Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [Ni2(C2O4)(C4H13N3)2(H2O)2](NO3)2, consists of uncoordinated nitrate anions and dimeric cations, where the oxalate ligand is coordinated in a bis-bidentate fashion to centrosymmetrically related NiII atoms. The distorted octahedral environment of each NiII atom is completed by the three N atoms of the di­ethyl­enetri­amine ligand in a fac arrangement and one water O atom. Variable-temperature magnetic susceptibility measure­ments reveal a moderate intramolecular antiferromagnetic coupling.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013344/dn6002sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013344/dn6002Isup2.hkl
Contains datablock I

CCDC reference: 172194

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • Disorder in main residue
  • R factor = 0.032
  • wR factor = 0.089
  • Data-to-parameter ratio = 25.7

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
PLAT_301 Alert C Main Residue Disorder ........................ 8.00 Perc. PLAT_369 Alert C Long C(sp2)-C(sp2) Bond C(1) - C(1)a = 1.55 Ang.
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
2 Alert Level C = Please check

Comment top

The design and synthesis of oxalato-bridged nickel(II) complexes have attracted much attention during the last few years due to the strong magneto-structural correlations found in this kind of complex (Román et al., 1996; Escuer et al., 1994). In the framework of our current research of polynuclear oxalato-containing first-row transition metal complexes (Castillo et al., 2000, 2001) we have obtained the compound µ-oxalato-bis[aqua(diethylenetriamine)nickel(II)] dinitrate, (I).

The crystal structure of (I) comprises NO3- anions and [Ni2(C2O4)(C4H13N3)2(H2O)2]2+ binuclear cations (Fig. 1) having a symmetry centre at the midpoint of the C—C bond of the oxalate bridge. As observed in related compounds (Travnicek et al., 1997; Román et al., 1996; Escuer et al., 1994), the oxalate ion joins two adjacent coordination polyhedra with its O atoms occupying two cis positions in both polyhedra, and the diethylenetriamine group acts as a facially coordinated tridentate ligand. The coordination geometry around each metal atom is NiN3O3 distorted octahedral, with the O1, O2, N1 and N7 atoms in the equatorial plane [maximum deviation 0.010 (2) Å for N7]; N4 and O3W are on the axial sites. The nickel–nickel separation across the bridging oxalate is 5.487 (1) Å and the Ni–oxalato–Ni fragment is nearly planar. In the crystal structure of (I), complex cations and nitrate anions are held together by means of an extensive three-dimensional network of OW—H···O, N—H···O/OW hydrogen bonds. Magnetic susceptibility data of (I) in the temperature range 1.8–300.0 K show the occurrence of an intramolecular antiferromagnetic interaction with J = -27.2 cm-1 and g = 2.20. The magnitude of the exchange coupling constant is within the range found for oxalate-bridged nickel(II) complexes with a NiN3O3 chromophore.

Experimental top

Ni(NO3)2.6H2O (2.670 g, 9.20 mmol) dissolved in water (20 ml) was added dropwise to a mixture of diethylenetriamine (1.0 ml, 9.20 mmol) of K2C2O4.H2O (0.850 g, 4.60 mmol) in water (30 ml) to give an immediate blue polycrystalline powder. Blue crystals of (I) suitable for X-ray analysis were obtained by recrystallization in hot water.

Refinement top

The diethylenetriamine ligand shows a disordered arrangement of the C6 atom over two positions. Refinement of the site-ocupation factors revealed a partial ocupation close to 0.9 and 0.1, which were kept fixed to this value in the final refinement.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the hydrogen bonds between the anions and cations. Displacement ellipsoids are shown at the 50% probability level. H atoms are shown as spheres of arbitrary radii.
µ-oxalato-bis[aqua(diethylenetriamine)nickel(II)] dinitrate top
Crystal data top
[Ni2(C2O4)(C4H13N3)2(H2O)2](NO3)2F(000) = 596
Mr = 571.80Dx = 1.765 Mg m3
Dm = 1.75 (1) Mg m3
Dm measured by flotation in a mixture of carbon tetrachloride and bromoform
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.560 (2) Åθ = 7.5–13.2°
b = 7.243 (2) ŵ = 1.83 mm1
c = 13.387 (2) ÅT = 293 K
β = 117.96 (2)°Prism, blue
V = 1075.7 (4) Å30.40 × 0.40 × 0.25 mm
Z = 2
Data collection top
Enraf Nonius CAD-4
diffractometer
3495 reflections with I > 2σ(I)
Radiation source: x-ray tubeRint = 0.019
Graphite monochromatorθmax = 35.0°, θmin = 1.8°
ω/2θ scansh = 2017
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
k = 011
Tmin = 0.494, Tmax = 0.633l = 021
5512 measured reflections2 standard reflections every 98 reflections
4732 independent reflections intensity decay: 1%
Refinement top
Refinement on F213 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.033 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.5287P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.58 e Å3
4732 reflectionsΔρmin = 0.73 e Å3
184 parameters
Crystal data top
[Ni2(C2O4)(C4H13N3)2(H2O)2](NO3)2V = 1075.7 (4) Å3
Mr = 571.80Z = 2
Monoclinic, P21/nMo Kα radiation
a = 12.560 (2) ŵ = 1.83 mm1
b = 7.243 (2) ÅT = 293 K
c = 13.387 (2) Å0.40 × 0.40 × 0.25 mm
β = 117.96 (2)°
Data collection top
Enraf Nonius CAD-4
diffractometer
3495 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ scan (North et al., 1968)
Rint = 0.019
Tmin = 0.494, Tmax = 0.6332 standard reflections every 98 reflections
5512 measured reflections intensity decay: 1%
4732 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03313 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.58 e Å3
4732 reflectionsΔρmin = 0.73 e Å3
184 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_gt etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.55907 (2)0.76308 (2)0.178205 (14)0.02110 (5)
O10.58089 (10)1.04120 (13)0.14506 (8)0.0249 (2)
O20.47092 (10)0.76468 (12)0.00044 (9)0.0254 (2)
C10.53176 (11)1.0802 (2)0.04158 (10)0.0200 (2)
O3W0.71952 (11)0.6948 (2)0.17523 (12)0.0360 (3)
N10.64163 (13)0.8183 (2)0.35098 (11)0.0315 (3)
C20.5489 (2)0.8330 (3)0.38839 (14)0.0403 (4)
H2A0.5777 (2)0.9115 (3)0.45470 (14)0.048*
H2B0.5320 (2)0.7118 (3)0.40838 (14)0.048*
C30.4348 (2)0.9145 (3)0.2931 (2)0.0417 (4)
H3A0.3697 (2)0.9083 (3)0.3128 (2)0.05*
H3B0.4481 (2)1.0431 (3)0.2822 (2)0.05*
N40.40125 (12)0.8110 (2)0.18794 (12)0.0295 (2)
C50.3425 (2)0.6328 (3)0.1840 (2)0.0434 (4)
H5A0.2557 (2)0.6476 (3)0.1420 (2)0.052*0.9
H5B0.3626 (2)0.5948 (3)0.2603 (2)0.052*0.9
H5C0.3074 (2)0.6398 (3)0.2348 (2)0.052*0.1
H5D0.2769 (2)0.6158 (3)0.1081 (2)0.052*0.1
C60.3819 (2)0.4853 (3)0.1287 (2)0.0394 (4)0.9
H6A0.3556 (2)0.3651 (3)0.1406 (2)0.047*0.9
H6B0.3459 (2)0.5074 (3)0.0480 (2)0.047*0.9
N70.51403 (14)0.4891 (2)0.17864 (12)0.0319 (3)
C6A0.4150 (16)0.4776 (19)0.2122 (16)0.042 (4)0.1
H3C0.3651 (16)0.3710 (19)0.1757 (16)0.051*0.1
H3D0.4511 (16)0.4587 (19)0.2933 (16)0.051*0.1
N100.82822 (14)0.8786 (2)0.01015 (13)0.0363 (3)
O110.75272 (14)0.9460 (2)0.03687 (13)0.0467 (3)
O120.8234 (2)0.9207 (4)0.07927 (15)0.0796 (6)
O130.9063 (2)0.7776 (4)0.0781 (2)0.0932 (8)
H31W0.781 (2)0.679 (4)0.237 (2)0.049 (7)*
H32W0.743 (3)0.767 (4)0.142 (3)0.063 (9)*
H710.553 (2)0.440 (3)0.2473 (16)0.048 (6)*
H410.354 (2)0.876 (3)0.1313 (19)0.059 (7)*
H720.532 (2)0.431 (4)0.133 (2)0.054 (7)*
H110.682 (2)0.920 (3)0.365 (2)0.051 (7)*
H120.695 (2)0.736 (3)0.394 (2)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.02101 (8)0.02123 (8)0.02057 (8)0.00034 (6)0.00934 (6)0.00223 (6)
O10.0285 (5)0.0237 (4)0.0193 (4)0.0037 (4)0.0085 (4)0.0000 (3)
O20.0331 (5)0.0200 (4)0.0225 (4)0.0025 (3)0.0126 (4)0.0005 (3)
C10.0187 (5)0.0202 (4)0.0211 (5)0.0007 (4)0.0093 (4)0.0008 (4)
O3W0.0257 (5)0.0456 (6)0.0374 (6)0.0091 (5)0.0152 (5)0.0132 (5)
N10.0325 (7)0.0330 (6)0.0232 (5)0.0044 (5)0.0082 (5)0.0022 (5)
C20.0475 (10)0.0481 (9)0.0274 (7)0.0034 (8)0.0193 (7)0.0024 (6)
C30.0443 (10)0.0440 (9)0.0402 (9)0.0108 (7)0.0225 (8)0.0044 (7)
N40.0262 (6)0.0337 (6)0.0295 (6)0.0027 (5)0.0139 (5)0.0022 (5)
C50.0351 (9)0.0506 (10)0.0511 (11)0.0116 (8)0.0257 (8)0.0026 (8)
C60.0433 (10)0.0354 (8)0.0369 (9)0.0161 (8)0.0167 (8)0.0040 (7)
N70.0410 (7)0.0237 (5)0.0317 (6)0.0004 (5)0.0177 (6)0.0017 (4)
C6A0.051 (11)0.032 (7)0.045 (10)0.017 (7)0.024 (8)0.006 (7)
N100.0366 (7)0.0385 (7)0.0374 (7)0.0036 (6)0.0204 (6)0.0003 (6)
O110.0522 (8)0.0429 (7)0.0623 (9)0.0069 (6)0.0412 (7)0.0024 (6)
O120.0843 (14)0.123 (2)0.0527 (10)0.0302 (13)0.0494 (10)0.0219 (11)
O130.087 (2)0.109 (2)0.091 (2)0.0644 (14)0.0473 (13)0.0509 (13)
Geometric parameters (Å, º) top
Ni1—O12.1081 (11)N4—H410.85 (2)
Ni1—O22.1125 (12)N7—H710.888 (19)
Ni1—O3W2.0935 (17)N7—H720.86 (3)
Ni1—N12.0822 (14)C1—C1i1.5463 (17)
Ni1—N42.0758 (18)C2—C31.522 (3)
Ni1—N72.0641 (15)C5—C61.509 (3)
O1—C11.2561 (16)C5—C6A1.383 (17)
O2—C1i1.2451 (15)C2—H2B0.97
O3W—H32W0.83 (4)C2—H2A0.97
O3W—H31W0.83 (2)C3—H3A0.97
O11—N101.258 (3)C3—H3B0.97
O12—N101.209 (3)C5—H5A0.97
O13—N101.220 (3)C5—H5D0.97
N1—C21.471 (3)C5—H5B0.97
N4—C31.472 (2)C5—H5C0.97
N4—C51.476 (3)C6—H6A0.97
N7—C6A1.51 (2)C6—H6B0.97
N7—C61.470 (3)C6A—H3C0.97
N1—H120.88 (2)C6A—H3D0.97
N1—H110.87 (2)
O1—Ni1—O278.89 (4)O11—N10—O12119.34 (19)
O1—Ni1—O3W90.02 (6)O11—N10—O13118.04 (19)
O1—Ni1—N190.23 (5)O1—C1—O2i126.01 (12)
O1—Ni1—N494.34 (6)O1—C1—C1i116.50 (11)
O1—Ni1—N7169.13 (5)O2i—C1—C1i117.48 (11)
O2—Ni1—O3W88.74 (6)N1—C2—C3109.14 (15)
O2—Ni1—N1168.57 (5)N4—C3—C2109.79 (17)
O2—Ni1—N493.50 (6)N4—C5—C6A116.5 (8)
O2—Ni1—N790.55 (5)N4—C5—C6111.32 (19)
O3W—Ni1—N194.82 (7)N7—C6—C5108.87 (17)
O3W—Ni1—N4175.41 (6)N7—C6A—C5113.8 (11)
O3W—Ni1—N792.32 (7)C3—C2—H2B109.9
N1—Ni1—N483.75 (7)H2A—C2—H2B108.3
N1—Ni1—N7100.13 (6)C3—C2—H2A109.8
N4—Ni1—N783.66 (7)N1—C2—H2A109.9
Ni1—O1—C1113.68 (8)N1—C2—H2B109.9
Ni1—O2—C1i113.38 (8)N4—C3—H3A109.7
Ni1—O3W—H31W117.8 (18)N4—C3—H3B109.7
Ni1—O3W—H32W117 (3)C2—C3—H3A109.7
H31W—O3W—H32W103 (3)C2—C3—H3B109.7
Ni1—N1—C2109.30 (11)H3A—C3—H3B108.2
C3—N4—C5113.18 (16)N4—C5—H5B109.4
Ni1—N4—C5109.15 (13)C6—C5—H5A109.4
Ni1—N4—C3106.98 (13)N4—C5—H5C108.3
Ni1—N7—C6105.65 (12)N4—C5—H5D108.3
Ni1—N7—C6A108.6 (5)N4—C5—H5A109.4
C2—N1—H12107.9 (17)C6A—C5—H5D108.1
H11—N1—H12104 (2)H5C—C5—H5D107.4
Ni1—N1—H11109.9 (16)C6—C5—H5B109.4
Ni1—N1—H12115.3 (15)H5A—C5—H5B108.0
C2—N1—H11109.8 (17)C6A—C5—H5C108.0
C5—N4—H41108.5 (16)N7—C6—H6A109.9
Ni1—N4—H41108.9 (19)N7—C6—H6B109.9
C3—N4—H41110.1 (15)C5—C6—H6A109.9
C6—N7—H72106.5 (18)C5—C6—H6B109.9
Ni1—N7—H71111.7 (14)H6A—C6—H6B108.3
Ni1—N7—H72108.3 (19)N7—C6A—H3D109
C6—N7—H71114.8 (17)H3C—C6A—H3D108
C6A—N7—H7178.5 (19)C5—C6A—H3C109
C6A—N7—H72135 (2)C5—C6A—H3D108.8
H71—N7—H72110 (2)N7—C6A—H3C109
O12—N10—O13122.6 (2)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O3Wii0.87 (2)2.53 (2)3.343 (2)157 (2)
N1—H12···O11iii0.88 (2)2.26 (2)3.069 (2)152 (2)
O3W—H31W···O1iii0.83 (2)1.98 (3)2.767 (2)157 (3)
O3W—H32W···O110.83 (4)1.96 (3)2.764 (2)165 (4)
O3W—H32W···O130.83 (4)2.57 (4)3.227 (3)138 (3)
N4—H41···O11i0.85 (2)2.39 (2)3.231 (2)170 (3)
N4—H41···O12i0.85 (2)2.49 (3)3.164 (3)137 (2)
N7—H71···O13iii0.89 (2)2.45 (2)3.301 (3)161 (2)
N7—H72···O2iv0.86 (3)2.25 (3)3.087 (2)164 (3)
Symmetry codes: (i) x+1, y+2, z; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni2(C2O4)(C4H13N3)2(H2O)2](NO3)2
Mr571.80
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.560 (2), 7.243 (2), 13.387 (2)
β (°) 117.96 (2)
V3)1075.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.40 × 0.40 × 0.25
Data collection
DiffractometerEnraf Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ scan (North et al., 1968)
Tmin, Tmax0.494, 0.633
No. of measured, independent and
observed [I > 2σ(I)] reflections
5512, 4732, 3495
Rint0.019
(sin θ/λ)max1)0.806
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.089, 1.03
No. of reflections4732
No. of parameters184
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.73

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—O12.1081 (11)Ni1—N12.0822 (14)
Ni1—O22.1125 (12)Ni1—N42.0758 (18)
Ni1—O3W2.0935 (17)Ni1—N72.0641 (15)
O1—Ni1—O278.89 (4)O2—Ni1—N790.55 (5)
O1—Ni1—O3W90.02 (6)O3W—Ni1—N194.82 (7)
O1—Ni1—N190.23 (5)O3W—Ni1—N4175.41 (6)
O1—Ni1—N494.34 (6)O3W—Ni1—N792.32 (7)
O1—Ni1—N7169.13 (5)N1—Ni1—N483.75 (7)
O2—Ni1—O3W88.74 (6)N1—Ni1—N7100.13 (6)
O2—Ni1—N1168.57 (5)N4—Ni1—N783.66 (7)
O2—Ni1—N493.50 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O3Wi0.87 (2)2.53 (2)3.343 (2)157 (2)
N1—H12···O11ii0.88 (2)2.26 (2)3.069 (2)152 (2)
O3W—H31W···O1ii0.83 (2)1.98 (3)2.767 (2)157 (3)
O3W—H32W···O110.83 (4)1.96 (3)2.764 (2)165 (4)
O3W—H32W···O130.83 (4)2.57 (4)3.227 (3)138 (3)
N4—H41···O11iii0.85 (2)2.39 (2)3.231 (2)170 (3)
N4—H41···O12iii0.85 (2)2.49 (3)3.164 (3)137 (2)
N7—H71···O13ii0.888 (19)2.45 (2)3.301 (3)161 (2)
N7—H72···O2iv0.86 (3)2.25 (3)3.087 (2)164 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x+1, y+2, z; (iv) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds