Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, di­methyl (3R,4S)-3-{[(4S)-4-benzyl-2-oxo-1,3-oxazolidin-3-yl]­carbonyl}-4-di­methyl­amino-3,4-di­hydro-2H-thio­pyran-5,6-di­carboxyl­ate, C22H26N2O7S, is the result of a diastereoselective Diels-Alder reaction between di­methyl (2E)-[(di­methyl­amino)­methyl­ene]-3-thio­succinate and (4S)-3-acryl­oyl-4-benzyl-1,3-oxazolidin-2-one used as chiral auxiliary. Following an X-ray structure determination, the absolute configurations of both stereogenic centres formed during the cyclo­addition were determined.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802016689/dn6039sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802016689/dn6039Isup2.hkl
Contains datablock I

CCDC reference: 198965

Key indicators

  • Single-crystal X-ray study
  • T = 150 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.043
  • wR factor = 0.088
  • Data-to-parameter ratio = 16.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.73 From the CIF: _reflns_number_total 4753 Count of symmetry unique reflns 2776 Completeness (_total/calc) 171.22% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1977 Fraction of Friedel pairs measured 0.712 Are heavy atom types Z>Si present yes Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF.

Comment top

Asymmetric hetero Diels-Alder reaction appears to be the method of choice for the highly efficient regio- and stereoselective synthesis of various heterocycles in enantiomerically pure form (Waldmann, 1994). In the course of an ongoing project (Trippé et al., 2002) and regarding previous results obtained in our laboratory (Marchand et al., 1995), we have isolated the substituted dihydro-2H-thiopyran resulting from the [4 + 2] cycloaddition reaction of dimethyl (2E)-[(dimethylamino)methylene]-3-thiosuccinate (Tea Gokou et al., 1985) and (4S)-3-acryloyl-4-benzyl-1,3-oxazolidin-2-one (Evans et al., 1984) in the presence of MgBr2 as catalyst. Only two diastereoisomers, in a 7/3 ratio, were obtained at the end of the reaction and separated by chromatography on SiO2. The major component is the title compound, (I), and is the result of an exo transition-state topography in the cycloaddition transition state, whereas the minor component is presumed to come from an endo approach. A full report on the synthesis as well as structural and mechanistic studies will be reported separately. Atoms O5, C12, N2, C13 and O6 are planar within less than 0.09 Å.

Experimental top

To a suspension of activated magnesium turnings (3.25 mmol) in dry Et2O was added 1,2-dibromoethane (3.25 mmol). The resulting mixture was stirred until all magnesium turnings disappeared, and the solvent was evaporated under an N2 draught. After addition of dry CH2Cl2 (10 ml), (4S)-3-acryloyl-4-benzyl-1,3-oxazolidin-2-one (1.10 mmol) in anhydrous CH2Cl2 (3 ml) was added at 263 K. After stirring at 263 K for 15 min, dimethyl (2E)-[(dimethylamino)methylene]-3-thiosuccinate (1.10 mmol) was slowly added. The reaction mixture was then stirred at 263 K for 3 h. Saturated NaHCO3 (5 ml) was added and the organic layer was washed with saturated NaHCO3 (2 x 5 ml), water (5 ml) and brine (5 ml). The CH2Cl2 extract was then dried over anhydrous MgSO4, filtered and concentrated. The crude mixture was flash-chromatographed on silica (eluent: petroleum ether/AcOEt, 7:3) to afford (I) (285 mg, 57%) along with one other diastereoisomer (142 mg, 28%). Single crystals of (I) suitable for X-ray analysis were obtained by crystallization from AcOEt/petroleum ether.

Refinement top

All non-H atoms were refined with anisotropic atomic displacement parameters. Orientation of the CH3 groups was determined from difference Fourier syntheses and initially refined as rigid bodies. All H atoms were then fixed at calculated and/or refined positions. A riding isotropic displacement parameter was used for all hydrogen atoms. The absolute configuration was unambiguously determined by refining the Flack enantiopole parameter using 1994 Friedel pairs.

Computing details top

Data collection: Collect (Nonius, 1998); cell refinement: HKL SCALEPACK; data reduction: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: JANA2000 (Petricek & Dusek, 2000); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: JANA2000.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids. H are omitted for clarity.
(I) top
Crystal data top
C22H26N2O7SF(000) = 976
Mr = 462.5Dx = 1.358 (1) Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 14696 reflections
a = 6.1205 (1) Åθ = 2.9–26.7°
b = 16.1195 (4) ŵ = 0.19 mm1
c = 22.9272 (6) ÅT = 150 K
V = 2261.98 (9) Å3Needle, colourless
Z = 40.4 × 0.03 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3833 reflections with I > 2σ(I)
Horizonally mounted graphite crystal monochromatorRint = 0.063
Detector resolution: 9 pixels mm-1θmax = 26.7°, θmin = 3.0°
ϕ and ω scansh = 76
22365 measured reflectionsk = 2020
4753 independent reflectionsl = 2828
Refinement top
Refinement on F2(Δ/σ)max = 0.0003
R[F2 > 2σ(F2)] = 0.043Δρmax = 0.76 e Å3
wR(F2) = 0.088Δρmin = 0.40 e Å3
S = 1.23Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
4753 reflectionsExtinction coefficient: 1.5 (2)
290 parametersAbsolute structure: Flack (1983)
H-atom parameters not refinedAbsolute structure parameter: 0.00 (8)
Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.001296I2]
Crystal data top
C22H26N2O7SV = 2261.98 (9) Å3
Mr = 462.5Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1205 (1) ŵ = 0.19 mm1
b = 16.1195 (4) ÅT = 150 K
c = 22.9272 (6) Å0.4 × 0.03 × 0.03 mm
Data collection top
Nonius KappaCCD
diffractometer
3833 reflections with I > 2σ(I)
22365 measured reflectionsRint = 0.063
4753 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters not refined
wR(F2) = 0.088Δρmax = 0.76 e Å3
S = 1.23Δρmin = 0.40 e Å3
4753 reflectionsAbsolute structure: Flack (1983)
290 parametersAbsolute structure parameter: 0.00 (8)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.65977 (10)0.24954 (4)0.58687 (2)0.03101 (18)
O11.0275 (2)0.24942 (11)0.67157 (7)0.0330 (5)
O20.7764 (3)0.24146 (11)0.74256 (7)0.0419 (6)
O30.4552 (3)0.42098 (11)0.75962 (7)0.0416 (6)
O40.8120 (3)0.42069 (10)0.73764 (7)0.0346 (5)
O50.0474 (3)0.43346 (11)0.55260 (7)0.0331 (5)
O60.5974 (2)0.39058 (10)0.44840 (7)0.0288 (5)
O70.3752 (2)0.44087 (9)0.38016 (6)0.0300 (5)
N10.4240 (3)0.51056 (10)0.62651 (8)0.0266 (6)
N20.2516 (3)0.44179 (10)0.47143 (7)0.0211 (5)
C10.6838 (4)0.30598 (13)0.65181 (9)0.0232 (6)
C20.5706 (3)0.37440 (13)0.66589 (9)0.0215 (6)
C30.4053 (3)0.41930 (12)0.62726 (9)0.0221 (6)
C40.4179 (3)0.38923 (12)0.56409 (9)0.0211 (6)
C50.4115 (4)0.29436 (13)0.55889 (9)0.0268 (7)
C60.8311 (4)0.26296 (13)0.69466 (10)0.0259 (7)
C71.1805 (4)0.20477 (17)0.70814 (12)0.0442 (9)
C80.6004 (4)0.40785 (13)0.72597 (10)0.0264 (7)
C90.8661 (5)0.44372 (18)0.79658 (12)0.0503 (10)
C100.6446 (4)0.54365 (13)0.62428 (11)0.0357 (8)
C110.2850 (4)0.55502 (15)0.66718 (12)0.0397 (8)
C120.2254 (4)0.42336 (13)0.53065 (9)0.0222 (6)
C130.4264 (4)0.42150 (13)0.43551 (9)0.0230 (7)
C140.1481 (4)0.46520 (13)0.37559 (10)0.0296 (7)
C150.0686 (4)0.47803 (13)0.43826 (9)0.0264 (7)
C160.0247 (4)0.56882 (15)0.45392 (10)0.0311 (8)
C170.2129 (4)0.62708 (13)0.44358 (10)0.0293 (7)
C180.3805 (4)0.63447 (13)0.48435 (10)0.0293 (7)
C190.5533 (4)0.68855 (14)0.47556 (11)0.0344 (8)
C200.5623 (5)0.73578 (14)0.42505 (11)0.0397 (8)
C210.3983 (5)0.72937 (14)0.38425 (11)0.0426 (9)
C220.2249 (4)0.67556 (14)0.39350 (10)0.0344 (8)
H30.26370.40780.64540.026*
H40.55690.40890.54790.025*
H5a0.38960.28280.51740.032*
H5b0.2820.27690.58090.032*
H7a1.23270.24030.73950.053*
H7b1.11560.15520.72460.053*
H7c1.30220.18960.68320.053*
H9a1.02250.45260.79730.06*
H9b0.79130.49470.80670.06*
H9c0.82770.40070.82450.06*
H10a0.73820.51070.59920.043*
H10b0.63620.59990.60940.053*
H10c0.70470.54460.66350.043*
H11a0.27530.6120.65390.048*
H11b0.34070.55380.70680.048*
H11c0.1410.52980.66620.048*
H14a0.06590.4210.3560.035*
H14b0.13760.51630.35280.035*
H150.07170.45140.44710.032*
H16a0.09890.58850.43060.037*
H16b0.01280.57180.49550.037*
H180.37680.60080.51980.035*
H190.66860.69340.5050.041*
H200.68480.77370.41820.048*
H210.40440.76310.34880.051*
H220.110.67170.3640.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0457 (4)0.0271 (3)0.0203 (3)0.0118 (3)0.0042 (3)0.0060 (2)
O10.0281 (8)0.0411 (9)0.0299 (8)0.0105 (8)0.0025 (7)0.0078 (8)
O20.0407 (10)0.0575 (11)0.0275 (9)0.0126 (9)0.0058 (8)0.0158 (8)
O30.0392 (10)0.0620 (12)0.0236 (9)0.0157 (9)0.0013 (9)0.0138 (8)
O40.0324 (9)0.0452 (10)0.0261 (9)0.0015 (8)0.0076 (7)0.0094 (7)
O50.0240 (8)0.0487 (10)0.0265 (9)0.0014 (8)0.0031 (8)0.0048 (8)
O60.0210 (8)0.0401 (9)0.0253 (9)0.0019 (7)0.0014 (7)0.0011 (7)
O70.0318 (9)0.0380 (9)0.0202 (8)0.0039 (7)0.0005 (7)0.0063 (7)
N10.0289 (10)0.0202 (9)0.0308 (11)0.0034 (8)0.0009 (9)0.0036 (8)
N20.0199 (9)0.0239 (10)0.0195 (9)0.0017 (8)0.0014 (8)0.0020 (7)
C10.0259 (11)0.0259 (11)0.0178 (11)0.0005 (10)0.0030 (10)0.0000 (9)
C20.0225 (11)0.0244 (11)0.0176 (11)0.0001 (9)0.0011 (10)0.0006 (9)
C30.0234 (11)0.0215 (11)0.0214 (11)0.0004 (9)0.0013 (10)0.0001 (9)
C40.0198 (10)0.0225 (11)0.0209 (11)0.0006 (9)0.0005 (9)0.0023 (9)
C50.0376 (13)0.0263 (11)0.0166 (11)0.0006 (10)0.0041 (11)0.0015 (9)
C60.0311 (12)0.0201 (11)0.0265 (12)0.0014 (10)0.0032 (10)0.0010 (9)
C70.0340 (14)0.0545 (16)0.0441 (16)0.0144 (13)0.0005 (13)0.0111 (13)
C80.0302 (13)0.0293 (12)0.0196 (12)0.0054 (10)0.0016 (11)0.0014 (9)
C90.0493 (17)0.0656 (19)0.0362 (15)0.0046 (15)0.0146 (14)0.0199 (13)
C100.0360 (13)0.0279 (12)0.0432 (15)0.0036 (11)0.0017 (12)0.0007 (11)
C110.0447 (15)0.0319 (13)0.0427 (15)0.0108 (12)0.0018 (13)0.0093 (11)
C120.0224 (12)0.0225 (11)0.0218 (11)0.0027 (9)0.0003 (10)0.0006 (9)
C130.0250 (12)0.0223 (11)0.0218 (12)0.0079 (10)0.0001 (10)0.0000 (9)
C140.0351 (13)0.0259 (11)0.0277 (13)0.0040 (10)0.0101 (11)0.0032 (9)
C150.0201 (11)0.0337 (12)0.0256 (12)0.0027 (10)0.0052 (10)0.0070 (10)
C160.0250 (12)0.0364 (13)0.0320 (14)0.0082 (11)0.0017 (10)0.0044 (11)
C170.0330 (13)0.0253 (11)0.0297 (13)0.0085 (10)0.0030 (11)0.0044 (10)
C180.0384 (14)0.0195 (11)0.0299 (13)0.0072 (10)0.0007 (11)0.0022 (9)
C190.0401 (13)0.0237 (12)0.0395 (15)0.0036 (11)0.0059 (12)0.0082 (11)
C200.0483 (15)0.0288 (13)0.0421 (15)0.0048 (12)0.0075 (13)0.0054 (11)
C210.0641 (18)0.0308 (13)0.0330 (14)0.0044 (13)0.0044 (14)0.0049 (10)
C220.0478 (15)0.0269 (12)0.0286 (13)0.0028 (11)0.0075 (12)0.0002 (10)
Geometric parameters (Å, º) top
S1—C11.751 (2)C7—H7b0.969
S1—C51.801 (2)C7—H7c0.970
O1—C61.332 (3)C9—H9a0.968
O1—C71.449 (3)C9—H9b0.969
O2—C61.199 (3)C9—H9c0.973
O3—C81.196 (3)C10—H10a0.970
O4—C81.339 (3)C10—H10b0.970
O4—C91.440 (3)C10—H10c0.971
O5—C121.211 (3)C11—H11a0.969
O6—C131.196 (3)C11—H11b0.970
O7—C131.344 (3)C11—H11c0.971
O7—C141.448 (3)C14—C151.531 (3)
N1—C31.476 (3)C14—H14a0.981
N1—C101.453 (3)C14—H14b0.978
N1—C111.452 (3)C15—C161.531 (3)
N2—C121.399 (3)C15—H150.981
N2—C131.389 (3)C16—C171.505 (3)
N2—C151.474 (3)C16—H16a0.979
C1—C21.342 (3)C16—H16b0.981
C1—C61.503 (3)C17—C181.393 (3)
C2—C31.527 (3)C17—C221.391 (3)
C2—C81.490 (3)C18—C191.385 (3)
C3—C41.529 (3)C18—H180.977
C3—H30.979C19—C201.387 (4)
C4—C51.534 (3)C19—H190.980
C4—C121.510 (3)C20—C211.376 (4)
C4—H40.981C20—H200.980
C5—H5a0.979C21—C221.387 (4)
C5—H5b0.981C21—H210.979
C7—H7a0.972C22—H220.978
C1—S1—C599.52 (10)N1—C10—H10b107.8
C6—O1—C7115.78 (18)N1—C10—H10c109.0
C8—O4—C9116.72 (18)H10a—C10—H10b109.5
C13—O7—C14110.81 (17)H10a—C10—H10c109.5
C3—N1—C10116.00 (17)H10b—C10—H10c109.4
C3—N1—C11116.06 (17)N1—C11—H11a107.6
C10—N1—C11112.71 (18)N1—C11—H11b112.7
C12—N2—C13127.85 (17)N1—C11—H11c108.0
C12—N2—C15119.84 (17)H11a—C11—H11b109.6
C13—N2—C15111.87 (17)H11a—C11—H11c109.5
S1—C1—C2126.02 (17)H11b—C11—H11c109.4
S1—C1—C6111.50 (15)O5—C12—N2118.55 (19)
C2—C1—C6122.12 (19)O5—C12—C4122.69 (19)
C1—C2—C3126.31 (19)N2—C12—C4118.73 (18)
C1—C2—C8117.16 (19)O6—C13—O7122.3 (2)
C3—C2—C8116.46 (18)O6—C13—N2128.7 (2)
N1—C3—C2115.35 (17)O7—C13—N2108.99 (18)
N1—C3—C4107.51 (16)O7—C14—C15105.89 (17)
N1—C3—H3105.18O7—C14—H14a109.18
C2—C3—C4111.46 (17)O7—C14—H14b109.3
C2—C3—H3104.49C15—C14—H14a111.3
C4—C3—H3112.80C15—C14—H14b111.50
C3—C4—C5112.84 (17)H14a—C14—H14b109.5
C3—C4—C12109.04 (17)N2—C15—C14100.89 (17)
C3—C4—H4107.39N2—C15—C16113.02 (18)
C5—C4—C12107.70 (17)N2—C15—H15112.66
C5—C4—H4108.35C14—C15—C16113.90 (18)
C12—C4—H4111.57C14—C15—H15114.4
S1—C5—C4110.54 (15)C16—C15—H15102.50
S1—C5—H5a112.69C15—C16—C17115.18 (19)
S1—C5—H5b112.57C15—C16—H16a108.5
C4—C5—H5a105.60C15—C16—H16b108.4
C4—C5—H5b105.44C17—C16—H16a107.6
H5a—C5—H5b109.5C17—C16—H16b107.5
O1—C6—O2124.6 (2)H16a—C16—H16b109.4
O1—C6—C1110.93 (18)C16—C17—C18120.7 (2)
O2—C6—C1124.4 (2)C16—C17—C22121.4 (2)
O1—C7—H7a110.4C18—C17—C22117.9 (2)
O1—C7—H7b111.7C17—C18—C19121.2 (2)
O1—C7—H7c106.3C17—C18—H18119.5
H7a—C7—H7b109.4C19—C18—H18119.2
H7a—C7—H7c109.3C18—C19—C20119.8 (2)
H7b—C7—H7c109.6C18—C19—H19120.0
O3—C8—O4124.3 (2)C20—C19—H19120.2
O3—C8—C2124.7 (2)C19—C20—C21119.8 (2)
O4—C8—C2111.02 (18)C19—C20—H20120.5
O4—C9—H9a106.3C21—C20—H20119.7
O4—C9—H9b109.6C20—C21—C22120.1 (2)
O4—C9—H9c112.3C20—C21—H21119.7
H9a—C9—H9b109.8C22—C21—H21120.2
H9a—C9—H9c109.4C17—C22—C21121.2 (2)
H9b—C9—H9c109.4C17—C22—H22119.8
N1—C10—H10a111.7C21—C22—H22119.0

Experimental details

Crystal data
Chemical formulaC22H26N2O7S
Mr462.5
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)6.1205 (1), 16.1195 (4), 22.9272 (6)
V3)2261.98 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.4 × 0.03 × 0.03
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22365, 4753, 3833
Rint0.063
(sin θ/λ)max1)0.633
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.088, 1.23
No. of reflections4753
No. of parameters290
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.76, 0.40
Absolute structureFlack (1983)
Absolute structure parameter0.00 (8)

Computer programs: Collect (Nonius, 1998), HKL SCALEPACK, HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), SHELXTL (Sheldrick, 1995), JANA2000 (Petricek & Dusek, 2000), DIAMOND (Brandenburg & Berndt, 1999), JANA2000.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds