Download citation
Download citation
link to html
The title disubstituted tetranuclear cluster, [Fe4(C3H9O3P)2(C7H4S3)(CO)10], was obtained by heating the tetranuclear complex TN (Fe4S3C19O12H4) with an excess of trimethyl phosphite in acetone at 328 K. The structure shows that, of the two P(OMe)3 ligands, one has replaced a carbonyl on an Fe atom in the symmetric part of the tetranuclear cluster, whereas the second one has replaced a carbonyl on an Fe atom in the asymmetric part of the cluster.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803008638/dn6067sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803008638/dn6067Isup2.hkl
Contains datablock I

CCDC reference: 214577

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.029
  • wR factor = 0.076
  • Data-to-parameter ratio = 15.6

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

La chimie organométallique occupe une place importante dans la chimie moderne, due en particulier aux différentes applications qui en découlent: synthèse organique (Alper, 1976–1978), synthèse bioinorganique (Jaouen et al., 1993) et processus catalytiques (Tolman, 1972).

Les réactions de remplacement du monoxyde de carbone catalysés par transfert d'électrons dans des complexes polynucléaires du fer à ligands soufrés ont déjà été étudiées (Darchen et al., 1982). Dans la plupart des cas, la substitution induite à l'électrode conduit aux mêmes résultats que ceux obtenus par voie thermique (Darchen et al., 1983), toutefois pour certains substrats on observe une orientation différente du remplacement des carbonyles suivant le mode d'activation. Ainsi dans le complexe tétranucléaire undecacarbonyl(µ4-2-thiodithiobenzoato- κ4C,S,S',S'')(triphenyl phosphine)tetrafer (Laifa, Benali-Cherif & Berrah, 2003) le ligand PPh3 occupe une position équatoriale, alors que dans le complexe undecacarbonyl (µ4-2-thiodithiobenzoato-κ4C,S,S',S'')(trimethyl phosphite)tetrafer (Laifa, Benali-Cherif & Merazig, 2003) le ligand P(OMe)3 occupe une position axiale.

Le complexe TN (Bird et al., 1981) contient deux motifs binucléaires A et B différents et trois sites métalliques non-équivalents qui font de ce complexe un substrat de choix pour l'étude de la régiosélectivité et la stéréosélectivité de la substitution de carbonyles. Partant de ce complexe et en poursuivant nos investigations sur la substitution des carbonyles par des ligands phosphines, nous avons réalisé une réaction de double substitution avec le triméthyl phosphite P(OMe)3).

Le complexe disubstitué obtenu (Fe4S3C23O16P2H22) contient deux motifs binucléaires A et B différents, liés entre eux par le ligand C6SCS2. Le motif A est pseudosymétrique et le squelette Fe2(CO)6 est doublement ponté par les deux atomes de soufre S1 et S2 du ligand. Le motif B est asymétrique, seul l'atome S3 du ligand ponte les deux atomes de fer alors que S2 qui ponte le motif A est uniquement lié à l'atome Fe4 du motif B. Cette structure montre que la premiére substitution du carbonyle par la trimethyl phosphite a lieu spécifiquement sur le motif A symétyrique, ponté par S2 en position équatoriale par rapport à la liaison Fe1—Fe2 [Fe1—Fe2—P1 = 113.92 (3)°] et la deuxième substitution sur le motif B asymétrique est aussi en position équatoriale par rapport á la liaison Fe3—Fe4 [Fe3—Fe4—P2 = 94.48 (3)°]. Ce résultat est en accord avec la régle d'une substitution par site métallique dans les complexes polynucléaires (El Kbir et al., 1983).

Experimental top

Le complexe tétranucléaire disubstitué (Fe4S3C23O16P2H22) est préparé sous activation thermique du TN, où un carbonyle du motif A symétrique et un carbonyle du motif B asymétrique sont substitués par le ligand trimethyl phosphite, 5,9x10−4 moles de TN et 1,2 × 10−3 moles de P(OMe)3 sont dissouts dans l'acétone et chauffés à reflux pendant 10 heures sous azote et à l'abri de la lumière. La réaction conduit en premier temps au monosubstitué qui réagit à son tour avec l'éxcès du P(OMe)3 pour conduire au complexe disubstitué. Le solvant est distillé et le résidu est séparé par chromatographie préparative sur plaque (éluant: éther de pétrole/éther éthylique 8:1). Le complexe disubstitué (Fe4S3C23O16PH18) est récupéré aprés lavage du gel de silice à l'acétone puis recristallisé dans l'éther/hexane 1:1), on obtient des cristaux rouges prismatiques.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Dessin ORTEP-3 (Farrugia, 1997) de la molécule. Les ellipsoides de vibration des atomes ont une probabilité de 50%.
(I) top
Crystal data top
[Fe4(C3H9O3P)2(C7H4S3)(CO)10]F(000) = 1880
Mr = 935.96Dx = 1.764 Mg m3
Monoclinic, P21/cMelting point: 172 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 16.4390 (2) ÅCell parameters from 25 reflections
b = 8.9990 (3) Åθ = 10–15°
c = 23.9750 (2) ŵ = 1.95 mm1
β = 96.529 (3)°T = 293 K
V = 3523.73 (13) Å3Prism, red
Z = 40.1 × 0.1 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
5439 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.006
Graphite monochromatorθmax = 26.0°, θmin = 2.4°
non–profiled ω scansh = 020
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
k = 110
Tmin = 0.818, Tmax = 0.907l = 2929
7804 measured reflections3 standard reflections every 120 min
6840 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0302P)2 + 2.4041P]
where P = (Fo2 + 2Fc2)/3
6840 reflections(Δ/σ)max = 0.001
439 parametersΔρmax = 0.88 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Fe4(C3H9O3P)2(C7H4S3)(CO)10]V = 3523.73 (13) Å3
Mr = 935.96Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.4390 (2) ŵ = 1.95 mm1
b = 8.9990 (3) ÅT = 293 K
c = 23.9750 (2) Å0.1 × 0.1 × 0.05 mm
β = 96.529 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
5439 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(Walker & Stuart, 1983)
Rint = 0.006
Tmin = 0.818, Tmax = 0.9073 standard reflections every 120 min
7804 measured reflections intensity decay: 3%
6840 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.88 e Å3
6840 reflectionsΔρmin = 0.27 e Å3
439 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe40.76290 (2)0.00444 (5)0.444371 (15)0.03405 (10)
Fe20.80230 (2)0.07918 (4)0.283024 (15)0.03270 (10)
Fe10.79409 (2)0.33984 (4)0.325608 (16)0.03439 (10)
Fe30.63667 (3)0.18250 (5)0.447769 (17)0.04380 (12)
S20.75392 (4)0.12990 (7)0.36268 (3)0.03065 (14)
S10.71198 (4)0.25515 (8)0.25075 (3)0.03809 (16)
P20.74270 (5)0.11885 (10)0.52125 (3)0.04369 (19)
P10.85180 (5)0.07617 (9)0.20256 (3)0.04316 (19)
O210.79639 (15)0.2602 (3)0.53904 (10)0.0645 (7)
O220.65508 (14)0.1905 (3)0.52530 (9)0.0529 (6)
O190.80124 (17)0.0090 (3)0.15257 (10)0.0695 (7)
O230.75084 (16)0.0126 (3)0.57373 (9)0.0630 (7)
O180.87479 (16)0.2303 (3)0.17949 (9)0.0619 (7)
O170.91101 (16)0.1346 (3)0.49995 (11)0.0725 (8)
O140.76774 (17)0.3887 (3)0.48772 (12)0.0757 (8)
O100.68105 (16)0.5599 (3)0.36427 (11)0.0652 (7)
C30.61045 (17)0.2184 (3)0.26613 (12)0.0404 (7)
O200.93739 (15)0.0088 (3)0.20017 (11)0.0637 (7)
O110.73815 (16)0.2213 (3)0.26874 (11)0.0686 (7)
O80.87576 (16)0.5267 (3)0.24892 (11)0.0691 (7)
O160.84553 (16)0.2562 (3)0.39805 (11)0.0678 (7)
C170.8521 (2)0.0827 (4)0.47903 (12)0.0457 (7)
O90.93293 (16)0.3850 (3)0.41159 (11)0.0783 (8)
C130.6018 (2)0.1498 (5)0.51519 (15)0.0632 (10)
O120.96298 (15)0.0281 (3)0.34428 (11)0.0687 (7)
O150.51202 (19)0.4075 (4)0.41617 (13)0.0924 (10)
C20.58772 (17)0.1604 (3)0.31622 (12)0.0397 (6)
C220.6274 (2)0.3194 (4)0.49328 (15)0.0605 (9)
H22A0.66160.33490.46390.091*
H22B0.57180.30480.47710.091*
H22C0.63030.40480.51740.091*
C40.5510 (2)0.2482 (4)0.22167 (14)0.0562 (9)
H40.56640.28800.18860.067*
O130.5763 (2)0.1359 (4)0.55720 (11)0.0968 (11)
C190.7157 (3)0.0236 (6)0.13496 (17)0.0932 (16)
H19A0.68380.00160.16510.140*
H19B0.69690.03600.10290.140*
H19C0.70990.12690.12530.140*
C50.4698 (2)0.2197 (5)0.22574 (16)0.0707 (11)
H50.43050.24080.19570.085*
C140.7192 (2)0.3053 (4)0.47116 (14)0.0550 (8)
C150.5590 (2)0.3164 (4)0.42831 (15)0.0610 (9)
C160.81208 (19)0.1596 (4)0.41623 (12)0.0430 (7)
C60.4468 (2)0.1601 (5)0.27430 (17)0.0713 (11)
H60.39200.13910.27700.086*
C70.50442 (19)0.1314 (4)0.31873 (15)0.0564 (9)
H70.48790.09170.35150.068*
C110.76216 (18)0.1024 (4)0.27324 (12)0.0410 (7)
C90.8786 (2)0.3647 (4)0.37881 (13)0.0470 (7)
C10.64672 (16)0.1255 (3)0.36597 (11)0.0348 (6)
C80.8441 (2)0.4542 (3)0.27815 (13)0.0460 (7)
C230.7347 (3)0.0624 (6)0.62907 (14)0.0963 (16)
H23A0.67800.08890.62820.144*
H23B0.74730.01620.65570.144*
H23C0.76820.14730.63990.144*
C120.9002 (2)0.0462 (3)0.31970 (12)0.0440 (7)
C100.72527 (19)0.4757 (3)0.34981 (13)0.0439 (7)
C180.9063 (3)0.2465 (5)0.12553 (15)0.0925 (15)
H18A0.96140.21000.12830.139*
H18B0.90550.34960.11510.139*
H18C0.87270.19080.09760.139*
C200.9440 (3)0.1629 (4)0.21242 (17)0.0690 (11)
H20A0.93500.17950.25080.103*
H20B0.99780.19710.20670.103*
H20C0.90390.21650.18810.103*
C210.8839 (2)0.2621 (6)0.54557 (19)0.0947 (16)
H21A0.90340.24180.51010.142*
H21B0.90300.35810.55870.142*
H21C0.90420.18770.57230.142*
S30.63088 (4)0.03414 (9)0.40670 (3)0.04137 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe40.0334 (2)0.0367 (2)0.03162 (19)0.00256 (18)0.00186 (15)0.00352 (16)
Fe20.0350 (2)0.0303 (2)0.03301 (19)0.00111 (17)0.00448 (15)0.00064 (16)
Fe10.0343 (2)0.0295 (2)0.0388 (2)0.00182 (17)0.00194 (16)0.00149 (16)
Fe30.0405 (2)0.0494 (3)0.0430 (2)0.0093 (2)0.01113 (18)0.0037 (2)
S20.0296 (3)0.0313 (3)0.0305 (3)0.0008 (3)0.0015 (2)0.0019 (3)
S10.0411 (4)0.0371 (4)0.0348 (3)0.0008 (3)0.0011 (3)0.0056 (3)
P20.0479 (5)0.0480 (5)0.0352 (4)0.0051 (4)0.0048 (3)0.0074 (3)
P10.0558 (5)0.0366 (4)0.0390 (4)0.0051 (4)0.0136 (3)0.0020 (3)
O210.0599 (15)0.0706 (17)0.0634 (14)0.0205 (13)0.0094 (12)0.0271 (13)
O220.0557 (14)0.0544 (14)0.0515 (12)0.0019 (11)0.0184 (10)0.0052 (11)
O190.0834 (19)0.0752 (18)0.0507 (13)0.0152 (15)0.0108 (13)0.0183 (12)
O230.0864 (18)0.0669 (16)0.0352 (11)0.0054 (14)0.0043 (11)0.0010 (11)
O180.0953 (19)0.0472 (14)0.0467 (12)0.0135 (13)0.0237 (12)0.0034 (10)
O170.0582 (16)0.090 (2)0.0650 (15)0.0183 (15)0.0130 (13)0.0078 (14)
O140.0707 (18)0.0669 (18)0.0872 (19)0.0001 (15)0.0009 (15)0.0274 (15)
O100.0655 (16)0.0542 (15)0.0772 (17)0.0216 (13)0.0141 (13)0.0025 (13)
C30.0359 (15)0.0372 (16)0.0455 (15)0.0009 (13)0.0062 (12)0.0067 (13)
O200.0665 (16)0.0559 (15)0.0741 (16)0.0022 (13)0.0316 (13)0.0045 (12)
O110.0654 (16)0.0463 (15)0.0929 (19)0.0197 (13)0.0035 (14)0.0022 (13)
O80.0765 (18)0.0563 (15)0.0764 (17)0.0147 (14)0.0165 (14)0.0217 (13)
O160.0768 (18)0.0514 (15)0.0761 (16)0.0156 (14)0.0131 (14)0.0114 (13)
C170.0482 (18)0.0517 (19)0.0364 (15)0.0042 (16)0.0018 (13)0.0030 (14)
O90.0564 (16)0.094 (2)0.0778 (17)0.0130 (15)0.0233 (14)0.0029 (16)
C130.060 (2)0.075 (3)0.058 (2)0.021 (2)0.0188 (18)0.0061 (18)
O120.0436 (14)0.0779 (18)0.0806 (17)0.0088 (13)0.0096 (13)0.0040 (14)
O150.080 (2)0.094 (2)0.105 (2)0.0491 (19)0.0188 (17)0.0151 (18)
C20.0350 (15)0.0365 (16)0.0462 (15)0.0002 (13)0.0017 (12)0.0043 (13)
C220.061 (2)0.055 (2)0.066 (2)0.0053 (18)0.0110 (18)0.0078 (18)
C40.052 (2)0.060 (2)0.0523 (18)0.0045 (17)0.0133 (15)0.0160 (16)
O130.106 (2)0.130 (3)0.0628 (17)0.032 (2)0.0443 (17)0.0189 (18)
C190.087 (3)0.122 (4)0.064 (2)0.013 (3)0.022 (2)0.030 (3)
C50.046 (2)0.083 (3)0.076 (2)0.005 (2)0.0250 (18)0.023 (2)
C140.057 (2)0.059 (2)0.0498 (18)0.0125 (18)0.0071 (16)0.0094 (16)
C150.057 (2)0.067 (2)0.062 (2)0.014 (2)0.0185 (17)0.0037 (18)
C160.0435 (17)0.0439 (18)0.0408 (15)0.0002 (15)0.0011 (13)0.0065 (13)
C60.0360 (19)0.087 (3)0.086 (3)0.0062 (19)0.0136 (18)0.027 (2)
C70.0349 (17)0.066 (2)0.067 (2)0.0038 (16)0.0027 (15)0.0173 (18)
C110.0368 (16)0.0428 (18)0.0437 (15)0.0013 (14)0.0059 (12)0.0012 (13)
C90.0461 (18)0.0425 (18)0.0516 (18)0.0035 (15)0.0027 (15)0.0030 (14)
C10.0279 (14)0.0387 (15)0.0378 (14)0.0001 (12)0.0032 (11)0.0047 (12)
C80.0481 (18)0.0353 (17)0.0539 (18)0.0018 (14)0.0030 (15)0.0028 (14)
C230.145 (5)0.110 (4)0.0361 (18)0.001 (3)0.021 (2)0.002 (2)
C120.0449 (18)0.0411 (17)0.0470 (16)0.0017 (14)0.0097 (14)0.0019 (13)
C100.0453 (18)0.0379 (16)0.0473 (17)0.0012 (15)0.0004 (14)0.0018 (13)
C180.148 (4)0.082 (3)0.055 (2)0.029 (3)0.043 (3)0.010 (2)
C200.074 (3)0.046 (2)0.092 (3)0.0116 (19)0.029 (2)0.0016 (19)
C210.058 (3)0.133 (4)0.090 (3)0.028 (3)0.006 (2)0.045 (3)
S30.0354 (4)0.0441 (4)0.0440 (4)0.0042 (3)0.0021 (3)0.0108 (3)
Geometric parameters (Å, º) top
Fe4—C171.782 (3)C3—C41.388 (4)
Fe4—C161.784 (3)C3—C21.399 (4)
Fe4—P22.1695 (8)O20—C201.420 (4)
Fe4—S32.2697 (8)O11—C111.141 (4)
Fe4—S22.2920 (7)O8—C81.128 (4)
Fe4—Fe32.6798 (6)O16—C161.141 (4)
Fe2—C111.768 (3)O9—C91.135 (4)
Fe2—C121.770 (3)C13—O131.141 (4)
Fe2—P12.1776 (8)O12—C121.140 (4)
Fe2—S22.1986 (7)O15—C151.141 (4)
Fe2—S12.2472 (8)C2—C71.402 (4)
Fe2—Fe12.5679 (5)C2—C11.483 (4)
Fe1—C91.790 (3)C22—H22A0.9600
Fe1—C81.800 (3)C22—H22B0.9600
Fe1—C101.806 (3)C22—H22C0.9600
Fe1—S22.2201 (8)C4—C51.374 (5)
Fe1—S12.2522 (8)C4—H40.9300
Fe3—C151.779 (4)C19—H19A0.9600
Fe3—C141.790 (4)C19—H19B0.9600
Fe3—C131.800 (4)C19—H19C0.9600
Fe3—C12.052 (3)C5—C61.373 (5)
Fe3—S32.1813 (9)C5—H50.9300
S2—C11.773 (3)C6—C71.367 (5)
S1—C31.781 (3)C6—H60.9300
P2—O231.574 (2)C7—H70.9300
P2—O211.579 (2)C1—S31.773 (3)
P2—O221.591 (2)C23—H23A0.9600
P1—O181.556 (2)C23—H23B0.9600
P1—O191.577 (2)C23—H23C0.9600
P1—O201.608 (3)C18—H18A0.9600
O21—C211.430 (4)C18—H18B0.9600
O22—C221.437 (4)C18—H18C0.9600
O19—C191.451 (5)C20—H20A0.9600
O23—C231.453 (4)C20—H20B0.9600
O18—C181.454 (4)C20—H20C0.9600
O17—C171.140 (4)C21—H21A0.9600
O14—C141.134 (4)C21—H21B0.9600
O10—C101.131 (4)C21—H21C0.9600
C17—Fe4—C1697.86 (14)O20—P1—Fe2117.01 (10)
C17—Fe4—P290.57 (10)C21—O21—P2124.3 (3)
C16—Fe4—P293.99 (10)C22—O22—P2121.9 (2)
C17—Fe4—S3159.35 (11)C19—O19—P1122.1 (3)
C16—Fe4—S3102.19 (10)C23—O23—P2122.3 (3)
P2—Fe4—S392.89 (3)C18—O18—P1122.1 (2)
C17—Fe4—S297.81 (10)C4—C3—C2119.9 (3)
C16—Fe4—S294.45 (9)C4—C3—S1113.6 (2)
P2—Fe4—S2167.17 (3)C2—C3—S1126.5 (2)
S3—Fe4—S275.89 (3)C20—O20—P1120.3 (2)
C17—Fe4—Fe3107.95 (11)O17—C17—Fe4177.1 (3)
C16—Fe4—Fe3152.70 (10)O13—C13—Fe3175.8 (3)
P2—Fe4—Fe394.49 (3)C3—C2—C7117.6 (3)
S3—Fe4—Fe351.49 (2)C3—C2—C1123.7 (3)
S2—Fe4—Fe373.74 (2)C7—C2—C1118.6 (3)
C11—Fe2—C12102.46 (14)O22—C22—H22A109.5
C11—Fe2—P192.43 (10)O22—C22—H22B109.5
C12—Fe2—P191.58 (10)H22A—C22—H22B109.5
C11—Fe2—S298.09 (10)O22—C22—H22C109.5
C12—Fe2—S290.10 (10)H22A—C22—H22C109.5
P1—Fe2—S2168.73 (3)H22B—C22—H22C109.5
C11—Fe2—S1112.56 (10)C5—C4—C3121.0 (3)
C12—Fe2—S1144.83 (11)C5—C4—H4119.5
P1—Fe2—S190.15 (3)C3—C4—H4119.5
S2—Fe2—S182.10 (3)O19—C19—H19A109.5
C11—Fe2—Fe1149.47 (10)O19—C19—H19B109.5
C12—Fe2—Fe192.38 (10)H19A—C19—H19B109.5
P1—Fe2—Fe1113.92 (3)O19—C19—H19C109.5
S2—Fe2—Fe154.86 (2)H19A—C19—H19C109.5
S1—Fe2—Fe155.29 (2)H19B—C19—H19C109.5
C9—Fe1—C890.32 (14)C6—C5—C4119.8 (3)
C9—Fe1—C1098.63 (14)C6—C5—H5120.1
C8—Fe1—C1099.41 (14)C4—C5—H5120.1
C9—Fe1—S293.64 (10)O14—C14—Fe3175.3 (3)
C8—Fe1—S2156.54 (10)O15—C15—Fe3176.7 (4)
C10—Fe1—S2102.82 (10)O16—C16—Fe4177.9 (3)
C9—Fe1—S1163.02 (11)C7—C6—C5120.1 (3)
C8—Fe1—S188.00 (10)C7—C6—H6120.0
C10—Fe1—S198.31 (10)C5—C6—H6120.0
S2—Fe1—S181.52 (3)C6—C7—C2121.7 (3)
C9—Fe1—Fe2109.03 (11)C6—C7—H7119.2
C8—Fe1—Fe2102.86 (10)C2—C7—H7119.2
C10—Fe1—Fe2144.05 (10)O11—C11—Fe2177.4 (3)
S2—Fe1—Fe254.08 (2)O9—C9—Fe1177.6 (3)
S1—Fe1—Fe255.11 (2)C2—C1—S3119.4 (2)
C15—Fe3—C1499.20 (17)C2—C1—S2121.5 (2)
C15—Fe3—C1393.09 (16)S3—C1—S2104.57 (14)
C14—Fe3—C1397.29 (17)C2—C1—Fe3126.8 (2)
C15—Fe3—C192.99 (14)S3—C1—Fe369.10 (9)
C14—Fe3—C1108.25 (13)S2—C1—Fe3103.02 (13)
C13—Fe3—C1152.39 (16)O8—C8—Fe1179.2 (3)
C15—Fe3—S3119.60 (13)O23—C23—H23A109.5
C14—Fe3—S3133.30 (11)O23—C23—H23B109.5
C13—Fe3—S3104.92 (14)H23A—C23—H23B109.5
C1—Fe3—S349.40 (8)O23—C23—H23C109.5
C15—Fe3—Fe4162.26 (11)H23A—C23—H23C109.5
C14—Fe3—Fe480.50 (11)H23B—C23—H23C109.5
C13—Fe3—Fe4104.56 (12)O12—C12—Fe2178.1 (3)
C1—Fe3—Fe470.56 (8)O10—C10—Fe1178.7 (3)
S3—Fe3—Fe454.51 (2)O18—C18—H18A109.5
C1—S2—Fe2119.56 (9)O18—C18—H18B109.5
C1—S2—Fe1112.28 (10)H18A—C18—H18B109.5
Fe2—S2—Fe171.06 (2)O18—C18—H18C109.5
C1—S2—Fe485.30 (9)H18A—C18—H18C109.5
Fe2—S2—Fe4129.66 (3)H18B—C18—H18C109.5
Fe1—S2—Fe4142.92 (3)O20—C20—H20A109.5
C3—S1—Fe2113.33 (10)O20—C20—H20B109.5
C3—S1—Fe1112.88 (10)H20A—C20—H20B109.5
Fe2—S1—Fe169.60 (2)O20—C20—H20C109.5
O23—P2—O21106.22 (14)H20A—C20—H20C109.5
O23—P2—O22101.11 (13)H20B—C20—H20C109.5
O21—P2—O2298.00 (13)O21—C21—H21A109.5
O23—P2—Fe4112.55 (10)O21—C21—H21B109.5
O21—P2—Fe4118.48 (9)H21A—C21—H21B109.5
O22—P2—Fe4118.12 (9)O21—C21—H21C109.5
O18—P1—O19106.94 (14)H21A—C21—H21C109.5
O18—P1—O2099.33 (14)H21B—C21—H21C109.5
O19—P1—O2097.45 (15)C1—S3—Fe361.50 (9)
O18—P1—Fe2115.74 (9)C1—S3—Fe485.99 (9)
O19—P1—Fe2117.48 (10)Fe3—S3—Fe474.01 (3)

Experimental details

Crystal data
Chemical formula[Fe4(C3H9O3P)2(C7H4S3)(CO)10]
Mr935.96
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.4390 (2), 8.9990 (3), 23.9750 (2)
β (°) 96.529 (3)
V3)3523.73 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.1 × 0.1 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(Walker & Stuart, 1983)
Tmin, Tmax0.818, 0.907
No. of measured, independent and
observed [I > 2σ(I)] reflections
7804, 6840, 5439
Rint0.006
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.076, 1.05
No. of reflections6840
No. of parameters439
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.27

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SIR2002 (Burla et al., 2003), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Fe4—P22.1695 (8)Fe3—C12.052 (3)
Fe4—S32.2697 (8)Fe3—S32.1813 (9)
Fe4—S22.2920 (7)S2—C11.773 (3)
Fe4—Fe32.6798 (6)S1—C31.781 (3)
Fe2—P12.1776 (8)C3—C41.388 (4)
Fe2—S22.1986 (7)C3—C21.399 (4)
Fe2—Fe12.5679 (5)C2—C71.402 (4)
Fe1—S22.2201 (8)C2—C11.483 (4)
Fe1—S12.2522 (8)C1—S31.773 (3)
P2—Fe4—S392.89 (3)Fe1—S2—Fe4142.92 (3)
P2—Fe4—S2167.17 (3)C3—S1—Fe2113.33 (10)
S3—Fe4—S275.89 (3)C3—S1—Fe1112.88 (10)
P2—Fe4—Fe394.49 (3)Fe2—S1—Fe169.60 (2)
S3—Fe4—Fe351.49 (2)C4—C3—C2119.9 (3)
S2—Fe4—Fe373.74 (2)C4—C3—S1113.6 (2)
P1—Fe2—S2168.73 (3)C2—C3—S1126.5 (2)
P1—Fe2—S190.15 (3)C3—C2—C7117.6 (3)
S2—Fe2—S182.10 (3)C3—C2—C1123.7 (3)
P1—Fe2—Fe1113.92 (3)C7—C2—C1118.6 (3)
S2—Fe2—Fe154.86 (2)C5—C4—C3121.0 (3)
S1—Fe2—Fe155.29 (2)C6—C5—C4119.8 (3)
S2—Fe1—S181.52 (3)C7—C6—C5120.1 (3)
S2—Fe1—Fe254.08 (2)C2—C1—S3119.4 (2)
S1—Fe1—Fe255.11 (2)C2—C1—S2121.5 (2)
C1—Fe3—Fe470.56 (8)S3—C1—S2104.57 (14)
S3—Fe3—Fe454.51 (2)C2—C1—Fe3126.8 (2)
C1—S2—Fe2119.56 (9)S3—C1—Fe369.10 (9)
C1—S2—Fe1112.28 (10)S2—C1—Fe3103.02 (13)
Fe2—S2—Fe171.06 (2)C1—S3—Fe361.50 (9)
C1—S2—Fe485.30 (9)C1—S3—Fe485.99 (9)
Fe2—S2—Fe4129.66 (3)Fe3—S3—Fe474.01 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds