Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C16H19ClN2O2S, is an intermediate in the set of reactions leading to 2-chloroethylnitrososulfamides (CENS), a new family of promising therapeutic compounds. The asymmetric unit is built up from two molecules linked by an N—H...O hydrogen-bond interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802006463/dn6023sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802006463/dn6023Isup2.hkl
Contains datablock I

CCDC reference: 185803

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.046
  • wR factor = 0.117
  • Data-to-parameter ratio = 12.3

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry

General Notes

REFLT_03 From the CIF: _diffrn_reflns_theta_max 29.96 From the CIF: _reflns_number_total 4979 Count of symmetry unique reflns 4784 Completeness (_total/calc) 104.08% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 195 Fraction of Friedel pairs measured 0.041 Are heavy atom types Z>Si present yes WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure

Comment top

Les N-(2-chloroéthyl) nitrosourées (CENU) appartiennent α une famille d'agents alkylants (Rajski et al., 1998), dont la cible est le matériel génétique même de la cellule transformée. Ces agents comptent parmi les plus efficaces mais sont ceux aussi dont les limites d'utilization sont les plus sévères en raison de leurs effets secondaires (Montero et al., 1984; Sosnovsky, 1990; McCormick et al., 1990; Dulude, 1995; Lown, 1981). Les N-(2-chloroéthyl)nitrososulfamides (CENS) (Dewynter et al., 1992; Abdaoui et al., 1996; Abdaoui et al., 1996; Abdaoui et al., 1996; Dewynter et al., 1996; Abdaoui et al., 2000) sont apparentés aux nitrosourées (Gnewuck et al., 1997), mais ne présentent pas, par nature, l'activité carbamoylante de ces dernières, tenue en partie responsable de leur importante toxicité. La synthèse s'articule autour de l'aménagement polyfonctionnel de l'isocyanate de chlorosulfonyle (ICS) et comporte quatre réactions en chaîne conduisant au produit final le CENS. Le composé N-(2-chloroethyl)-N',N'-dibenzylsulfamide, objet de cette étude structurale, est un produit intermédiaire dérivant de la troisième réaction. L'unité asymétrique est formée de deux molécules identiques maintenues par des liaisons hydrogéne. Les plans des cycles phényle font un angle dièdre moyen de 12.33°,les distances C—C dans les cycles phényle varient autour des valeurs moyennes suivantes: 1.377 (7) e t 1.381 (8) Å. On note une dissymétrie des liaisons S—N du motif sulfamide: S—N1 = 1.594 (3) Å e t S—N2 = 1.636 (4) Å (Abdaoui et al., 2000). L'empilement moléculaire dans le cristal est assurée par un réseau de liaisons hydrogénes qui se développe sous forme de chaines paralléles aux diagonales du plan ab (Fig. 2).

Experimental top

Le N-(2-chloroethyl)-N',N'-dibenzylsulfamide est obtenu à la fin des trois réactions en chaîne suivantes: carbamoylation–sulfamoylation à partir de l'ICS: a une solution de 1.1 équivalents de dibenzylamine dans 100 ml de dichloromethane est ajoutée une solution de chlorosulfonylcarbamate préparée préalablement par addition de tertiobutanol à une solution de 1 équivalent d'isocyanate de chlorosulfonyle (ICS), la réaction s'effectue à 273 K, et le produit obtenu est le N-tertiobutyloxycarbonyl-N',N'-dibenzylsulfamide.

Chloroéthylation selon Mitsunobu (Mitsunobu, 1981; Hughes, 1992): a température ambiante et sous agitation magnétique, une solution de 1.1 équivalents d'azodicarboxylate de diéthyle est ajoutée à une solution de: 1.1 équivalent de chloroéthanol, 1.1 équivalents de triphénylphosphine dissoute dans du THF (tétrahydrofurane) et 1 équivalent de N-tertiobutyloxycarbonyl-N',N'-dibenzylsulfamide. La réaction donne le N-butyloxycarbonyl-N-(2-chloroethyl)-N',N'-dibenzylsulfamide moins polaire que le précuseur.

Déprotection (clivage du tertiobutyloxycarbonyle): le N-tertiobutyloxycarbonyl-N-(2-chloroethyl)-N',N'-dibenzylsulfamide additionné de dichlorométhane anhydre est placé sous agitation magnétique à 273 K. Une solution à 25% d'acide trifluoroacétique dans du dichloromethane anhydre est ajoutée goutte à goutte jusqu'à disparition de l'ester carbamique et l'apparition d'un composé plus polaire. Le solvant est évaporé sous pression réduite et le résidu est lavé plusieurs fois à l'éther diethylique anhydre puis recristallisé dans l'éthanol.

Refinement top

Les données ont été enregistrées dans le groupe ponctuel 2/m, or la résolution de la structure a montré que le groupe d'espace est le groupe non-centrosymmétrique. Malgré l'absence d'un nombre suffisant de paires de Friedel (195, 4%), la structure absolue a pu étre définie en réalisant l'affinement du paramétre de Flack (option: TWIN, BASF) dans les deux cas de figure conduisant á une valeur x de 0.14 (15) dans un cas et de 0.86 (15) lorsque l'on inverse la structure. Les atomes d'hydrogénes ont été introduits en position calculée excepté pour les atomes d'hydrogénes des groupements NH qui ont été affinés avec un paramétre de température isotrope général. Les distances NH ont été contraintes á une valeur de 0,87 Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: WinGX (Farrugia, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX.

Figures top
[Figure 1] Fig. 1. Dessin ORTEPIII (Burnett & Johnson, 1996) de la molécule. Les ellipsoides de vibration des atomes ont une probabilité de 50%.
[Figure 2] Fig. 2. Vue CAMERON (Watkin et al., 1993) de l'empilement cristallin montrant le développement des liaisons hydrogéne N—H···O dans le cristal.
N',N'-Dibenzyl-N-(2-chloroethyl)sulfamide top
Crystal data top
C16H19ClN2O2SF(000) = 1424
Mr = 338.84Dx = 1.368 Mg m3
Monoclinic, CcMelting point: 323 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 11.269 (2) ÅCell parameters from 25 reflections
b = 11.376 (1) Åθ = 10–15°
c = 25.738 (3) ŵ = 0.37 mm1
β = 94.47 (2)°T = 293 K
V = 3289.5 (8) Å3Prism, colorless
Z = 80.5 × 0.4 × 0.3 mm
Data collection top
Enraf-Nonius MACH3
diffractometer
Rint = 0.068
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 2.6°
Graphite monochromatorh = 015
θ/2θ scansk = 150
4979 measured reflectionsl = 3636
4979 independent reflections3 standard reflections every 120 min
2938 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0283P)2 + 3.3532P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
4979 reflectionsΔρmax = 0.28 e Å3
405 parametersΔρmin = 0.31 e Å3
4 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (15)
Crystal data top
C16H19ClN2O2SV = 3289.5 (8) Å3
Mr = 338.84Z = 8
Monoclinic, CcMo Kα radiation
a = 11.269 (2) ŵ = 0.37 mm1
b = 11.376 (1) ÅT = 293 K
c = 25.738 (3) Å0.5 × 0.4 × 0.3 mm
β = 94.47 (2)°
Data collection top
Enraf-Nonius MACH3
diffractometer
Rint = 0.068
4979 measured reflections3 standard reflections every 120 min
4979 independent reflections intensity decay: 0.1%
2938 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117Δρmax = 0.28 e Å3
S = 1.11Δρmin = 0.31 e Å3
4979 reflectionsAbsolute structure: Flack (1983)
405 parametersAbsolute structure parameter: 0.14 (15)
4 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl1A0.23342 (16)0.33224 (14)0.24878 (6)0.0647 (4)
C1A0.2251 (5)0.3768 (5)0.1827 (2)0.0543 (14)
H1A10.25400.45680.18050.065*
H1A20.27610.32670.16360.065*
C2A0.1003 (5)0.3702 (5)0.1581 (2)0.0485 (13)
H2A10.10220.37680.12060.058*
H2A20.06730.29390.16560.058*
N1A0.0212 (4)0.4624 (4)0.17637 (15)0.0431 (10)
S1A0.01384 (11)0.57325 (11)0.14085 (5)0.0402 (3)
O1A0.0908 (3)0.6319 (3)0.12710 (14)0.0517 (9)
O2A0.0970 (4)0.6378 (3)0.16879 (14)0.0570 (10)
N2A0.0748 (3)0.5186 (3)0.08611 (15)0.0371 (9)
C3A0.1906 (4)0.4609 (4)0.08979 (18)0.0408 (11)
H3A10.25350.51890.08480.049*
H3A20.19380.42760.12430.049*
C4A0.2112 (5)0.3643 (5)0.0493 (2)0.0468 (12)
C5A0.1308 (6)0.2746 (5)0.0461 (2)0.0600 (15)
H5A0.06160.27450.06830.072*
C6A0.1504 (6)0.1855 (6)0.0110 (3)0.0693 (19)
H6A0.09490.12540.00940.083*
C7A0.2535 (7)0.1848 (6)0.0224 (3)0.0718 (19)
H7A0.26700.12480.04660.086*
C8A0.3342 (6)0.2727 (6)0.0192 (2)0.0611 (16)
H8A0.40380.27250.04120.073*
C9A0.3128 (5)0.3631 (6)0.0169 (2)0.0549 (15)
H9A0.36840.42310.01890.066*
C10A0.0593 (4)0.5842 (4)0.03761 (18)0.0381 (11)
H10A0.06460.52910.00870.046*
H10B0.02010.61760.03990.046*
C11A0.1478 (4)0.6813 (4)0.02572 (17)0.0350 (10)
C12A0.2431 (5)0.6678 (5)0.0107 (2)0.0505 (13)
H12A0.25200.59750.02910.061*
C13A0.3261 (5)0.7570 (5)0.0207 (2)0.0589 (15)
H13A0.39020.74640.04520.071*
C14A0.3121 (6)0.8610 (6)0.0061 (2)0.0612 (17)
H14A0.36770.92080.00000.073*
C15A0.2180 (6)0.8775 (5)0.0416 (2)0.0583 (15)
H15A0.20930.94850.05930.070*
C16A0.1345 (5)0.7888 (5)0.0515 (2)0.0485 (13)
H16A0.06960.80130.07540.058*
Cl1B0.01908 (15)1.02453 (15)0.12883 (6)0.0635 (4)
C1B0.0755 (5)1.0264 (5)0.1952 (2)0.0493 (13)
H1B10.15661.05560.19760.059*
H1B20.02811.07980.21450.059*
C2B0.0737 (5)0.9066 (5)0.2196 (2)0.0502 (13)
H2B10.08700.91460.25710.060*
H2B20.00460.87230.21200.060*
N1B0.1629 (4)0.8269 (4)0.20116 (15)0.0412 (10)
S1B0.28085 (11)0.79625 (11)0.23717 (5)0.0390 (3)
O1B0.3419 (3)0.7093 (3)0.20943 (14)0.0541 (10)
O2B0.3424 (3)0.9026 (3)0.25142 (14)0.0549 (10)
N2B0.2339 (3)0.7461 (3)0.29128 (14)0.0352 (8)
C3B0.3078 (4)0.7661 (4)0.34059 (18)0.0388 (11)
H3B10.25650.76370.36910.047*
H3B20.34140.84450.33970.047*
C4B0.4079 (4)0.6799 (4)0.35196 (18)0.0390 (11)
C5B0.3987 (5)0.5924 (5)0.3878 (2)0.0576 (15)
H5B0.33090.58770.40610.069*
C6B0.4892 (6)0.5100 (6)0.3973 (3)0.0725 (19)
H6B0.48130.45020.42140.087*
C7B0.5894 (6)0.5175 (6)0.3710 (3)0.0636 (18)
H7B0.65000.46270.37750.076*
C8B0.6018 (5)0.6048 (6)0.3353 (2)0.0578 (15)
H8B0.67020.60910.31740.069*
C9B0.5113 (4)0.6871 (5)0.3259 (2)0.0448 (12)
H9B0.52000.74740.30210.054*
C10B0.1737 (4)0.6306 (4)0.28696 (19)0.0425 (11)
H10C0.23270.56860.29190.051*
H10D0.13440.62220.25230.051*
C11B0.0832 (4)0.6167 (5)0.32659 (19)0.0411 (11)
C12B0.0830 (5)0.5169 (5)0.3576 (2)0.0489 (13)
H12B0.14000.45900.35410.059*
C13B0.0006 (6)0.5023 (6)0.3936 (2)0.0568 (15)
H13B0.00010.43500.41410.068*
C14B0.0859 (5)0.5892 (6)0.3989 (2)0.0559 (15)
H14B0.14300.57980.42280.067*
C15B0.0853 (5)0.6884 (6)0.3689 (2)0.0597 (16)
H15B0.14130.74710.37290.072*
C16B0.0021 (5)0.7018 (5)0.3327 (2)0.0547 (14)
H16B0.00350.76900.31210.066*
H1A0.023 (4)0.450 (5)0.2012 (16)0.059 (12)*
H1B0.141 (5)0.778 (4)0.1766 (16)0.059 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl1A0.0735 (10)0.0631 (9)0.0561 (9)0.0214 (8)0.0042 (8)0.0042 (7)
C1A0.046 (3)0.057 (3)0.061 (3)0.012 (3)0.010 (3)0.010 (3)
C2A0.056 (3)0.044 (3)0.045 (3)0.017 (3)0.003 (2)0.003 (2)
N1A0.042 (2)0.050 (2)0.037 (2)0.015 (2)0.0061 (18)0.0077 (19)
S1A0.0445 (7)0.0363 (6)0.0391 (6)0.0036 (6)0.0014 (5)0.0015 (5)
O1A0.050 (2)0.046 (2)0.057 (2)0.0215 (18)0.0048 (18)0.0047 (18)
O2A0.072 (3)0.049 (2)0.050 (2)0.026 (2)0.0024 (19)0.0094 (18)
N2A0.035 (2)0.039 (2)0.037 (2)0.0033 (17)0.0009 (17)0.0048 (17)
C3A0.037 (2)0.047 (3)0.040 (2)0.005 (2)0.008 (2)0.004 (2)
C4A0.045 (3)0.044 (3)0.051 (3)0.007 (2)0.002 (2)0.003 (2)
C5A0.062 (4)0.047 (3)0.069 (4)0.006 (3)0.010 (3)0.006 (3)
C6A0.082 (5)0.053 (4)0.071 (4)0.003 (3)0.004 (4)0.003 (3)
C7A0.093 (5)0.064 (4)0.057 (4)0.018 (4)0.002 (4)0.004 (3)
C8A0.061 (4)0.060 (4)0.060 (4)0.027 (3)0.011 (3)0.007 (3)
C9A0.045 (3)0.059 (4)0.060 (3)0.008 (3)0.000 (3)0.007 (3)
C10A0.045 (3)0.037 (3)0.033 (2)0.002 (2)0.002 (2)0.002 (2)
C11A0.039 (3)0.034 (2)0.032 (2)0.003 (2)0.002 (2)0.0071 (19)
C12A0.052 (3)0.047 (3)0.051 (3)0.004 (3)0.006 (3)0.001 (2)
C13A0.049 (3)0.064 (4)0.062 (4)0.010 (3)0.011 (3)0.007 (3)
C14A0.056 (4)0.063 (4)0.065 (4)0.029 (3)0.011 (3)0.020 (3)
C15A0.072 (4)0.040 (3)0.063 (4)0.020 (3)0.009 (3)0.001 (3)
C16A0.056 (3)0.042 (3)0.046 (3)0.000 (3)0.003 (2)0.005 (2)
Cl1B0.0606 (9)0.0764 (11)0.0524 (8)0.0198 (8)0.0025 (7)0.0080 (8)
C1B0.050 (3)0.047 (3)0.050 (3)0.014 (3)0.004 (3)0.004 (2)
C2B0.043 (3)0.056 (3)0.052 (3)0.008 (3)0.006 (2)0.008 (3)
N1B0.038 (2)0.047 (3)0.038 (2)0.011 (2)0.0016 (18)0.0015 (19)
S1B0.0324 (6)0.0430 (7)0.0415 (6)0.0028 (6)0.0033 (5)0.0025 (6)
O1B0.051 (2)0.066 (3)0.047 (2)0.023 (2)0.0144 (17)0.0010 (18)
O2B0.048 (2)0.056 (2)0.060 (2)0.0183 (18)0.0010 (18)0.0111 (19)
N2B0.036 (2)0.036 (2)0.0339 (19)0.0055 (17)0.0032 (16)0.0048 (16)
C3B0.033 (2)0.045 (3)0.038 (3)0.009 (2)0.000 (2)0.003 (2)
C4B0.035 (2)0.042 (3)0.038 (3)0.001 (2)0.004 (2)0.003 (2)
C5B0.045 (3)0.068 (4)0.060 (3)0.005 (3)0.002 (3)0.022 (3)
C6B0.065 (4)0.059 (4)0.092 (5)0.012 (3)0.004 (4)0.029 (4)
C7B0.058 (4)0.055 (4)0.074 (4)0.021 (3)0.019 (3)0.004 (3)
C8B0.038 (3)0.077 (4)0.058 (3)0.013 (3)0.001 (3)0.009 (3)
C9B0.042 (3)0.051 (3)0.042 (3)0.006 (2)0.001 (2)0.005 (2)
C10B0.043 (3)0.037 (3)0.047 (3)0.009 (2)0.000 (2)0.002 (2)
C11B0.039 (3)0.042 (3)0.041 (3)0.006 (2)0.002 (2)0.003 (2)
C12B0.051 (3)0.037 (3)0.058 (3)0.004 (2)0.001 (3)0.009 (2)
C13B0.068 (4)0.051 (3)0.050 (3)0.020 (3)0.003 (3)0.011 (3)
C14B0.045 (3)0.071 (4)0.052 (3)0.022 (3)0.005 (3)0.009 (3)
C15B0.040 (3)0.065 (4)0.075 (4)0.002 (3)0.012 (3)0.015 (3)
C16B0.045 (3)0.057 (4)0.063 (3)0.005 (3)0.005 (3)0.018 (3)
Geometric parameters (Å, º) top
Cl1A—C1A1.771 (6)Cl1B—C1B1.776 (5)
C1A—C2A1.498 (7)C1B—C2B1.501 (7)
C1A—H1A10.9700C1B—H1B10.9700
C1A—H1A20.9700C1B—H1B20.9700
C2A—N1A1.476 (6)C2B—N1B1.460 (6)
C2A—H2A10.9700C2B—H2B10.9700
C2A—H2A20.9700C2B—H2B20.9700
N1A—S1A1.589 (4)N1B—S1B1.598 (4)
N1A—H1A0.86 (2)N1B—H1B0.87 (2)
S1A—O1A1.423 (4)S1B—O1B1.427 (4)
S1A—O2A1.428 (4)S1B—O2B1.428 (4)
S1A—N2A1.641 (4)S1B—N2B1.631 (4)
N2A—C3A1.470 (6)N2B—C10B1.479 (6)
N2A—C10A1.476 (6)N2B—C3B1.480 (6)
C3A—C4A1.519 (7)C3B—C4B1.506 (7)
C3A—H3A10.9700C3B—H3B10.9700
C3A—H3A20.9700C3B—H3B20.9700
C4A—C9A1.364 (7)C4B—C5B1.366 (7)
C4A—C5A1.370 (8)C4B—C9B1.392 (7)
C5A—C6A1.365 (8)C5B—C6B1.393 (8)
C5A—H5A0.9300C5B—H5B0.9300
C6A—C7A1.389 (9)C6B—C7B1.363 (9)
C6A—H6A0.9300C6B—H6B0.9300
C7A—C8A1.358 (9)C7B—C8B1.368 (9)
C7A—H7A0.9300C7B—H7B0.9300
C8A—C9A1.396 (8)C8B—C9B1.392 (7)
C8A—H8A0.9300C8B—H8B0.9300
C9A—H9A0.9300C9B—H9B0.9300
C10A—C11A1.505 (6)C10B—C11B1.506 (7)
C10A—H10A0.9700C10B—H10C0.9700
C10A—H10B0.9700C10B—H10D0.9700
C11A—C12A1.378 (7)C11B—C16B1.381 (7)
C11A—C16A1.393 (7)C11B—C12B1.388 (7)
C12A—C13A1.391 (8)C12B—C13B1.381 (8)
C12A—H12A0.9300C12B—H12B0.9300
C13A—C14A1.373 (9)C13B—C14B1.393 (9)
C13A—H13A0.9300C13B—H13B0.9300
C14A—C15A1.356 (8)C14B—C15B1.368 (8)
C14A—H14A0.9300C14B—H14B0.9300
C15A—C16A1.389 (7)C15B—C16B1.382 (8)
C15A—H15A0.9300C15B—H15B0.9300
C16A—H16A0.9300C16B—H16B0.9300
C2A—C1A—Cl1A111.6 (4)C2B—C1B—Cl1B112.0 (4)
C2A—C1A—H1A1109.3C2B—C1B—H1B1109.2
Cl1A—C1A—H1A1109.3Cl1B—C1B—H1B1109.2
C2A—C1A—H1A2109.3C2B—C1B—H1B2109.2
Cl1A—C1A—H1A2109.3Cl1B—C1B—H1B2109.2
H1A1—C1A—H1A2108.0H1B1—C1B—H1B2107.9
N1A—C2A—C1A113.7 (4)N1B—C2B—C1B113.4 (4)
N1A—C2A—H2A1108.8N1B—C2B—H2B1108.9
C1A—C2A—H2A1108.8C1B—C2B—H2B1108.9
N1A—C2A—H2A2108.8N1B—C2B—H2B2108.9
C1A—C2A—H2A2108.8C1B—C2B—H2B2108.9
H2A1—C2A—H2A2107.7H2B1—C2B—H2B2107.7
C2A—N1A—S1A120.6 (3)C2B—N1B—S1B120.7 (3)
C2A—N1A—H1A121 (4)C2B—N1B—H1B118 (4)
S1A—N1A—H1A116 (4)S1B—N1B—H1B118 (4)
O1A—S1A—O2A118.2 (2)O1B—S1B—O2B118.2 (2)
O1A—S1A—N1A110.0 (2)O1B—S1B—N1B105.8 (2)
O2A—S1A—N1A105.2 (2)O2B—S1B—N1B109.2 (2)
O1A—S1A—N2A105.3 (2)O1B—S1B—N2B112.7 (2)
O2A—S1A—N2A112.3 (2)O2B—S1B—N2B105.1 (2)
N1A—S1A—N2A105.2 (2)N1B—S1B—N2B105.1 (2)
C3A—N2A—C10A116.4 (4)C10B—N2B—C3B115.2 (4)
C3A—N2A—S1A115.3 (3)C10B—N2B—S1B115.1 (3)
C10A—N2A—S1A117.7 (3)C3B—N2B—S1B118.7 (3)
N2A—C3A—C4A111.6 (4)N2B—C3B—C4B115.4 (4)
N2A—C3A—H3A1109.3N2B—C3B—H3B1108.4
C4A—C3A—H3A1109.3C4B—C3B—H3B1108.4
N2A—C3A—H3A2109.3N2B—C3B—H3B2108.4
C4A—C3A—H3A2109.3C4B—C3B—H3B2108.4
H3A1—C3A—H3A2108.0H3B1—C3B—H3B2107.5
C9A—C4A—C5A118.9 (5)C5B—C4B—C9B118.6 (5)
C9A—C4A—C3A120.1 (5)C5B—C4B—C3B120.7 (5)
C5A—C4A—C3A120.9 (5)C9B—C4B—C3B120.7 (4)
C6A—C5A—C4A121.3 (6)C4B—C5B—C6B121.1 (6)
C6A—C5A—H5A119.4C4B—C5B—H5B119.5
C4A—C5A—H5A119.4C6B—C5B—H5B119.5
C5A—C6A—C7A119.9 (7)C7B—C6B—C5B119.6 (6)
C5A—C6A—H6A120.1C7B—C6B—H6B120.2
C7A—C6A—H6A120.1C5B—C6B—H6B120.2
C8A—C7A—C6A119.4 (6)C6B—C7B—C8B120.7 (6)
C8A—C7A—H7A120.3C6B—C7B—H7B119.6
C6A—C7A—H7A120.3C8B—C7B—H7B119.6
C7A—C8A—C9A120.0 (6)C7B—C8B—C9B119.6 (6)
C7A—C8A—H8A120.0C7B—C8B—H8B120.2
C9A—C8A—H8A120.0C9B—C8B—H8B120.2
C4A—C9A—C8A120.5 (6)C4B—C9B—C8B120.4 (5)
C4A—C9A—H9A119.7C4B—C9B—H9B119.8
C8A—C9A—H9A119.7C8B—C9B—H9B119.8
N2A—C10A—C11A115.0 (4)N2B—C10B—C11B111.9 (4)
N2A—C10A—H10A108.5N2B—C10B—H10C109.2
C11A—C10A—H10A108.5C11B—C10B—H10C109.2
N2A—C10A—H10B108.5N2B—C10B—H10D109.2
C11A—C10A—H10B108.5C11B—C10B—H10D109.2
H10A—C10A—H10B107.5H10C—C10B—H10D107.9
C12A—C11A—C16A118.1 (5)C16B—C11B—C12B118.4 (5)
C12A—C11A—C10A121.7 (5)C16B—C11B—C10B121.1 (5)
C16A—C11A—C10A120.2 (4)C12B—C11B—C10B120.4 (5)
C11A—C12A—C13A121.4 (5)C13B—C12B—C11B121.0 (5)
C11A—C12A—H12A119.3C13B—C12B—H12B119.5
C13A—C12A—H12A119.3C11B—C12B—H12B119.5
C14A—C13A—C12A119.2 (6)C12B—C13B—C14B119.6 (5)
C14A—C13A—H13A120.4C12B—C13B—H13B120.2
C12A—C13A—H13A120.4C14B—C13B—H13B120.2
C15A—C14A—C13A120.7 (5)C15B—C14B—C13B119.7 (5)
C15A—C14A—H14A119.7C15B—C14B—H14B120.2
C13A—C14A—H14A119.7C13B—C14B—H14B120.2
C14A—C15A—C16A120.4 (6)C14B—C15B—C16B120.4 (6)
C14A—C15A—H15A119.8C14B—C15B—H15B119.8
C16A—C15A—H15A119.8C16B—C15B—H15B119.8
C15A—C16A—C11A120.3 (5)C11B—C16B—C15B120.9 (5)
C15A—C16A—H16A119.9C11B—C16B—H16B119.5
C11A—C16A—H16A119.9C15B—C16B—H16B119.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1A0.87 (2)2.14 (4)2.995 (6)169 (5)
N1A—H1A···O2Bi0.86 (2)2.13 (5)2.977 (5)169 (5)
Symmetry code: (i) x1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H19ClN2O2S
Mr338.84
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)11.269 (2), 11.376 (1), 25.738 (3)
β (°) 94.47 (2)
V3)3289.5 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.5 × 0.4 × 0.3
Data collection
DiffractometerEnraf-Nonius MACH3
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4979, 4979, 2938
Rint0.068
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.117, 1.11
No. of reflections4979
No. of parameters405
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31
Absolute structureFlack (1983)
Absolute structure parameter0.14 (15)

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), WinGX (Farrugia, 1999), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1B—H1B···O1A0.87 (2)2.14 (4)2.995 (6)169 (5)
N1A—H1A···O2Bi0.86 (2)2.13 (5)2.977 (5)169 (5)
Symmetry code: (i) x1/2, y1/2, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds