Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C12H8I2N2O, was obtained as an unexpected product while attempting to protect N,N-di­butyl-4-iodo­aniline as the N-oxide. It crystallizes as a layer structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803013618/dn6079sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803013618/dn6079Isup2.hkl
Contains datablock I

CCDC reference: 217605

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](Please check) = 0.000 Å
  • R factor = 0.055
  • wR factor = 0.105
  • Data-to-parameter ratio = 9.1

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
STRVAL_01 From the CIF: _refine_ls_abs_structure_Flack 0.460 From the CIF: _refine_ls_abs_structure_Flack_su 0.090 Alert C Flack test results are ambiguous. General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 27.49 From the CIF: _reflns_number_total 2682 Count of symmetry unique reflns 1612 Completeness (_total/calc) 166.38% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1070 Fraction of Friedel pairs measured 0.664 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The title compound, (I), was obtained in 10% yield as an unexpected product while attempting to convert N,N-dibutyl-4-iodoaniline into its N-oxide with hydrogen peroxide (Demir & Ashaw, 1987), and identified crystallographically. To the best of our knowledge, the direct transformation of a tertiary amine into a diazo compound is unprecedented. Compound (I) has previously been prepared by several routes (e.g. Gabriel, 1876; Wang et al., 1999); the melting point, NMR data and mass spectrum of our product confirmed its identity. A possible mechanism for the formation of this compound is shown in the Scheme below.

Oxidation of (II) by hydrogen peroxide gives the N-oxide (III). This eliminates butene via a Cope reaction (Adams & Kovacic, 1974) before being oxidized again [to give (IV)] and undergoing a second elimination [to give (V)]. Di(hydroxyl)amine (V) then eliminates water to give nitrosamine (VI). From this point, it is likely that the mechanism is similar to that of the reaction between nitrosobenzene and phenylhydroxylamine (Becker & Sternson, 1980) (a radical mechanism is also seen in the presence of base (Russell et al., 1967). Nucleophilic attack by the species that has undergone one elimination (VII) forms dimer (VIII). This undergoes a further elimination (to give IX), followed by displacement of OH by the lone pair of the adjacent N atom to give (I). (I) crystallizes as an inversion twin [Flack (Flack & Bernardinelli, 1999, 2000) parameter = 0.46 (9)]. The whole molecule is also disordered with an image of itself in the ratio 4:1. The image can be regarded as being due either to a local pseudo-centre of symmery, or a stacking fault with translation of approximately 1/4 along z. This is the preferred description since the structure consists of layers of molecules perpendicular to z, with a layer thickness of z/4. The minimum I···I distances between layers is 4.05 Å. The bond lengths and angles are comparable to similar azoxy compounds. Short intramolecular contacts occur between O1 and H41 (2.04 Å), and between O1 and H101 (2.31 Å), both of these are shorter than the sum of the van der Waals radii (2.68 Å; Rowland & Taylor, 1996).

Experimental top

A mixture of N,N-dibutyl-4-iodoaniline (1.3 g, 3.93 mmol), chloroform (2.5 ml), methanol (2.5 ml) and hydrogen peroxide (35% w/w in water, 2.5 ml) was heated to reflux. Starting material was still present after 24 h, as shown by thin-layer chromatography (silica), 9:1 60–80 petroleum ether–DCM, RF = 0.78). Further additions of hydrogen peroxide (35% w/w in water, 2.5 ml) were made every 24 h for 4 d until the starting material had been consumed. The product was then isolated by extraction into chloroform followed by crystallization (DCM/60–80 petroleum ether) to give colourless crystals (180 mg, 10%). M.p. 471 K. Crystals were grown by slow evaporation of a solution in CDCl3. (λmax (CH2Cl2)/nm log (ε): 239 (4.08), 343 (4.13) m/z (TOF MS ES+): 454.54 ([M + 4H]+), 330.07 ([M - I + 4H]+, 100%), 327.17 ([M - I + H]+), 217.01 ([M - IC6H4NO]+), 201.07 ([M - I + 3H]+).

Refinement top

H atoms placed geometrically after each cycle The structure was solved for the major component using SIR97 (Altomare et al., 1994). The disorder was detected through the large anisotropic displacement parameters (ADPs) and a residual peak near nitrogen of 2 e Å−3. Because of the severe disorder, the structure was refined with similarity restraints between the two N2O residues. The phenyl groups were refined with hexagonally restrained geometry and ADP similarity restraints. Almost-coincident atoms were restrained to have similar ADPs. The larges residual peak in the difference map was close to iodine. with a smaller peak near the disordered N2O. The reflection 004 has Fc = 68.5, Fo = −0.45, and was omitted from the refinement. After averaging Friedel pairs there would be 1556 unique reflections.

Computing details top

Data collection: COLLECT (Nonius BV, 1997–2001); cell refinement: DENZO and SCALEPACK; data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1996); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 2001); molecular graphics: CAMERON; software used to prepare material for publication: CRYSTALS.

Figures top
[Figure 1] Fig. 1. Plot showing the atomic numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. The unit cell of (I), viewed normal to the b axis, showing all N—O groups pointing in the same direction.
(I) top
Crystal data top
C12H8I2N2ODx = 2.337 Mg m3
Mr = 450.02Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, I2cbCell parameters from 1542 reflections
a = 6.0119 (1) Åθ = 1–27°
b = 7.2082 (2) ŵ = 4.90 mm1
c = 59.0233 (18) ÅT = 150 K
V = 2557.77 (11) Å3Plate, white
Z = 80.20 × 0.19 × 0.01 mm
F(000) = 1663.999
Data collection top
Nonius KappaCCD
diffractometer
2681 reflections with I > 10.00u(I)
Graphite monochromatorRint = 0.00
ω scansθmax = 27.5°, θmin = 1.4°
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1996)
h = 77
Tmin = 0.39, Tmax = 0.95k = 99
2815 measured reflectionsl = 7475
2682 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters not refined
R[F2 > 2σ(F2)] = 0.055 W = q/[σ2(F) + [P(1)p]2 + P(2)p + P(4) + P(5)Sinθ]
wR(F2) = 0.105(Δ/σ)max = 0.003
S = 0.98Δρmax = 1.78 e Å3
2681 reflectionsΔρmin = 1.70 e Å3
296 parametersAbsolute structure: Flack & Bernadinelli (1999, 2000), 1226 Friedel-pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.46 (9)
Crystal data top
C12H8I2N2OV = 2557.77 (11) Å3
Mr = 450.02Z = 8
Orthorhombic, I2cbMo Kα radiation
a = 6.0119 (1) ŵ = 4.90 mm1
b = 7.2082 (2) ÅT = 150 K
c = 59.0233 (18) Å0.20 × 0.19 × 0.01 mm
Data collection top
Nonius KappaCCD
diffractometer
2682 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1996)
2681 reflections with I > 10.00u(I)
Tmin = 0.39, Tmax = 0.95Rint = 0.00
2815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H-atom parameters not refined
wR(F2) = 0.105Δρmax = 1.78 e Å3
S = 0.98Δρmin = 1.70 e Å3
2681 reflectionsAbsolute structure: Flack & Bernadinelli (1999, 2000), 1226 Friedel-pairs
296 parametersAbsolute structure parameter: 0.46 (9)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.7945 (13)0.2264 (4)0.52342 (8)0.05120.802 (8)
I20.129 (1)0.2883 (2)0.72751 (4)0.03710.802 (8)
C10.6587 (16)0.2379 (9)0.55608 (12)0.03120.802 (8)
C20.7826 (16)0.1710 (9)0.57436 (14)0.03480.802 (8)
C30.6882 (14)0.1798 (8)0.59614 (12)0.03480.802 (8)
C40.4740 (12)0.2548 (8)0.59870 (9)0.02800.802 (8)
C50.3592 (14)0.3208 (8)0.58020 (12)0.03240.802 (8)
C60.4471 (16)0.3125 (9)0.55870 (13)0.03680.802 (8)
C70.0589 (16)0.2680 (8)0.69762 (12)0.02910.802 (8)
C80.2717 (16)0.1925 (9)0.69799 (14)0.03550.802 (8)
C90.3930 (15)0.1755 (9)0.67824 (13)0.03910.802 (8)
C100.3040 (11)0.2337 (7)0.65805 (9)0.03310.802 (8)
C110.0894 (14)0.3111 (8)0.65727 (12)0.03520.802 (8)
C120.0342 (16)0.3277 (9)0.67726 (14)0.03040.802 (8)
N10.3773 (16)0.2668 (8)0.62055 (11)0.03440.802 (8)
N20.4321 (12)0.2134 (9)0.63721 (12)0.03640.802 (8)
O10.6288 (13)0.1353 (9)0.64031 (12)0.05060.802 (8)
I2010.826 (3)0.2238 (17)0.5215 (4)0.05120.198 (8)
I2020.0814 (19)0.280 (1)0.72716 (19)0.03710.198 (8)
O2010.096 (3)0.3700 (17)0.6112 (5)0.04190.198 (8)
N2010.296 (3)0.2953 (17)0.6130 (3)0.03910.198 (8)
N2020.344 (4)0.255 (2)0.6301 (3)0.04020.198 (8)
C2010.650 (5)0.248 (2)0.5519 (4)0.03330.198 (8)
C2020.749 (4)0.187 (2)0.5719 (5)0.03420.198 (8)
C2030.630 (3)0.2030 (14)0.5921 (4)0.03420.198 (8)
C2040.418 (3)0.2796 (13)0.5921 (3)0.03360.198 (8)
C2050.322 (4)0.3405 (16)0.5720 (3)0.03720.198 (8)
C2060.438 (5)0.325 (2)0.5517 (3)0.03700.198 (8)
C2070.059 (3)0.2724 (15)0.6949 (3)0.02920.198 (8)
C2080.271 (3)0.1994 (15)0.6922 (3)0.03360.198 (8)
C2090.364 (3)0.1938 (15)0.6707 (3)0.03270.198 (8)
C2100.246 (3)0.2607 (15)0.6522 (3)0.03640.198 (8)
C2110.032 (3)0.3341 (15)0.6550 (3)0.03270.198 (8)
C2120.063 (4)0.3400 (16)0.6766 (4)0.03070.198 (8)
H1010.54580.12080.67860.0469*0.802 (8)
H1020.33750.15030.71270.0426*0.802 (8)
H1040.18740.38170.67690.0365*0.802 (8)
H1050.02560.35400.64250.0422*0.802 (8)
H21010.51640.14150.66850.0392*0.198 (8)
H21020.35540.15150.70560.0403*0.198 (8)
H21040.21520.39200.67880.0368*0.198 (8)
H21050.05190.38200.64160.0393*0.198 (8)
H20410.69830.15970.60660.0411*0.198 (8)
H20420.90160.13180.57170.0411*0.198 (8)
H20440.36970.36860.53710.0444*0.198 (8)
H20450.16920.39550.57210.0446*0.198 (8)
H410.77240.13340.60960.0418*0.802 (8)
H420.93470.11820.57200.0418*0.802 (8)
H440.36120.35880.54530.0442*0.802 (8)
H450.20830.37610.58240.0389*0.802 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0700 (16)0.0544 (4)0.029 (1)0.0077 (7)0.0141 (7)0.0057 (3)
I20.0341 (12)0.0453 (3)0.0320 (3)0.0011 (5)0.0050 (6)0.0012 (3)
C10.042 (4)0.030 (4)0.021 (4)0.001 (3)0.007 (4)0.004 (3)
C20.035 (4)0.028 (4)0.041 (4)0.009 (4)0.006 (4)0.000 (3)
C30.043 (5)0.028 (4)0.034 (4)0.007 (4)0.010 (4)0.008 (3)
C40.034 (4)0.025 (4)0.025 (4)0.002 (3)0.006 (3)0.007 (3)
C50.030 (4)0.034 (4)0.034 (4)0.008 (4)0.004 (4)0.006 (3)
C60.041 (4)0.040 (5)0.030 (5)0.001 (4)0.003 (4)0.015 (4)
C70.031 (4)0.029 (4)0.027 (4)0.001 (3)0.006 (3)0.000 (3)
C80.030 (4)0.035 (4)0.042 (5)0.004 (4)0.010 (4)0.009 (3)
C90.043 (5)0.029 (4)0.045 (4)0.002 (4)0.006 (4)0.011 (4)
C100.034 (4)0.028 (4)0.037 (4)0.001 (3)0.004 (3)0.000 (3)
C110.046 (5)0.027 (4)0.033 (4)0.001 (4)0.003 (4)0.006 (4)
C120.027 (4)0.024 (4)0.040 (4)0.005 (3)0.002 (3)0.001 (3)
N10.037 (4)0.038 (4)0.028 (3)0.011 (4)0.011 (3)0.008 (3)
N20.038 (4)0.033 (3)0.038 (3)0.005 (3)0.008 (3)0.001 (3)
O10.048 (4)0.063 (5)0.040 (4)0.027 (4)0.003 (3)0.001 (3)
I2010.0700 (16)0.0544 (4)0.029 (1)0.0077 (7)0.0141 (7)0.0057 (3)
I2020.0341 (12)0.0453 (3)0.0320 (3)0.0011 (5)0.0050 (6)0.0012 (3)
O2010.050 (9)0.04 (1)0.032 (9)0.008 (8)0.007 (8)0.002 (8)
N2010.046 (6)0.037 (6)0.034 (5)0.004 (5)0.012 (5)0.001 (5)
N2020.042 (6)0.040 (6)0.039 (6)0.009 (5)0.006 (5)0.007 (6)
C2010.043 (7)0.033 (7)0.024 (6)0.001 (6)0.010 (6)0.003 (6)
C2020.040 (7)0.028 (7)0.034 (6)0.007 (6)0.008 (6)0.003 (6)
C2030.047 (7)0.027 (7)0.029 (7)0.005 (7)0.011 (6)0.015 (7)
C2040.041 (6)0.031 (6)0.028 (6)0.004 (5)0.004 (5)0.005 (6)
C2050.041 (8)0.035 (7)0.036 (6)0.007 (7)0.001 (6)0.016 (7)
C2060.043 (7)0.038 (7)0.030 (6)0.002 (7)0.004 (7)0.015 (7)
C2070.031 (6)0.027 (7)0.029 (5)0.001 (6)0.008 (6)0.007 (6)
C2080.031 (7)0.029 (7)0.041 (6)0.001 (7)0.015 (7)0.014 (7)
C2090.04 (1)0.02 (1)0.035 (8)0.00 (1)0.016 (8)0.017 (9)
C2100.039 (5)0.029 (5)0.041 (5)0.003 (5)0.006 (4)0.006 (5)
C2110.042 (7)0.022 (7)0.034 (7)0.002 (6)0.002 (6)0.002 (7)
C2120.029 (6)0.026 (7)0.037 (6)0.005 (6)0.001 (6)0.003 (6)
Geometric parameters (Å, º) top
I1—C12.095 (6)N201—N2021.090 (9)
I2—C72.098 (6)N201—C2041.438 (9)
C1—C21.397 (7)N202—C2101.433 (9)
C1—C61.390 (8)C201—C2021.391 (9)
C2—C31.407 (8)C201—C2061.393 (9)
C2—H421.000C202—C2031.396 (9)
C3—C41.405 (7)C202—H20421.000
C3—H411.000C203—C2041.393 (9)
C4—C51.377 (7)C203—H20411.000
C4—N11.417 (6)C204—C2051.389 (9)
C5—C61.376 (7)C205—C2061.392 (9)
C5—H451.000C205—H20451.000
C6—H441.000C206—H20441.000
C7—C81.391 (8)C207—C2081.389 (9)
C7—C121.394 (8)C207—C2121.392 (9)
C8—C91.380 (8)C208—C2091.387 (9)
C8—H1021.000C208—H21021.000
C9—C101.372 (7)C209—C2101.387 (9)
C9—H1011.000C209—H21011.000
C10—C111.406 (7)C210—C2111.398 (9)
C10—N21.459 (7)C211—C2121.393 (9)
C11—C121.400 (7)C211—H21051.000
C11—H1051.000C212—H21041.000
C12—H1041.000H101—H21010.642
N2—O11.322 (7)H102—H21020.433
I201—C2012.088 (9)H104—H21040.213
I202—C2072.083 (9)H105—H21050.510
O201—N2011.321 (9)
I1—C1—C2119.3 (6)O201—N201—C204115.1 (17)
I1—C1—C6118.3 (6)N202—N201—C204129.8 (18)
C2—C1—C6122.4 (7)N201—N202—C210136.8 (19)
C1—C2—C3118.4 (7)I201—C201—C202119 (2)
C1—C2—H42120.803I201—C201—C206119 (2)
C3—C2—H42120.803C202—C201—C206121.8 (13)
C2—C3—C4119.0 (5)C201—C202—C203118.7 (12)
C2—C3—H41120.488C201—C202—H2042120.639
C4—C3—H41120.488C203—C202—H2042120.639
C3—C4—C5120.49 (13)C202—C203—C204120.0 (8)
C3—C4—N1119.81 (9)C202—C203—H2041119.986
C5—C4—N1119.69 (9)C204—C203—H2041119.986
C4—C5—C6121.6 (5)N201—C204—C203119.8 (1)
C4—C5—H45119.197N201—C204—C205119.8 (1)
C6—C5—H45119.197C203—C204—C205120.49 (14)
C1—C6—C5118.1 (7)C204—C205—C206120.2 (8)
C1—C6—H44120.954C204—C205—H2045119.900
C5—C6—H44120.954C206—C205—H2045119.900
I2—C7—C8120.6 (6)C201—C206—C205118.8 (12)
I2—C7—C12119.2 (6)C201—C206—H2044120.614
C8—C7—C12120.2 (7)C205—C206—H2044120.614
C7—C8—C9120.5 (7)I202—C207—C208119.1 (11)
C7—C8—H102119.748I202—C207—C212119.3 (11)
C9—C8—H102119.748C208—C207—C212121.6 (13)
C8—C9—C10120.0 (6)C207—C208—C209119.1 (12)
C8—C9—H101119.985C207—C208—H2102120.459
C10—C9—H101119.985C209—C208—H2102120.459
C9—C10—C11120.50 (13)C208—C209—C210120.2 (8)
C9—C10—N2119.73 (9)C208—C209—H2101119.911
C11—C10—N2119.77 (9)C210—C209—H2101119.911
C10—C11—C12119.6 (5)N202—C210—C209119.7 (1)
C10—C11—H105120.216N202—C210—C211119.8 (1)
C12—C11—H105120.216C209—C210—C211120.49 (14)
C7—C12—C11119.2 (7)C210—C211—C212119.7 (8)
C7—C12—H104120.420C210—C211—H2105120.132
C11—C12—H104120.419C212—C211—H2105120.132
C4—N1—N2131.7 (7)C207—C212—C211118.9 (12)
C10—N2—N1123.9 (6)C207—C212—H2104120.545
C10—N2—O1113.4 (5)C211—C212—H2104120.545
N1—N2—O1122.5 (8)C212—H104—H2104150.465
O201—N201—N202115 (3)C211—H105—H2105102.986

Experimental details

Crystal data
Chemical formulaC12H8I2N2O
Mr450.02
Crystal system, space groupOrthorhombic, I2cb
Temperature (K)150
a, b, c (Å)6.0119 (1), 7.2082 (2), 59.0233 (18)
V3)2557.77 (11)
Z8
Radiation typeMo Kα
µ (mm1)4.90
Crystal size (mm)0.20 × 0.19 × 0.01
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1996)
Tmin, Tmax0.39, 0.95
No. of measured, independent and
observed [I > 10.00u(I)] reflections
2815, 2682, 2681
Rint0.00
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.105, 0.98
No. of reflections2681
No. of parameters296
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)1.78, 1.70
Absolute structureFlack & Bernadinelli (1999, 2000), 1226 Friedel-pairs
Absolute structure parameter0.46 (9)

Computer programs: COLLECT (Nonius BV, 1997–2001), DENZO and SCALEPACK (Otwinowski & Minor, 1996), SIR92 (Altomare et al., 1994), CRYSTALS (Watkin et al., 2001), CAMERON, CRYSTALS.

Selected geometric parameters (Å, º) top
I1—C12.095 (6)I202—C2072.083 (9)
I2—C72.098 (6)O201—N2011.321 (9)
C1—C21.397 (7)N201—N2021.090 (9)
C1—C61.390 (8)N201—C2041.438 (9)
C2—C31.407 (8)N202—C2101.433 (9)
C3—C41.405 (7)C201—C2021.391 (9)
C4—C51.377 (7)C201—C2061.393 (9)
C4—N11.417 (6)C202—C2031.396 (9)
C5—C61.376 (7)C203—C2041.393 (9)
C7—C81.391 (8)C204—C2051.389 (9)
C7—C121.394 (8)C205—C2061.392 (9)
C8—C91.380 (8)C207—C2081.389 (9)
C9—C101.372 (7)C207—C2121.392 (9)
C10—C111.406 (7)C208—C2091.387 (9)
C10—N21.459 (7)C209—C2101.387 (9)
C11—C121.400 (7)C210—C2111.398 (9)
N2—O11.322 (7)C211—C2121.393 (9)
I201—C2012.088 (9)
I1—C1—C2119.3 (6)O201—N201—N202115 (3)
I1—C1—C6118.3 (6)O201—N201—C204115.1 (17)
C2—C1—C6122.4 (7)N202—N201—C204129.8 (18)
C1—C2—C3118.4 (7)N201—N202—C210136.8 (19)
C2—C3—C4119.0 (5)I201—C201—C202119 (2)
C3—C4—C5120.49 (13)I201—C201—C206119 (2)
C3—C4—N1119.81 (9)C202—C201—C206121.8 (13)
C5—C4—N1119.69 (9)C201—C202—C203118.7 (12)
C4—C5—C6121.6 (5)C202—C203—C204120.0 (8)
C1—C6—C5118.1 (7)N201—C204—C203119.8 (1)
I2—C7—C8120.6 (6)N201—C204—C205119.8 (1)
I2—C7—C12119.2 (6)C203—C204—C205120.49 (14)
C8—C7—C12120.2 (7)C204—C205—C206120.2 (8)
C7—C8—C9120.5 (7)C201—C206—C205118.8 (12)
C8—C9—C10120.0 (6)I202—C207—C208119.1 (11)
C9—C10—C11120.50 (13)I202—C207—C212119.3 (11)
C9—C10—N2119.73 (9)C208—C207—C212121.6 (13)
C11—C10—N2119.77 (9)C207—C208—C209119.1 (12)
C10—C11—C12119.6 (5)C208—C209—C210120.2 (8)
C7—C12—C11119.2 (7)N202—C210—C209119.7 (1)
C4—N1—N2131.7 (7)N202—C210—C211119.8 (1)
C10—N2—N1123.9 (6)C209—C210—C211120.49 (14)
C10—N2—O1113.4 (5)C210—C211—C212119.7 (8)
N1—N2—O1122.5 (8)C207—C212—C211118.9 (12)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds