Download citation
Download citation
link to html
The crystal structure of 2-(3,4-di­methoxy­phenyl)-5,7-di­methoxy-3,8-di­methyl-4H-1-benzo­pyran-4-one (alternatively 3′,4′-di­methoxy­phenyl-5,7-di­methoxy-3,8-di­methyl­flavone),C21H22O6, known to be a potent and selective inhibitor of rat heart cytosolic cyclic nucleotide phospho­diesterases, has been determined. In the benzo­pyran ring system, the pyran ring is slightly puckered. The structure is stabilized by weak C—H...O hydrogen bonds and by π–π interactions between pyran rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006074/dn6028sup1.cif
Contains datablocks I, n

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006074/dn6028Isup2.hkl
Contains datablock I

CCDC reference: 185777

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.061
  • wR factor = 0.191
  • Data-to-parameter ratio = 20.5

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Certain flavonoids are known to display cardiac effects (Laekeman et al., 1986; Cheav et al., 1989). Their presence, for instance, in regularly consumed foods may reduce the risk of death from coronary heart desease in elderly men (Hertog et al., 1993). In particular, the potential cardiovascular effects of luteolin may be attributed to the inhibition of phosphodiesterase (PDE) hydrolyzing the cyclic nucleotide cAMP (cyclic adenosine monophosphate) (Abdalla et al., 1994). In an investigation of the selective inhibition of rat heart cAMP phosphodiesterases by lipophilic C-methyl-2-phenyl-4H-1-benzopyran-4-ones (C-methylflavones), the inhibition effect of eight flavones was studied, seven of them being methyl ethers of mono- or di-C-methylluteolin (Gaillard et al., 1996). Two of the eight flavones were described for the first time. One of these was chosen for the present X-ray investigation, namely 5,7-dimethoxy-2-(3,4-dimethoxyphenyl)-3,8-dimethyl-4H-1-benzopyran-4-one, (I).

A perspective view of (I), together with the atom-numbering scheme, is shown in Fig. 1. In the benzopyran ring system, pyran ring C5/C6/C12/C11/C10/O3 forms an angle of 1.58 (6)° with the C1–C6 benzene ring plane. The pyran ring is slightly puckered (r.m.s. deviation of fitted atoms is 0.017 Å). The keto atom O4 and the methyl atom C13 are twisted out of the pyran ring plane by 0.068 (2) and 0.059 (3) Å, respectively. The C14–C19 benzene ring plane forms an angle of 47.13 (6)° with the pyran ring plane. Three of the four methoxy groups are situated significantly out of the respective benzene ring plane [torsion angles: C2—C1—O1—C7 - 8.9 (3)°, C2—C3—O2—C8 - 6.6 (3)°, C15—C16—O5—C20 - 10.9 (3)° and C18—C17—O6—C21 0.4 (3)°]. The structure is stabilized by weak C—H···O hydrogen bonds (Table 1 and Fig. 2). Apart from the intramolecular contact, the molecules form a chain [C1,1(9) in terms of graph-set theory (Bernstein et al., 1995)]. Moreover, there is a ππ interaction between parallel pyran rings (symmetry related by an inverse centre), see Fig. 3, with a perpendicular distance of 3.506 (2) Å.

Experimental top

The synthesis of (I) has been described by Gaillard et al. (1996), who also published 1H and 13C NMR data for the substance. Crystals suitable for X-ray analysis were obtained from benzene (m.p. 490–491 K).

Refinement top

H atoms were constrained to ideal geometry using an appropriate riding model. For methyl groups, the C—H distances (0.96 Å) and C–C–H angles (109.5°) were kept fixed, while the torsion angles were allowed to refine with the starting position based on the threefold averaged circular Fourier synthesis.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT and SADABS (Sheldrick, 2001); program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme for (I). Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen-bonding pattern in (I). The projection is along the b axis.
[Figure 3] Fig. 3. The overlap of pyran rings in perpendicular projection.
2-(3,4-Dimethoxyphenyl)-5,7-dimethoxy-3,8-dimethyl-4H-1-benzopyran-4-one top
Crystal data top
C21H22O6F(000) = 1568
Mr = 370.39Dx = 1.339 Mg m3
Monoclinic, C2/cMelting point: 490–491 K K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 19.3584 (2) ÅCell parameters from 5905 reflections
b = 7.6117 (1) Åθ = 1.6–30.5°
c = 26.1758 (4) ŵ = 0.10 mm1
β = 107.700 (1)°T = 296 K
V = 3674.43 (8) Å3Irregular, colorless
Z = 80.53 × 0.44 × 0.35 mm
Data collection top
Siemens SMART CCD
diffractometer
5565 independent reflections
Radiation source: fine-focus sealed tube4109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 30.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 2727
Tmin = 0.950, Tmax = 0.967k = 1010
23515 measured reflectionsl = 3737
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.191H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1046P)2 + 2.3577P]
where P = (Fo2 + 2Fc2)/3
5565 reflections(Δ/σ)max < 0.001
272 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C21H22O6V = 3674.43 (8) Å3
Mr = 370.39Z = 8
Monoclinic, C2/cMo Kα radiation
a = 19.3584 (2) ŵ = 0.10 mm1
b = 7.6117 (1) ÅT = 296 K
c = 26.1758 (4) Å0.53 × 0.44 × 0.35 mm
β = 107.700 (1)°
Data collection top
Siemens SMART CCD
diffractometer
5565 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4109 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.967Rint = 0.037
23515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.191H-atom parameters constrained
S = 1.02Δρmax = 0.32 e Å3
5565 reflectionsΔρmin = 0.37 e Å3
272 parameters
Special details top

Experimental. Data were collected at room temperature using a Siemens SMART CCD diffractometer. A full sphere of reciprocal space was scanned by 0.3° steps in ω with a crystal–to–detector distance of 3.97 cm, 30 s per frame. Preliminary orientation matrix was obtained from the first 100 frames using SMART (Siemens, 1995). The collected frames were integrated using the preliminary orientation matrix which was updated every 100 frames. Final cell parameters were obtained by refinement on the position of 5905 reflections with I>10σ(I) after integration of all the frames data using SAINT (Siemens, 1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.02601 (7)0.2857 (2)0.13252 (4)0.0500 (3)
O20.26710 (7)0.5218 (2)0.05331 (5)0.0489 (3)
O30.12825 (6)0.36546 (17)0.05651 (4)0.0376 (3)
O40.05017 (6)0.2213 (2)0.06501 (5)0.0505 (3)
O50.16114 (9)0.5776 (2)0.24443 (5)0.0591 (4)
O60.13327 (8)0.3019 (2)0.29255 (5)0.0541 (4)
C10.08198 (8)0.3412 (2)0.09004 (6)0.0356 (3)
C20.14577 (8)0.4071 (2)0.09608 (6)0.0370 (3)
H20.15110.41750.13010.047 (6)*
C30.20247 (8)0.4581 (2)0.05061 (6)0.0357 (3)
C40.19638 (8)0.4465 (2)0.00096 (6)0.0342 (3)
C50.13115 (8)0.3780 (2)0.00500 (5)0.0313 (3)
C60.07243 (8)0.3248 (2)0.03855 (6)0.0315 (3)
C70.03012 (11)0.3202 (3)0.18467 (7)0.0558 (5)
H7A0.03840.44330.18820.057 (7)*
H7B0.01460.28660.21070.093 (9)*
H7C0.06930.25410.19040.069 (7)*
C80.28177 (10)0.5211 (3)0.10355 (8)0.0532 (5)
H8A0.27770.40340.11730.055 (6)*
H8B0.33000.56400.09870.073 (7)*
H8C0.24750.59530.12850.069 (7)*
C90.25620 (9)0.5078 (3)0.04922 (7)0.0457 (4)
H9A0.30210.47130.04600.114 (12)*
H9B0.24960.45750.08100.095 (10)*
H9C0.25500.63360.05140.124 (13)*
C100.06792 (8)0.2979 (2)0.06699 (6)0.0336 (3)
C110.00769 (8)0.2495 (2)0.02784 (6)0.0337 (3)
C120.00543 (8)0.2621 (2)0.02897 (6)0.0337 (3)
C130.06062 (9)0.1872 (3)0.03847 (7)0.0430 (4)
H13A0.06190.06110.03810.103 (11)*
H13B0.10210.23180.01120.069 (7)*
H13C0.06140.22910.07290.070 (7)*
C140.08178 (8)0.2926 (2)0.12599 (6)0.0358 (3)
C150.11390 (9)0.4397 (2)0.15624 (6)0.0399 (4)
H150.12410.53860.13900.048 (6)*
C160.13061 (9)0.4390 (2)0.21174 (6)0.0405 (4)
C170.11490 (9)0.2895 (3)0.23781 (6)0.0400 (4)
C180.08389 (10)0.1441 (3)0.20786 (7)0.0435 (4)
H180.07400.04490.22510.052 (6)*
C190.06718 (10)0.1443 (3)0.15176 (6)0.0413 (4)
H190.04650.04570.13200.045 (5)*
C200.18819 (16)0.7187 (4)0.22090 (12)0.0722 (7)
H20A0.22140.67440.20330.095 (10)*
H20B0.21280.80060.24830.092 (10)*
H20C0.14860.77690.19520.111 (12)*
C210.12001 (13)0.1539 (4)0.32130 (8)0.0650 (6)
H21A0.06910.12740.30980.091 (9)*
H21B0.13540.17960.35900.093 (9)*
H21C0.14660.05470.31460.067 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (6)0.0810 (10)0.0253 (5)0.0161 (6)0.0047 (5)0.0017 (5)
O20.0333 (6)0.0723 (9)0.0422 (6)0.0116 (6)0.0133 (5)0.0019 (6)
O30.0320 (5)0.0548 (7)0.0251 (5)0.0059 (5)0.0075 (4)0.0002 (5)
O40.0328 (6)0.0807 (10)0.0334 (6)0.0161 (6)0.0034 (5)0.0002 (6)
O50.0696 (9)0.0648 (9)0.0418 (7)0.0186 (7)0.0154 (6)0.0145 (6)
O60.0572 (8)0.0766 (10)0.0261 (5)0.0075 (7)0.0089 (5)0.0002 (6)
C10.0317 (7)0.0456 (9)0.0270 (6)0.0017 (6)0.0049 (5)0.0007 (6)
C20.0338 (7)0.0489 (9)0.0291 (7)0.0014 (6)0.0107 (6)0.0023 (6)
C30.0277 (7)0.0441 (9)0.0359 (7)0.0018 (6)0.0106 (6)0.0023 (6)
C40.0274 (6)0.0415 (8)0.0314 (7)0.0020 (6)0.0056 (5)0.0006 (6)
C50.0299 (7)0.0386 (8)0.0251 (6)0.0003 (6)0.0076 (5)0.0019 (5)
C60.0269 (6)0.0388 (8)0.0275 (6)0.0005 (5)0.0064 (5)0.0017 (5)
C70.0461 (10)0.0919 (17)0.0270 (7)0.0098 (10)0.0075 (7)0.0009 (9)
C80.0354 (8)0.0801 (15)0.0483 (10)0.0019 (9)0.0190 (7)0.0108 (10)
C90.0346 (8)0.0598 (11)0.0370 (8)0.0113 (8)0.0023 (6)0.0029 (8)
C100.0315 (7)0.0423 (8)0.0282 (6)0.0006 (6)0.0108 (5)0.0013 (6)
C110.0298 (7)0.0415 (8)0.0302 (6)0.0002 (6)0.0097 (5)0.0014 (6)
C120.0286 (7)0.0418 (8)0.0292 (6)0.0021 (6)0.0063 (5)0.0016 (6)
C130.0322 (7)0.0571 (11)0.0419 (8)0.0012 (7)0.0143 (7)0.0032 (8)
C140.0329 (7)0.0474 (9)0.0271 (6)0.0004 (6)0.0093 (5)0.0007 (6)
C150.0413 (8)0.0473 (9)0.0317 (7)0.0018 (7)0.0120 (6)0.0009 (6)
C160.0369 (8)0.0525 (10)0.0309 (7)0.0019 (7)0.0086 (6)0.0051 (7)
C170.0336 (7)0.0597 (10)0.0260 (6)0.0020 (7)0.0079 (6)0.0014 (6)
C180.0452 (9)0.0517 (10)0.0333 (7)0.0024 (8)0.0116 (7)0.0067 (7)
C190.0432 (9)0.0488 (9)0.0310 (7)0.0047 (7)0.0099 (6)0.0003 (7)
C200.0825 (18)0.0632 (14)0.0759 (16)0.0259 (13)0.0316 (15)0.0180 (13)
C210.0622 (13)0.0956 (18)0.0356 (9)0.0084 (12)0.0123 (9)0.0140 (10)
Geometric parameters (Å, º) top
O1—C11.3623 (18)C9—H9A0.9600
O1—C71.416 (2)C9—H9B0.9600
O2—C31.3635 (18)C9—H9C0.9600
O2—C81.427 (2)C10—C111.349 (2)
O3—C51.3697 (16)C10—C141.486 (2)
O3—C101.3779 (18)C11—C121.4774 (19)
O4—C121.2358 (18)C11—C131.508 (2)
O5—C161.373 (2)C13—H13A0.9600
O5—C201.415 (3)C13—H13B0.9600
O6—C171.3707 (18)C13—H13C0.9600
O6—C211.421 (3)C14—C191.388 (2)
C1—C21.386 (2)C14—C151.402 (2)
C1—C61.4204 (19)C15—C161.389 (2)
C2—C31.406 (2)C15—H150.9300
C2—H20.9300C16—C171.407 (3)
C3—C41.393 (2)C17—C181.383 (3)
C4—C51.400 (2)C18—C191.405 (2)
C4—C91.505 (2)C18—H180.9300
C5—C61.403 (2)C19—H190.9300
C6—C121.474 (2)C20—H20A0.9600
C7—H7A0.9600C20—H20B0.9600
C7—H7B0.9600C20—H20C0.9600
C7—H7C0.9600C21—H21A0.9600
C8—H8A0.9600C21—H21B0.9600
C8—H8B0.9600C21—H21C0.9600
C8—H8C0.9600
C1—O1—C7117.75 (14)O3—C10—C14108.72 (12)
C3—O2—C8119.27 (14)C10—C11—C12120.08 (13)
C5—O3—C10120.85 (12)C10—C11—C13123.34 (14)
C16—O5—C20117.24 (16)C12—C11—C13116.54 (13)
C17—O6—C21117.92 (16)O4—C12—C6123.97 (13)
O1—C1—C2122.29 (13)O4—C12—C11120.29 (13)
O1—C1—C6116.53 (13)C6—C12—C11115.73 (12)
C2—C1—C6121.17 (13)C11—C13—H13A109.5
C1—C2—C3119.79 (13)C11—C13—H13B109.5
C1—C2—H2120.1H13A—C13—H13B109.5
C3—C2—H2120.1C11—C13—H13C109.5
O2—C3—C4114.96 (13)H13A—C13—H13C109.5
O2—C3—C2123.15 (13)H13B—C13—H13C109.5
C4—C3—C2121.89 (13)C19—C14—C15119.73 (14)
C3—C4—C5116.16 (13)C19—C14—C10121.87 (15)
C3—C4—C9121.57 (14)C15—C14—C10118.32 (14)
C5—C4—C9122.25 (14)C16—C15—C14120.67 (16)
O3—C5—C6120.95 (13)C16—C15—H15119.7
O3—C5—C4114.09 (13)C14—C15—H15119.7
C6—C5—C4124.95 (13)O5—C16—C15124.63 (17)
C5—C6—C1116.03 (13)O5—C16—C17115.76 (14)
C5—C6—C12119.54 (12)C15—C16—C17119.60 (16)
C1—C6—C12124.41 (13)O6—C17—C18125.26 (16)
O1—C7—H7A109.5O6—C17—C16115.20 (16)
O1—C7—H7B109.5C18—C17—C16119.54 (14)
H7A—C7—H7B109.5C17—C18—C19120.95 (16)
O1—C7—H7C109.5C17—C18—H18119.5
H7A—C7—H7C109.5C19—C18—H18119.5
H7B—C7—H7C109.5C14—C19—C18119.50 (16)
O2—C8—H8A109.5C14—C19—H19120.2
O2—C8—H8B109.5C18—C19—H19120.2
H8A—C8—H8B109.5O5—C20—H20A109.5
O2—C8—H8C109.5O5—C20—H20B109.5
H8A—C8—H8C109.5H20A—C20—H20B109.5
H8B—C8—H8C109.5O5—C20—H20C109.5
C4—C9—H9A109.5H20A—C20—H20C109.5
C4—C9—H9B109.5H20B—C20—H20C109.5
H9A—C9—H9B109.5O6—C21—H21A109.5
C4—C9—H9C109.5O6—C21—H21B109.5
H9A—C9—H9C109.5H21A—C21—H21B109.5
H9B—C9—H9C109.5O6—C21—H21C109.5
C11—C10—O3122.68 (13)H21A—C21—H21C109.5
C11—C10—C14128.59 (14)H21B—C21—H21C109.5
C7—O1—C1—C28.9 (3)C14—C10—C11—C133.4 (3)
C7—O1—C1—C6172.34 (17)C5—C6—C12—O4176.11 (17)
O1—C1—C2—C3178.35 (16)C1—C6—C12—O41.9 (3)
C6—C1—C2—C30.3 (3)C5—C6—C12—C113.9 (2)
C8—O2—C3—C4173.28 (16)C1—C6—C12—C11178.06 (15)
C8—O2—C3—C26.6 (3)C10—C11—C12—O4178.48 (17)
C1—C2—C3—O2179.10 (16)C13—C11—C12—O40.6 (2)
C1—C2—C3—C40.8 (3)C10—C11—C12—C61.5 (2)
O2—C3—C4—C5178.68 (15)C13—C11—C12—C6179.41 (15)
C2—C3—C4—C51.2 (2)C11—C10—C14—C1948.6 (3)
O2—C3—C4—C92.5 (2)O3—C10—C14—C19132.30 (16)
C2—C3—C4—C9177.65 (17)C11—C10—C14—C15134.66 (19)
C10—O3—C5—C61.0 (2)O3—C10—C14—C1544.47 (19)
C10—O3—C5—C4179.00 (14)C19—C14—C15—C160.6 (3)
C3—C4—C5—O3178.63 (14)C10—C14—C15—C16177.49 (15)
C9—C4—C5—O32.5 (2)C20—O5—C16—C1510.9 (3)
C3—C4—C5—C61.3 (2)C20—O5—C16—C17170.2 (2)
C9—C4—C5—C6177.53 (16)C14—C15—C16—O5179.08 (17)
O3—C5—C6—C1179.02 (14)C14—C15—C16—C170.2 (3)
C4—C5—C6—C10.9 (2)C21—O6—C17—C180.4 (3)
O3—C5—C6—C122.8 (2)C21—O6—C17—C16178.85 (18)
C4—C5—C6—C12177.28 (15)O5—C16—C17—O60.9 (2)
O1—C1—C6—C5178.38 (15)C15—C16—C17—O6179.86 (15)
C2—C1—C6—C50.4 (2)O5—C16—C17—C18179.82 (16)
O1—C1—C6—C123.5 (2)C15—C16—C17—C180.9 (3)
C2—C1—C6—C12177.71 (16)O6—C17—C18—C19179.84 (16)
C5—O3—C10—C113.5 (2)C16—C17—C18—C190.6 (3)
C5—O3—C10—C14177.27 (13)C15—C14—C19—C180.9 (3)
O3—C10—C11—C122.1 (2)C10—C14—C19—C18177.59 (15)
C14—C10—C11—C12178.83 (15)C17—C18—C19—C140.2 (3)
O3—C10—C11—C13175.59 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.962.523.454 (2)164
C9—H9B···O30.962.352.762 (2)106
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H22O6
Mr370.39
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)19.3584 (2), 7.6117 (1), 26.1758 (4)
β (°) 107.700 (1)
V3)3674.43 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.53 × 0.44 × 0.35
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.950, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
23515, 5565, 4109
Rint0.037
(sin θ/λ)max1)0.713
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.191, 1.02
No. of reflections5565
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT and SADABS (Sheldrick, 2001), SHELXTL (Bruker, 1997), SHELXTL, DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8B···O4i0.962.523.454 (2)164.3
C9—H9B···O30.962.352.762 (2)105.6
Symmetry code: (i) x+1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds