factor = 0.024
  • wR factor = 0.070
  • Data-to-parameter ratio = 15.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT301_ALERT_3_C Main Residue Disorder ......................... 20.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

tricesium diiron(III) tris(arsenate) top
Crystal data top
Cs3Fe2(AsO4)3F(000) = 1648
Mr = 927.19Dx = 4.422 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 25 reflections
a = 18.893 (4) Åθ = 10–14°
b = 11.214 (3) ŵ = 16.94 mm1
c = 6.573 (1) ÅT = 298 K
V = 1392.6 (5) Å3Parallelepiped, yellow
Z = 40.22 × 0.11 × 0.11 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
982 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 30.0°, θmin = 2.1°
ω/2θ scansh = 226
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.122, Tmax = 0.161l = 09
1249 measured reflections2 standard reflections every 120 min
1127 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0269P)2 + 8.8431P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.070(Δ/σ)max < 0.001
S = 1.25Δρmax = 1.22 e Å3
1127 reflectionsΔρmin = 0.75 e Å3
73 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00270 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cs10.00000.89581 (5)0.25000.02376 (16)
Cs20.11232 (2)0.58728 (4)0.25000.02574 (15)
Fe0.16745 (4)0.83319 (7)0.25000.01007 (18)
As10.21392 (3)0.88162 (5)0.25000.00964 (15)
As20.00000.74223 (8)0.25000.01268 (19)
O10.2289 (2)0.0297 (4)0.25000.0211 (10)
O20.2959 (3)0.8256 (5)0.2051 (8)0.0181 (17)0.50
O30.1774 (5)0.8210 (10)0.0414 (17)0.0189 (18)0.50
O3'0.1561 (5)0.8479 (9)0.0639 (16)0.0163 (17)0.50
O40.00000.6622 (5)0.0384 (8)0.0321 (12)
O50.0678 (2)0.8438 (4)0.25000.0214 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0274 (3)0.0186 (3)0.0252 (3)0.0000.0000.000
Cs20.0201 (2)0.0268 (2)0.0303 (3)0.00530 (15)0.0000.000
Fe0.0065 (3)0.0094 (4)0.0143 (4)0.0000 (3)0.0000.000
As10.0105 (2)0.0101 (3)0.0084 (3)0.00099 (19)0.0000.000
As20.0088 (3)0.0155 (4)0.0138 (4)0.0000.0000.000
O10.0146 (19)0.0072 (18)0.042 (3)0.0034 (15)0.0000.000
O20.018 (2)0.013 (2)0.023 (5)0.0044 (19)0.005 (2)0.005 (2)
O30.020 (5)0.024 (5)0.013 (4)0.003 (3)0.001 (4)0.003 (3)
O3'0.015 (4)0.027 (5)0.007 (3)0.007 (3)0.001 (3)0.003 (3)
O40.031 (2)0.036 (3)0.029 (3)0.0000.0000.019 (2)
O50.0077 (17)0.025 (2)0.031 (3)0.0018 (17)0.0000.000
Geometric parameters (Å, º) top
Cs1—O5i3.189 (5)Cs2—O2xi3.593 (6)
Cs1—O5ii3.189 (5)Cs2—O2xii3.593 (6)
Cs1—O4iii3.234 (6)Cs2—O4xiii3.777 (5)
Cs1—O43.234 (6)Fe—O51.886 (4)
Cs1—O3'iv3.237 (8)Fe—O1xiv1.926 (4)
Cs1—O3'v3.237 (8)Fe—O3xv1.929 (12)
Cs1—O3'3.237 (8)Fe—O3iv1.929 (12)
Cs1—O3'iii3.237 (8)Fe—O2xvi1.933 (5)
Cs1—O5vi3.5756 (17)Fe—O3'iv2.081 (10)
Cs1—O53.5756 (17)Fe—O3'xv2.081 (10)
Cs1—O5vii3.5756 (17)As1—O3iii1.679 (11)
Cs1—O5iv3.5756 (17)As1—O31.679 (11)
Cs2—O42.967 (4)As1—O3'iii1.684 (10)
Cs2—O4iii2.967 (4)As1—O3'1.684 (10)
Cs2—O1viii3.069 (4)As1—O1xvii1.685 (4)
Cs2—O33.203 (12)As1—O21.698 (6)
Cs2—O3iii3.203 (12)As2—O4xviii1.655 (5)
Cs2—O3'3.275 (11)As2—O41.655 (5)
Cs2—O3'iii3.275 (11)As2—O51.715 (4)
Cs2—O2ix3.421 (6)As2—O5iv1.715 (4)
Cs2—O2x3.421 (6)
O5—Fe—O1xiv123.4 (2)O3iii—As1—O3109.5 (8)
O5—Fe—O3xv95.8 (3)O3—As1—O3'iii103.6 (3)
O1xiv—Fe—O3xv89.9 (3)O3iii—As1—O3'103.6 (3)
O5—Fe—O3iv95.8 (3)O3'iii—As1—O3'93.2 (6)
O1xiv—Fe—O3iv89.9 (3)O3iii—As1—O1xvii117.9 (4)
O3xv—Fe—O3iv166.2 (5)O3—As1—O1xvii117.9 (4)
O5—Fe—O2xvi114.5 (2)O3'iii—As1—O1xvii109.3 (4)
O1xiv—Fe—O2xvi121.3 (2)O3'—As1—O1xvii109.3 (4)
O3xv—Fe—O2xvi93.0 (3)O3iii—As1—O2111.6 (3)
O3iv—Fe—O2xvi75.4 (3)O3—As1—O294.8 (3)
O5—Fe—O2xix114.5 (2)O3'iii—As1—O2129.5 (3)
O1xiv—Fe—O2xix121.3 (2)O3'—As1—O2112.5 (3)
O3xv—Fe—O2xix75.4 (3)O1xvii—As1—O2102.2 (2)
O3iv—Fe—O2xix93.0 (3)O3iii—As1—O2iii94.8 (3)
O5—Fe—O3'iv83.8 (2)O3—As1—O2iii111.6 (3)
O1xiv—Fe—O3'iv89.9 (3)O3'iii—As1—O2iii112.5 (3)
O3xv—Fe—O3'iv179.4 (4)O3'—As1—O2iii129.5 (3)
O2xvi—Fe—O3'iv87.6 (3)O1xvii—As1—O2iii102.2 (2)
O2xix—Fe—O3'iv105.2 (3)O4xviii—As2—O4114.3 (4)
O5—Fe—O3'xv83.8 (2)O4xviii—As2—O5111.10 (14)
O1xiv—Fe—O3'xv89.9 (3)O4—As2—O5111.10 (14)
O3iv—Fe—O3'xv179.4 (4)O4xviii—As2—O5iv111.10 (13)
O2xvi—Fe—O3'xv105.2 (3)O4—As2—O5iv111.10 (13)
O2xix—Fe—O3'xv87.6 (3)O5—As2—O5iv96.8 (3)
O3'iv—Fe—O3'xv165.0 (5)
Symmetry codes: (i) x, y+2, z; (ii) x, y+2, z; (iii) x, y, z1/2; (iv) x, y, z; (v) x, y, z1/2; (vi) x, y, z1; (vii) x, y, z1; (viii) x1/2, y+1/2, z; (ix) x1/2, y1/2, z1/2; (x) x1/2, y1/2, z; (xi) x1/2, y+3/2, z1/2; (xii) x1/2, y+3/2, z; (xiii) x, y+1, z1/2; (xiv) x, y+1, z; (xv) x, y, z+1/2; (xvi) x+1/2, y+3/2, z; (xvii) x, y+1, z; (xviii) x, y, z+1/2; (xix) x+1/2, y+3/2, z+1/2.
Indice de distorsion des polyèdres de coordination de Fe et As top
PolyèdreIDdIDaIDo
FeO50.00460.13330.0813
As1O40.00400.014620.0319
As2O40.01750.03800.0219
Notes: IDd = [Σi = 1n1(|di–dm|)/n1dm], IDa = [Σi = 1n2(|ai–am|)/n2am] et IDo = [Σi = 1n2(|oi–om|)/n2om], avec d = distance Fe/As—O, a = angle O—Fe/As—O, o = distance O—O, m = valeur moyenne, et n1 et n2 valent 4 et 6 pour le tétraèdre et 5 et 9 pour le polyèdre bipyramide à base triangulaire.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds