Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, C18H16N6O, has been established by X-ray crystallographic study. The structure corresponds to the NH tautomer of the pyrazolinone moiety.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801018062/dn6006sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801018062/dn6006Isup2.hkl
Contains datablock I

CCDC reference: 176044

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.056
  • wR factor = 0.127
  • Data-to-parameter ratio = 14.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.37 From the CIF: _reflns_number_total 3198 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3388 Completeness (_total/calc) 94.39% Alert C: < 95% complete General Notes
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.37 From the CIF: _reflns_number_total 3198 From the CIF: _diffrn_reflns_limit_ max hkl 22. 9. 12. From the CIF: _diffrn_reflns_limit_ min hkl 0. 0. -12. TEST1: Expected hkl limits for theta max Calculated maximum hkl 22. 9. 14. Calculated minimum hkl -22. -9. -14. ALERT: Expected hkl max differ from CIF values
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

Les pyrazoles comptent parmi les composés hétérocycliques ayant recu la plus grande attention du fait de leurs applications dans des domaines aussi variés que la pharmacologie (Wakhsumov et al., 1986; Soliman et al., 2001; Baraldi at al., 2001), l'industrie (Clark et al., 1985) ou l'agrochimie (Kato et al., 1988). En outre, les hétérocycles à six chaînons de type pyridine sont connus pour l'étendue de leurs activités biologiques, antimicrobiennes et antibiotiques (Sebat et al., 2001), ainsi que pour leurs propriétés complexantes avec les métaux de transition, conduisant à des complexes stables à bas degré d'oxydation (Elfring & Crosby, 1981; Smothers & Wrightong, 1983). De ce fait, l'association de ces deux types d'hétérocycles permet d'élaborer de nouveaux composés hétérocycliques à visée thérapeutique susceptibles de présenter également des propriétés complexantes importantes. En effet, les ligands polyazotés sont des systèmes appropriés pour complexer les cations à couche incomplète (El Azzaoui et al., 1999). La 1-pyridine-2-yl-3-méthyl-4(1-pyridine-2-yl-3-méthyl-1H-pyrazol-5-yl)- 2H-3-pyrazoline-5-one est obtenue par action de l'acide déhydracétique sur le chlorhydrate de la 2-hydrazinopyridine au reflux de l'éthanol pendant deux nuits. Sa structure a été établie sur la base des données spectrales RMN 1H, 13C et masse, puis confirmée par une étude structurale par diffraction des rayons X.

Les distances et angles trouvés dans cette molécule correspondent bien à la forme tautomère NH du fragment pyrazolinone (Kumar et al., 1995). Les distances C5—O6 = 1.242 (2) Å e t C5—N1 = 1.397 (2) Å sont typiques de ce tautomère. L'angle de torsion des cycles pyrazoles, défini par les atomes C5—C4—C15—C14 est 119.1 (3)°. Les deux cycles N1/N2/C3/C4/C5 et N7/C16/C17/C18/C19/C20 sont coplanaires [angle dièdre: 1,2(3)°] alors que les cycles N11/N12/C13/C14/C15 et N8/C21/C22/C23/C24/C25 font un angle dièdre de 29.9 (3)°. L'empilement des molécules dans le cristal est renforcé par la liaison hydrogène N2—H2···O6 qui forme une chaîne infinie dans la direction de l'axe c.

Experimental top

On chauffe à reflux pendant deux nuits dans 50 ml d'éthanol absolu 0,01 mol du chlorhydrate de la 2-hydrazinopyridine et 0,005 mol d'acide déhydracétique. Après concentration, le résidu solide est repris par l'eau, neutralisé par une solution de carbonate de sodium, le produit qui précipite est essoré puis recristallisé dans l'éthanol.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus (Mackay et al., 1999).

Figures top
[Figure 1] Fig. 1. Dessin ORTEPII (Johnson, 1976) de la molécule. Les ellipsoides de vibration des atomes ont une probabilité de 50%.
1-(Pyridin-2-yl)-3-méthyl-4-(1-pyridin-2-yl-3-méthyl-1H-pyrazol-5-yl) -2H-3-pyrazoline-5(1H)-one top
Crystal data top
C18H16N6OF(000) = 696
Mr = 332.37Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 18.297 (2) ÅCell parameters from 10014 reflections
b = 7.7645 (9) Åθ = 1–26.4°
c = 11.9280 (8) ŵ = 0.09 mm1
β = 102.681 (7)°T = 298 K
V = 1653.2 (3) Å3Prism, colourless
Z = 40.30 × 0.15 × 0.10 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 26.4°
ϕ scansh = 022
10014 measured reflectionsk = 09
3198 independent reflectionsl = 1212
2463 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.5981P]
where P = (Fo2 + 2Fc2)/3
3198 reflections(Δ/σ)max = 0.006
228 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C18H16N6OV = 1653.2 (3) Å3
Mr = 332.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.297 (2) ŵ = 0.09 mm1
b = 7.7645 (9) ÅT = 298 K
c = 11.9280 (8) Å0.30 × 0.15 × 0.10 mm
β = 102.681 (7)°
Data collection top
Nonius KappaCCD
diffractometer
2463 reflections with I > 2σ(I)
10014 measured reflectionsRint = 0.041
3198 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.24 e Å3
3198 reflectionsΔρmin = 0.23 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O60.21581 (8)0.7957 (2)0.15539 (12)0.0662 (5)
N10.19078 (8)0.7370 (2)0.33412 (12)0.0423 (4)
N20.22963 (9)0.6618 (2)0.43448 (13)0.0443 (4)
H20.21310.64760.49600.053*
N70.09083 (9)0.7782 (2)0.41894 (14)0.0513 (4)
N80.25259 (9)0.3708 (2)0.13833 (15)0.0555 (5)
N110.36059 (8)0.5378 (2)0.15296 (13)0.0414 (4)
N120.42648 (9)0.5433 (2)0.11567 (15)0.0477 (4)
C30.29760 (10)0.6145 (2)0.42001 (16)0.0393 (4)
C40.30302 (10)0.6503 (2)0.30970 (15)0.0398 (4)
C50.23555 (10)0.7331 (3)0.25319 (15)0.0440 (5)
C90.35265 (12)0.5354 (3)0.51676 (17)0.0527 (5)
H9A0.32770.50290.57650.079*0.60
H9B0.39150.61720.54640.079*0.60
H9C0.37430.43520.48980.079*0.60
H9D0.40470.53040.50230.079*0.40
H9E0.35650.60880.58640.079*0.40
H9F0.33070.42460.53600.079*0.40
C100.55199 (12)0.6615 (3)0.1839 (2)0.0705 (7)
H10A0.55880.61010.11380.106*
H10B0.58710.61270.24770.106*
H10C0.56010.78350.18150.106*
C130.47371 (11)0.6276 (3)0.19777 (19)0.0486 (5)
C140.43901 (11)0.6780 (3)0.28619 (18)0.0489 (5)
H140.46090.73840.35240.059*
C150.36651 (10)0.6208 (2)0.25591 (16)0.0404 (4)
C160.11759 (10)0.7980 (2)0.32488 (16)0.0411 (4)
C170.07751 (11)0.8710 (3)0.22330 (19)0.0528 (5)
H170.09810.88140.15900.063*
C180.00598 (12)0.9270 (3)0.2223 (2)0.0633 (6)
H180.02300.97610.15610.076*
C190.02265 (13)0.9105 (3)0.3191 (2)0.0676 (7)
H190.07060.94930.32000.081*
C200.02120 (13)0.8357 (3)0.4140 (2)0.0626 (6)
H200.00150.82390.47920.075*
C210.29970 (10)0.4469 (2)0.08349 (16)0.0404 (4)
C220.29414 (12)0.4379 (3)0.03348 (17)0.0528 (5)
H220.32870.49330.06770.063*
C230.23590 (14)0.3445 (3)0.0983 (2)0.0693 (7)
H230.23060.33450.17740.083*
C240.18584 (14)0.2664 (3)0.0441 (2)0.0736 (7)
H240.14580.20330.08590.088*
C250.19600 (13)0.2829 (3)0.0720 (2)0.0683 (7)
H250.16150.23000.10760.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0659 (10)0.1047 (13)0.0312 (9)0.0195 (9)0.0174 (6)0.0154 (8)
N10.0445 (9)0.0556 (10)0.0283 (9)0.0032 (7)0.0111 (6)0.0006 (7)
N20.0531 (9)0.0532 (10)0.0297 (9)0.0042 (8)0.0159 (7)0.0043 (7)
N70.0522 (10)0.0592 (11)0.0477 (11)0.0001 (8)0.0219 (7)0.0085 (8)
N80.0522 (10)0.0676 (12)0.0494 (11)0.0110 (9)0.0168 (8)0.0090 (8)
N110.0414 (8)0.0488 (10)0.0380 (9)0.0003 (7)0.0171 (6)0.0058 (7)
N120.0441 (9)0.0542 (10)0.0506 (11)0.0006 (8)0.0227 (7)0.0039 (8)
C30.0483 (10)0.0368 (10)0.0335 (11)0.0010 (8)0.0107 (7)0.0039 (7)
C40.0455 (10)0.0452 (11)0.0304 (11)0.0000 (8)0.0120 (7)0.0058 (8)
C50.0498 (11)0.0561 (13)0.0284 (11)0.0007 (9)0.0137 (8)0.0032 (8)
C90.0620 (12)0.0557 (13)0.0392 (12)0.0050 (10)0.0086 (9)0.0029 (9)
C100.0488 (12)0.0744 (17)0.094 (2)0.0067 (11)0.0284 (12)0.0024 (14)
C130.0442 (10)0.0484 (12)0.0565 (13)0.0007 (9)0.0180 (9)0.0032 (9)
C140.0491 (11)0.0500 (12)0.0472 (12)0.0039 (9)0.0101 (8)0.0047 (9)
C150.0470 (10)0.0424 (11)0.0336 (11)0.0011 (8)0.0126 (7)0.0026 (8)
C160.0448 (10)0.0403 (11)0.0402 (11)0.0027 (8)0.0133 (8)0.0068 (8)
C170.0537 (12)0.0532 (13)0.0515 (14)0.0021 (10)0.0118 (9)0.0046 (9)
C180.0544 (13)0.0545 (14)0.0783 (18)0.0070 (10)0.0084 (11)0.0098 (12)
C190.0536 (13)0.0590 (15)0.095 (2)0.0107 (11)0.0272 (13)0.0004 (13)
C200.0601 (13)0.0653 (15)0.0711 (17)0.0049 (11)0.0334 (12)0.0075 (12)
C210.0432 (10)0.0405 (11)0.0384 (11)0.0061 (8)0.0108 (7)0.0060 (8)
C220.0643 (13)0.0539 (13)0.0412 (13)0.0097 (10)0.0136 (9)0.0023 (9)
C230.0807 (17)0.0780 (17)0.0419 (14)0.0117 (14)0.0026 (11)0.0171 (11)
C240.0607 (15)0.0752 (18)0.0757 (19)0.0012 (13)0.0049 (12)0.0246 (14)
C250.0538 (13)0.0764 (17)0.0745 (18)0.0162 (12)0.0138 (11)0.0165 (13)
Geometric parameters (Å, º) top
O6—C51.242 (2)C10—C131.501 (3)
N1—N21.380 (2)C10—H10A0.9600
N1—C51.397 (2)C10—H10B0.9600
N1—C161.402 (2)C10—H10C0.9600
N2—C31.344 (2)C13—C141.401 (3)
N2—H20.8600C14—C151.370 (3)
N7—C161.328 (2)C14—H140.9300
N7—C201.339 (3)C16—C171.392 (3)
N8—C211.330 (2)C17—C181.377 (3)
N8—C251.343 (3)C17—H170.9300
N11—C151.370 (2)C18—C191.375 (3)
N11—N121.374 (2)C18—H180.9300
N11—C211.421 (2)C19—C201.365 (3)
N12—C131.328 (3)C19—H190.9300
C3—C41.370 (3)C20—H200.9300
C3—C91.488 (3)C21—C221.378 (3)
C4—C51.423 (3)C22—C231.378 (3)
C4—C151.463 (2)C22—H220.9300
C9—H9A0.9600C23—C241.373 (4)
C9—H9B0.9600C23—H230.9300
C9—H9C0.9600C24—C251.363 (4)
C9—H9D1.0052C24—H240.9300
C9—H9E0.9971C25—H250.9300
C9—H9F0.9970
N2—N1—C5108.77 (14)H10A—C10—H10B109.5
N2—N1—C16120.81 (14)C13—C10—H10C109.5
C5—N1—C16130.39 (16)H10A—C10—H10C109.5
C3—N2—N1108.62 (14)H10B—C10—H10C109.5
C3—N2—H2125.7N12—C13—C14111.34 (17)
N1—N2—H2125.7N12—C13—C10119.19 (19)
C16—N7—C20116.60 (19)C14—C13—C10129.4 (2)
C21—N8—C25115.8 (2)C15—C14—C13106.47 (18)
C15—N11—N12111.90 (15)C15—C14—H14126.8
C15—N11—C21130.82 (15)C13—C14—H14126.8
N12—N11—C21117.26 (15)C14—C15—N11105.69 (16)
C13—N12—N11104.59 (15)C14—C15—C4130.51 (17)
N2—C3—C4109.39 (16)N11—C15—C4123.54 (16)
N2—C3—C9120.10 (16)N7—C16—C17124.14 (18)
C4—C3—C9130.51 (17)N7—C16—N1114.67 (17)
C3—C4—C5107.96 (16)C17—C16—N1121.18 (17)
C3—C4—C15128.42 (17)C18—C17—C16117.1 (2)
C5—C4—C15123.55 (17)C18—C17—H17121.5
O6—C5—N1123.15 (17)C16—C17—H17121.5
O6—C5—C4131.65 (17)C19—C18—C17120.0 (2)
N1—C5—C4105.18 (16)C19—C18—H18120.0
C3—C9—H9A109.5C17—C18—H18120.0
C3—C9—H9B109.5C20—C19—C18118.2 (2)
H9A—C9—H9B109.5C20—C19—H19120.9
C3—C9—H9C109.5C18—C19—H19120.9
H9A—C9—H9C109.5N7—C20—C19124.0 (2)
H9B—C9—H9C109.5N7—C20—H20118.0
C3—C9—H9D112.9C19—C20—H20118.0
H9A—C9—H9D137.7N8—C21—C22124.30 (19)
H9B—C9—H9D55.7N8—C21—N11116.34 (17)
H9C—C9—H9D55.6C22—C21—N11119.33 (18)
C3—C9—H9E108.8C23—C22—C21118.1 (2)
H9A—C9—H9E59.3C23—C22—H22120.9
H9B—C9—H9E53.4C21—C22—H22120.9
H9C—C9—H9E141.6C24—C23—C22118.8 (2)
H9D—C9—H9E105.6C24—C23—H23120.6
C3—C9—H9F107.2C22—C23—H23120.6
H9A—C9—H9F47.3C25—C24—C23118.7 (2)
H9B—C9—H9F142.0C25—C24—H24120.6
H9C—C9—H9F66.0C23—C24—H24120.6
H9D—C9—H9F116.8N8—C25—C24124.2 (2)
H9E—C9—H9F105.1N8—C25—H25117.9
C13—C10—H10A109.5C24—C25—H25117.9
C13—C10—H10B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.861.942.722 (2)150
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H16N6O
Mr332.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)18.297 (2), 7.7645 (9), 11.9280 (8)
β (°) 102.681 (7)
V3)1653.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.15 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10014, 3198, 2463
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.127, 1.12
No. of reflections3198
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), maXus (Mackay et al., 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.861.942.722 (2)150.0
Symmetry code: (i) x, y+3/2, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds