Download citation
Download citation
link to html
The title compound, [CrMn(C6H7)(C8H8)(CO)5], is a hetero-bimetallic complex in which the styrene ligand achieves a μ2-bridging function while providing η6 and η2 coordination of, respectively, the Cr and Mn atoms. However, the bond lengths and angles and, in particular, the coordination of the individual metal atoms is otherwise much as would be expected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803020282/dn6091sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803020282/dn6091Isup2.hkl
Contains datablock I

CCDC reference: 225682

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.044
  • wR factor = 0.099
  • Data-to-parameter ratio = 13.4

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT052_ALERT_1_A (Proper) Absorption Correction Method Missing .. ? PLAT057_ALERT_3_A Correction for Absorption Required RT(exp) = 1.48
Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cr1 - C4 = 6.05 su PLAT241_ALERT_2_C Check High U(eq) as Compared to Neighbors .... C19 PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .... Mn1
2 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: P3 Software (Nicolet, 1980); cell refinement: P3 Software; data reduction: RDNIC (Howie, 1980); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL7 and PLATON (Spek, 2003).

Dicarbonyl(eta5-methylcyclopentadienyl){eta2- [tricarbonyl(eta6-styrene)chromium(0)]}manganese(I) top
Crystal data top
[CrMn(C6H7)(C8H8)(CO)5]F(000) = 872
Mr = 430.25Dx = 1.602 Mg m3
Dm = 1.6 (1) Mg m3
Dm measured by density gradient method
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 14 reflections
a = 7.281 (4) Åθ = 7.5–10.5°
b = 23.637 (14) ŵ = 1.34 mm1
c = 10.502 (5) ÅT = 298 K
β = 99.19 (4)°Block, red-brown
V = 1784.2 (17) Å30.50 × 0.50 × 0.20 mm
Z = 4
Data collection top
Nicolet P3
diffractometer
2247 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.075
Graphite monochromatorθmax = 25.1°, θmin = 1.7°
ω scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 028
Tmin = 0.561, Tmax = 0.764l = 1212
3422 measured reflections2 standard reflections every 50 reflections
3167 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0468P)2]
where P = (Fo2 + 2Fc2)/3
3167 reflections(Δ/σ)max = 0.001
236 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.32 e Å3
Special details top

Experimental. Scan rates, dependent on pre-scan intensity Ip, were variable in the range 1.0 (Ip<150) to 29.3 (Ip>2500) ° ω min-1. The scan width was fixed at 0.6 ° ω. Stationary crystal background counts were made at 1 ° in ω on either side of the Bragg angle each for 25% of the total (peak plus background) count time.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane) - 2.0539 (0.0149) x + 13.9474 (0.0418) y - 7.3693 (0.0167) z = 3.7048 (0.0321) * 0.0023 (0.0026) C6 * 0.0016 (0.0027) C7 * -0.0048 (0.0026) C8 * 0.0062 (0.0026) C9 * -0.0052 (0.0025) C10 - 0.1170 (0.0075) C11 1.7889 (0.0022) Mn1 2.6829 (0.0060) C1 2.7005 (0.0059) C2 2.8971 (0.0059) C18 3.0942 (0.0063) C19 Rms deviation of fitted atoms = 0.0044

- 3.4138 (0.0096) x + 5.8582 (0.0354) y + 9.5756 (0.0092) z = 4.0241 (0.0222) A ngle to previous plane (with approximate e.s.d.) = 68.73 (0.13) * -0.0092 (0.0025) C12 * -0.0049 (0.0026) C13 * 0.0126 (0.0028) C14 * -0.0061 (0.0027) C15 * -0.0079 (0.0025) C16 * 0.0155 (0.0025) C17 - 1.7292 (0.0020) Cr1 - 2.8157 (0.0051) C3 - 2.8163 (0.0052) C4 - 2.7772 (0.0052) C5 0.0146 (0.0057) C18 - 0.0830 (0.0069) C19 Rms deviation of fitted atoms = 0.0101

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.41417 (8)0.65083 (2)0.37087 (5)0.03650 (18)
Cr10.07064 (8)0.61195 (2)0.10955 (5)0.03312 (17)
O10.5076 (5)0.77140 (16)0.3732 (4)0.0875 (12)
C10.4715 (6)0.7236 (2)0.3713 (4)0.0533 (11)
O20.0251 (4)0.68604 (14)0.3471 (3)0.0628 (9)
C20.1754 (6)0.67129 (18)0.3524 (4)0.0441 (10)
O30.1118 (5)0.53327 (13)0.3125 (3)0.0664 (9)
C30.0422 (6)0.56394 (17)0.2339 (3)0.0420 (10)
O40.4310 (5)0.55519 (17)0.1299 (3)0.0774 (10)
C40.2917 (6)0.57775 (18)0.1233 (4)0.0477 (10)
O50.1165 (5)0.69356 (14)0.3195 (3)0.0722 (10)
C50.1015 (6)0.66206 (17)0.2387 (4)0.0463 (10)
C60.4419 (6)0.56500 (19)0.4431 (4)0.0536 (12)
H60.38270.53400.40030.064*
C70.3680 (7)0.5998 (2)0.5297 (4)0.0617 (13)
H70.25160.59600.55450.074*
C80.4997 (7)0.6413 (2)0.5724 (4)0.0620 (13)
H80.48690.66990.63130.074*
C90.6558 (6)0.63248 (19)0.5107 (4)0.0533 (12)
H90.76270.65460.52110.064*
C100.6234 (6)0.58498 (18)0.4314 (4)0.0464 (10)
C110.7572 (7)0.5574 (2)0.3571 (4)0.0685 (14)
H11A0.84130.58530.33320.103*
H11B0.69010.54030.28070.103*
H11C0.82640.52890.40950.103*
C120.1130 (5)0.67769 (16)0.0450 (3)0.0396 (9)
H120.19000.70930.05110.047*
C130.0688 (6)0.68131 (17)0.0216 (4)0.0435 (10)
H130.11170.71550.05880.052*
C140.1865 (6)0.63480 (19)0.0333 (4)0.0486 (10)
H140.30810.63790.07610.058*
C150.1191 (6)0.58277 (18)0.0206 (4)0.0469 (10)
H150.19550.55100.01170.056*
C160.0606 (6)0.57894 (17)0.0868 (3)0.0448 (10)
H160.10400.54440.12170.054*
C170.1797 (6)0.62670 (16)0.1025 (3)0.0384 (9)
C180.3702 (6)0.62001 (18)0.1744 (3)0.0464 (11)
H180.40060.58530.21380.056*
C190.5081 (6)0.6616 (2)0.1880 (4)0.0609 (14)
H19A0.48320.69690.15000.073*
H19B0.62490.65400.23500.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0395 (4)0.0415 (3)0.0278 (3)0.0017 (3)0.0034 (2)0.0011 (3)
Cr10.0380 (4)0.0327 (3)0.0280 (3)0.0022 (3)0.0033 (2)0.0004 (3)
O10.083 (3)0.053 (2)0.120 (3)0.026 (2)0.005 (2)0.000 (2)
C10.041 (3)0.056 (3)0.059 (3)0.001 (2)0.004 (2)0.004 (2)
O20.045 (2)0.080 (2)0.065 (2)0.0105 (17)0.0125 (16)0.0043 (17)
C20.050 (3)0.047 (2)0.037 (2)0.006 (2)0.0090 (19)0.0068 (18)
O30.085 (3)0.055 (2)0.0498 (17)0.0095 (17)0.0170 (17)0.0106 (15)
C30.044 (2)0.044 (2)0.036 (2)0.0029 (19)0.0014 (18)0.0018 (19)
O40.048 (2)0.101 (3)0.082 (2)0.015 (2)0.0060 (18)0.019 (2)
C40.047 (3)0.055 (3)0.038 (2)0.006 (2)0.003 (2)0.0079 (19)
O50.107 (3)0.060 (2)0.0543 (18)0.0025 (19)0.0273 (19)0.0192 (17)
C50.059 (3)0.042 (2)0.039 (2)0.002 (2)0.012 (2)0.0018 (19)
C60.065 (3)0.045 (3)0.048 (2)0.001 (2)0.002 (2)0.010 (2)
C70.070 (3)0.070 (3)0.051 (3)0.010 (3)0.026 (2)0.019 (2)
C80.083 (4)0.074 (4)0.028 (2)0.019 (3)0.003 (2)0.000 (2)
C90.051 (3)0.062 (3)0.040 (2)0.008 (2)0.012 (2)0.002 (2)
C100.054 (3)0.050 (2)0.034 (2)0.011 (2)0.0031 (19)0.0027 (19)
C110.070 (4)0.072 (3)0.065 (3)0.021 (3)0.013 (3)0.003 (3)
C120.043 (2)0.037 (2)0.038 (2)0.0021 (18)0.0043 (18)0.0089 (17)
C130.047 (3)0.041 (2)0.043 (2)0.011 (2)0.0083 (19)0.0002 (18)
C140.037 (2)0.059 (3)0.052 (2)0.001 (2)0.0132 (19)0.001 (2)
C150.052 (3)0.049 (3)0.043 (2)0.012 (2)0.018 (2)0.002 (2)
C160.065 (3)0.040 (2)0.0313 (18)0.001 (2)0.013 (2)0.0032 (17)
C170.049 (2)0.043 (2)0.0235 (17)0.0040 (19)0.0051 (17)0.0071 (16)
C180.057 (3)0.056 (3)0.0244 (18)0.014 (2)0.0019 (18)0.0012 (18)
C190.047 (3)0.103 (4)0.032 (2)0.003 (3)0.0028 (19)0.012 (2)
Geometric parameters (Å, º) top
Mn1—C11.770 (5)C7—C81.395 (7)
Mn1—C21.785 (5)C7—H70.9300
Mn1—C82.121 (4)C8—C91.411 (6)
Mn1—C72.128 (4)C8—H80.9300
Mn1—C92.148 (4)C9—C101.395 (6)
Mn1—C192.155 (4)C9—H90.9300
Mn1—C182.163 (4)C10—C111.492 (6)
Mn1—C62.164 (4)C11—H11A0.9600
Mn1—C102.199 (4)C11—H11B0.9600
Cr1—C31.823 (4)C11—H11C0.9600
Cr1—C41.827 (5)C12—C131.397 (5)
Cr1—C51.841 (4)C12—C171.400 (5)
Cr1—C152.204 (4)C12—H120.9300
Cr1—C132.207 (4)C13—C141.387 (6)
Cr1—C162.217 (4)C13—H130.9300
Cr1—C142.217 (4)C14—C151.409 (6)
Cr1—C122.232 (4)C14—H140.9300
Cr1—C172.269 (4)C15—C161.383 (6)
O1—C11.160 (5)C15—H150.9300
O2—C21.142 (5)C16—C171.417 (6)
O3—C31.154 (4)C16—H160.9300
O4—C41.158 (5)C17—C181.477 (6)
O5—C51.147 (4)C18—C191.397 (6)
C6—C71.396 (6)C18—H180.9300
C6—C101.427 (6)C19—H19A0.9300
C6—H60.9300C19—H19B0.9300
C1—Mn1—C287.83 (19)C10—C6—H6125.7
C1—Mn1—C894.0 (2)Mn1—C6—H6124.0
C2—Mn1—C8105.23 (19)C8—C7—C6107.9 (4)
C1—Mn1—C7128.0 (2)C8—C7—Mn170.6 (3)
C2—Mn1—C788.03 (19)C6—C7—Mn172.4 (2)
C8—Mn1—C738.34 (18)C8—C7—H7126.0
C1—Mn1—C991.57 (18)C6—C7—H7126.0
C2—Mn1—C9143.72 (17)Mn1—C7—H7122.6
C8—Mn1—C938.60 (17)C7—C8—C9108.1 (4)
C7—Mn1—C964.18 (19)C7—C8—Mn171.1 (2)
C1—Mn1—C1977.2 (2)C9—C8—Mn171.7 (2)
C2—Mn1—C19108.28 (18)C7—C8—H8126.0
C8—Mn1—C19144.86 (19)C9—C8—H8126.0
C7—Mn1—C19151.4 (2)Mn1—C8—H8122.9
C9—Mn1—C19106.92 (18)C10—C9—C8108.7 (4)
C1—Mn1—C18109.19 (18)C10—C9—Mn173.3 (2)
C2—Mn1—C1889.68 (17)C8—C9—Mn169.6 (2)
C8—Mn1—C18153.06 (18)C10—C9—H9125.6
C7—Mn1—C18122.60 (19)C8—C9—H9125.6
C9—Mn1—C18124.35 (16)Mn1—C9—H9123.1
C19—Mn1—C1837.75 (16)C9—C10—C6106.6 (4)
C1—Mn1—C6154.34 (18)C9—C10—C11126.9 (4)
C2—Mn1—C6109.08 (18)C6—C10—C11126.3 (4)
C8—Mn1—C663.55 (18)C9—C10—Mn169.3 (2)
C7—Mn1—C637.94 (16)C6—C10—Mn169.6 (2)
C9—Mn1—C663.29 (18)C11—C10—Mn1129.6 (3)
C19—Mn1—C6113.48 (19)C10—C11—H11A109.5
C18—Mn1—C690.58 (17)C10—C11—H11B109.5
C1—Mn1—C10122.34 (19)H11A—C11—H11B109.5
C2—Mn1—C10147.20 (18)C10—C11—H11C109.5
C8—Mn1—C1063.71 (17)H11A—C11—H11C109.5
C7—Mn1—C1063.96 (17)H11B—C11—H11C109.5
C9—Mn1—C1037.42 (15)C13—C12—C17120.3 (4)
C19—Mn1—C1092.15 (17)C13—C12—Cr170.7 (2)
C18—Mn1—C1091.58 (15)C17—C12—Cr173.3 (2)
C6—Mn1—C1038.15 (16)C13—C12—H12119.9
C3—Cr1—C488.26 (18)C17—C12—H12119.9
C3—Cr1—C588.11 (18)Cr1—C12—H12128.4
C4—Cr1—C590.79 (19)C14—C13—C12121.2 (4)
C3—Cr1—C1589.65 (17)C14—C13—Cr172.1 (2)
C4—Cr1—C15123.92 (18)C12—C13—Cr172.6 (2)
C5—Cr1—C15145.13 (18)C14—C13—H13119.4
C3—Cr1—C13125.25 (17)C12—C13—H13119.4
C4—Cr1—C13146.27 (16)Cr1—C13—H13128.1
C5—Cr1—C1387.05 (17)C13—C14—C15119.1 (4)
C15—Cr1—C1366.24 (16)C13—C14—Cr171.3 (2)
C3—Cr1—C16111.65 (16)C15—C14—Cr170.9 (2)
C4—Cr1—C1694.50 (17)C13—C14—H14120.5
C5—Cr1—C16159.65 (16)C15—C14—H14120.5
C15—Cr1—C1636.46 (15)Cr1—C14—H14129.7
C13—Cr1—C1677.67 (15)C16—C15—C14120.0 (4)
C3—Cr1—C1495.76 (17)C16—C15—Cr172.3 (2)
C4—Cr1—C14160.30 (17)C14—C15—Cr171.9 (2)
C5—Cr1—C14108.58 (18)C16—C15—H15120.0
C15—Cr1—C1437.16 (15)C14—C15—H15120.0
C13—Cr1—C1436.55 (15)Cr1—C15—H15127.9
C16—Cr1—C1466.07 (16)C15—C16—C17121.3 (4)
C3—Cr1—C12161.42 (17)C15—C16—Cr171.2 (2)
C4—Cr1—C12110.14 (16)C17—C16—Cr173.6 (2)
C5—Cr1—C1293.93 (16)C15—C16—H16119.4
C15—Cr1—C1278.14 (15)C17—C16—H16119.4
C13—Cr1—C1236.69 (14)Cr1—C16—H16128.0
C16—Cr1—C1265.80 (15)C12—C17—C16118.1 (4)
C14—Cr1—C1266.08 (15)C12—C17—C18123.0 (4)
C3—Cr1—C17147.73 (16)C16—C17—C18118.8 (4)
C4—Cr1—C1788.34 (16)C12—C17—Cr170.5 (2)
C5—Cr1—C17124.02 (16)C16—C17—Cr169.6 (2)
C15—Cr1—C1766.11 (15)C18—C17—Cr1129.6 (3)
C13—Cr1—C1765.63 (14)C19—C18—C17125.3 (4)
C16—Cr1—C1736.81 (14)C19—C18—Mn170.8 (2)
C14—Cr1—C1777.96 (15)C17—C18—Mn1115.8 (3)
C12—Cr1—C1736.24 (13)C19—C18—H18117.4
O1—C1—Mn1178.9 (5)C17—C18—H18117.4
O2—C2—Mn1176.1 (3)Mn1—C18—H1883.3
O3—C3—Cr1179.3 (4)C18—C19—Mn171.4 (2)
O4—C4—Cr1178.4 (4)C18—C19—H19A120.0
O5—C5—Cr1178.5 (4)Mn1—C19—H19A114.9
C7—C6—C10108.6 (4)C18—C19—H19B120.0
C7—C6—Mn169.6 (3)Mn1—C19—H19B84.1
C10—C6—Mn172.3 (2)H19A—C19—H19B120.0
C7—C6—H6125.7
C12—C17—C18—C193.7 (6)C16—C17—C18—C19174.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.932.593.464 (6)158
C14—H14···O1ii0.932.543.185 (6)127
Symmetry codes: (i) x, y+1, z; (ii) x1, y+3/2, z1/2.
Selected bond lengths and angles (Å, °) for (I) top
Mn1—Cg1a1.790 (2)Cr1—Cg2a1.7295 (19)
Mn1—C11.770 (5)Cr1—C31.823 (4)
Mn1—C21.785 (5)Cr1—C41.827 (5)
Mn1—Mba2.043 (4)Cr1—C51.841 (4)
Mn1—C182.163 (4)
Mn1—C192.155 (4)
C1—O11.160 (5)C3—O31.154 (4)
C2—O21.142 (5)C4—O41.158 (5)
C18—C191.397 (6)C5—O51.147 (4)
Cg1—Mn1—C1121.24 (16)Cg2—Cr1—C3127.63 (15)
Cg1—Mn1—C2122.23 (16)Cg2—Cr1—C4125.51 (15)
Cg1—Mn1—Mb124.11 (15)Cg2—Cr2—C5124.67 (15)
C1—Mn1—C287.83 (19)C3—Cr1—C488.26 (18)
C1—Mn1—Mb93.30 (19)C3—Cr1—C588.11 (18)
C2—Mn1—Mb99.35 (19)C4—Cr1—C590.79 (19)
Mn1—C1—O1178.9 (5)Cr1—C3—O3179.3 (4)
Mn1—C2—O2176.1 (3)Cr1—C4—O4178.4 (4)
C18—Mn1—C1933.75 (16)Cr1—C5—O5178.54 (4)
C10—Cg1—Mn1—Mb17.0 (3)C3—Cr1—Cg2—C1518.0 (3)
C10—Cg1—Mn1—C1-102.5 (3)C4—Cr1—Cg2—C1718.0 (3)
C10—Cg1—Mn1—C2148.3 (3)C5—Cr1—Cg2—C1317.0 (3)
Note: (a) Cg1, Cg2 and Mb are, respectively, the centroids of the cyclopentadienyl and phenyl rings and the mid-point of the C18C19 bond.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds