Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, 2-[(5-methylisoxazol-3-yl)methyl]benzimidazole, C12H11N3O, has been established; the benzimidazole and isoxazole groups are planar and make a dihedral angle of 76,15 (4)°. The crystal packing is strengthened by a hydrogen bond in the b-axis direction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801012740/dn6001sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801012740/dn6001Isup2.hkl
Contains datablock I

CCDC reference: 170940

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.040
  • wR factor = 0.054
  • Data-to-parameter ratio = 11.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
REFLT_03 From the CIF: _diffrn_reflns_theta_max 26.38 From the CIF: _reflns_number_total 1965 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 2148 Completeness (_total/calc) 91.48% Alert C: < 95% complete
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

La chimie du benzimidazole et de l'isoxazole a connu un développement considérable ces dernières décennies dans différents domaines. Ainsi les dérivés du benzimidazole sont utilisés comme des inhibiteurs d'érythrocytes et de thrombocytes (Bochringer et al., 1991). Ils ont des propriétés anticancéreuses (Soderlind et al., 1999) et des activités insecticides (Maki et al., 1989), cytotoxiques (Deady et al., 2000), antivirales (Townsend et al., 1995) et germicides (Pedini et al., 1991). Les dérivés isoxazoliques sont connus pour leur activité antimicrobienne (Zani et al., 1996; Peesapati et al., 1996; Kim et al., 2000; Kang et al., 2000), immunologique (Ryng et al., 1999) et antipsychotique (Yevich et al., 1986). Il nous est apparu intéressant de poursuivre nos recherches dans ce domaine en examinant la synthèse de nouveaux systèmes bihétérocycliques renfermant le benzimidazole et l'isoxazole susceptibles de présenter des propriétés pharmacologiques et complexantes intéressantes. La méthode de synthèse que nous avons adoptée met en jeu l'action du chlorhydrate d'hydroxylamine utilisée en quantité stoechiométrique au reflux du méthanol sur la 4-acétonylidène-1,5-benzodiazépin-2-one (Essassi et al., 1987, 1989). L'identification du produit obtenu a été réalisée sur la base des données spectrales RMN1H et par diffraction X. La molécule étudiée se compose de deux parties planes réunies par le carbone C6: le bicycle benzimidazole C7/N8/C9/C10/C11/C12/C13/C14/N15 [écart-type: 0.007 (3) Å] et le cycle isoxazole O1/N2/C3/C4/C5 [écart-type: 0.003 (4) Å]. L'angle diédre entre ces deux plans est: 76.1 (3)°. L'atome C6 établit deux liaisons courtes avec ces deux groupes: C6—C3 = 1.4918 (5) Å e t C6—C7 = 1.4904 (5) Å, par contre, l'angle correspondant C3—C6—C7 est largement ouvert: 115.30 (3)°. L'empilement des molécules dans le cristal est assuré par une liaison hydrogéne, suivant la direction de l'axe b, entre l'atome N8 et l'atome accepteur N15, Table 1.

Experimental top

On porte à reflux dans 40 ml de méthanol pendant 2 h, 0,01 mol de la 4-acétonylidène-1,5-benzodiazépin-2-one et 0,01 mol du chlorhydrate d'hydroxylamine. Après neutralization par NaHCO3, le composé qui précipite est essoré et recristallisé dans l'acétate d'éthyle. Rendement: 70%; F(°)= 188–190. Le produit est dissout à saturation dans l'acétate d'éthyle et les cristaux sont obtenus par évaporation, à température ambiante.

Computing details top

Data collection: KappaCCD Reference Manual (Nonius, 1998); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus (Mackay et al., 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: maXus.

(I) top
Crystal data top
C12H11N3OF(000) = 448
Mr = 213.24Dx = 1.347 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.5437 (5) ÅCell parameters from 7520 reflections
b = 11.8437 (6) Åθ = 4.1–26.4°
c = 10.1523 (3) ŵ = 0.09 mm1
β = 113.638 (3)°T = 298 K
V = 1051.26 (8) Å3Plaquette, yellow
Z = 40.40 × 0.35 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 26.4°
ϕ scansh = 011
7520 measured reflectionsk = 014
1965 independent reflectionsl = 1110
1725 reflections with I > 3σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom, diff
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.054Weighting scheme based on measured s.u.'s w = 1 /[s2(Fo2) + 0.03Fo2]
S = 1.15(Δ/σ)max = 0.002
1725 reflectionsΔρmax = 0.14 e Å3
145 parametersΔρmin = 0.13 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C12H11N3OV = 1051.26 (8) Å3
Mr = 213.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5437 (5) ŵ = 0.09 mm1
b = 11.8437 (6) ÅT = 298 K
c = 10.1523 (3) Å0.40 × 0.35 × 0.20 mm
β = 113.638 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1725 reflections with I > 3σ(I)
7520 measured reflectionsRint = 0.027
1965 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040145 parameters
wR(F2) = 0.054H-atom parameters constrained
S = 1.15Δρmax = 0.14 e Å3
1725 reflectionsΔρmin = 0.13 e Å3
Special details top

Geometry. All standard uncertainties (except dihedral angles between l.s. planes) are estimated using the full covariance matrix. The standard uncertainties in cell dimensions are are used in calculating the standard uncertainties of bond distances, angles and torsion angles. Angles between l.s. planes have standard uncertainties calculated from atomic positional standard uncertainties; the errors in cell dimensions are not used in this case.

Refinement. Refinement on F2 and wR(F2).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41444 (4)0.00797 (3)0.31020 (4)0.0746 (2)
N20.50020 (4)0.01637 (3)0.22474 (5)0.0645 (2)
N80.76812 (3)0.26420 (3)0.06074 (3)0.03811 (17)
N150.76443 (3)0.25836 (3)0.27941 (3)0.03494 (15)
C30.48665 (4)0.12097 (3)0.18273 (4)0.0374 (2)
C40.39514 (5)0.18297 (4)0.23645 (5)0.0456 (2)
C50.35266 (5)0.10931 (4)0.31332 (5)0.0479 (2)
C60.55613 (4)0.15588 (4)0.08103 (4)0.0453 (2)
C70.69605 (4)0.22715 (3)0.14455 (4)0.03315 (18)
C90.89534 (4)0.32379 (3)0.15005 (4)0.03551 (19)
C101.00980 (5)0.37908 (4)0.12337 (5)0.0480 (2)
C111.12043 (5)0.43273 (4)0.23873 (5)0.0540 (2)
C121.11718 (5)0.43141 (4)0.37459 (5)0.0513 (2)
C131.00396 (4)0.37544 (4)0.40098 (4)0.0443 (2)
C140.89144 (4)0.32066 (3)0.28546 (4)0.03473 (19)
C160.25343 (6)0.11561 (5)0.39435 (6)0.0769 (3)
H40.37120.26140.22470.0635*
H80.73730.24960.04260.0568*
H101.01170.38170.03100.0669*
H111.20420.47270.22370.0717*
H121.19570.47030.45580.0678*
H131.00210.37640.49960.0618*
H6A0.57930.08700.03720.0632*
H6B0.48340.19950.00450.0632*
H17A0.31070.08590.49260.0962*
H17B0.17430.07230.35380.096*
H17C0.22280.19580.39810.0962*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0865 (2)0.04418 (19)0.0908 (3)0.00311 (17)0.0663 (2)0.00123 (17)
N20.0665 (3)0.0486 (2)0.0753 (3)0.00519 (19)0.0506 (2)0.0018 (2)
N80.03965 (17)0.0475 (2)0.02346 (18)0.00240 (15)0.01761 (14)0.00204 (14)
N150.03525 (16)0.04008 (19)0.02535 (18)0.00164 (14)0.01560 (13)0.00138 (13)
C30.02974 (19)0.0433 (2)0.0330 (2)0.00516 (18)0.01220 (16)0.00589 (17)
C40.0450 (2)0.0418 (2)0.0439 (3)0.00241 (19)0.0231 (2)0.00253 (18)
C50.0425 (2)0.0433 (2)0.0524 (3)0.0069 (2)0.0264 (2)0.0101 (2)
C60.0391 (2)0.0585 (3)0.0321 (2)0.00793 (19)0.01592 (18)0.00704 (18)
C70.03416 (19)0.0385 (2)0.0231 (2)0.00206 (17)0.01523 (15)0.00053 (15)
C90.0360 (2)0.0365 (2)0.0296 (2)0.00163 (17)0.01714 (16)0.00031 (16)
C100.0488 (2)0.0479 (2)0.0441 (3)0.0014 (2)0.0305 (2)0.00225 (19)
C110.0440 (2)0.0490 (3)0.0624 (3)0.0071 (2)0.0289 (2)0.0003 (2)
C120.0433 (2)0.0513 (3)0.0489 (3)0.0091 (2)0.0155 (2)0.0065 (2)
C130.0442 (2)0.0486 (2)0.0329 (2)0.0046 (2)0.01551 (18)0.00432 (18)
C140.0349 (2)0.0355 (2)0.0295 (2)0.00092 (16)0.01707 (16)0.00026 (16)
C160.0715 (3)0.0698 (3)0.0874 (4)0.0139 (3)0.0594 (3)0.0141 (3)
Geometric parameters (Å, º) top
O1—N21.4149 (4)C4—C51.3372 (6)
O1—C51.3432 (5)C5—C161.4846 (6)
N2—C31.2997 (5)C6—C71.4904 (5)
N8—C71.3634 (5)C9—C101.3903 (5)
N8—C91.3826 (5)C9—C141.3905 (5)
N15—C71.3117 (5)C10—C111.3778 (6)
N15—C141.3993 (5)C11—C121.3920 (7)
C3—C41.4076 (5)C12—C131.3823 (6)
C3—C61.4918 (5)C13—C141.3927 (5)
N2—O1—C5108.60 (3)N8—C7—C6120.07 (3)
O1—N2—C3105.21 (3)N15—C7—C6126.56 (3)
C7—N8—C9106.57 (3)N8—C9—C10131.66 (4)
C7—N15—C14104.72 (3)N8—C9—C14105.68 (3)
N2—C3—C4111.45 (4)C10—C9—C14122.66 (4)
N2—C3—C6118.55 (3)C9—C10—C11116.48 (4)
C4—C3—C6129.83 (4)C10—C11—C12121.54 (4)
C3—C4—C5105.44 (4)C11—C12—C13121.81 (4)
O1—C5—C4109.30 (3)C12—C13—C14117.32 (4)
O1—C5—C16116.20 (4)N15—C14—C9109.68 (3)
C4—C5—C16134.48 (4)N15—C14—C13130.13 (3)
C3—C6—C7115.30 (3)C9—C14—C13120.19 (3)
N8—C7—N15113.35 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N15i0.981.932.8546 (4)156
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H11N3O
Mr213.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.5437 (5), 11.8437 (6), 10.1523 (3)
β (°) 113.638 (3)
V3)1051.26 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.20
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
7520, 1965, 1725
Rint0.027
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.054, 1.15
No. of reflections1725
No. of parameters145
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.13

Computer programs: KappaCCD Reference Manual (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), maXus (Mackay et al., 1999), ORTEPII (Johnson, 1976), maXus.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···N15i0.9841.9282.8546 (4)155.84
Symmetry code: (i) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds