Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of the title compound, [NaV(C3H2O4)(NH2O)2O(H2O)2], is built up of NaO6 and VO5N2 polyhedra connected through malonate bridges. The NaO6 octa­hedra are linked by edge sharing in the equatorial plane to form one-dimensional infinite chains. These chains are linked together by the malonate bridges to form two-dimensional layers. The distorted VO5N2 penta­gonal bipyramid is grafted on to the layer by a malonate carboxylate O atom. Adjacent layers are connected through O—H...O and N—H...O hydrogen bonds to build up a three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109036300/dn3120sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109036300/dn3120Isup2.hkl
Contains datablock I

CCDC reference: 755978

Comment top

Simple vanadium salts such as NaVO3 and VOSO4 can lower blood glucose levels by activating glucose uptake by cells for metabolism in humans, but numerous studies have shown that organic vanadium complexes are less toxic and several times more effective in lowering blood glucose levels (Thompson et al., 2002). Therefore, much research has gone into exploring the synthesis and structure of insulin-mimetic vanadium complexes. Vanadium hydroxylamide compounds are known to be promising candidates in the study of insulin-mimetic activity of vanadium compounds (Tracey, 2000). Several vanadium hydroxylamide compounds have been reported, such as [VO(NH2O)(dipic)(H2O)] (Nuber et al., 1981), [VO(NH2O)2L].H2O (L = glycine, serine and glycylglycine), [VO(NH2O)2(imidazole)]Cl (Keramidas et al., 1997), but no vanadium hydroxylamide complexes with carboxylate ligands have been reported to date. Investigation of the preparation and crystal structure of vanadium hydroxylamide complexes with malonic acid provides not only useful information on vanadium chemistry but also promising new candidates for the study of the insulin-mimetic activity of vanadium. Therefore, we report here the preparation and crystal structure of the title vanadium hydroxylamide complex with malonic acid, (I).

In the structure of (I), the VV ion is seven-coordinated in a pentagonal–bipyramidal geometry by two bidentate hydroxylamide ligands, one oxo ligand and two O atoms from the malonate ligand (Fig. 1). The hydroxylamide ligands coordinate in a side-on manner, as observed in related structures (Paul et al., 1997; Keramidas et al., 1997; Nuber et al., 1981). The malonate behaves as a chelating ligand to the VV ion. The centroids of the two hydroxylamide ligands and atom O2 of the malonate define the equatorial plane perpendicular to the VO bond. The other chelating atom, O1, is in an axial position trans to the oxo ligand, with an axial angle O1—V1—O7 = 171.06 (5)° (Table 1). The terminal VO distance is 1.6017 (10) Å, leading to the expected trans lengthening of the V—O1 distance to 2.1470 (9) Å, which is longer than V—O2 (Table 1). The O—N, V—O and V—N distances and O—V—N angle involving the hydroxylamide ligands are comparable, within experimental error, with related vanadium hydroxylamide complexes reported in the literature (Table 3).

The coordination environment around the NaI ion can be described as a distorted octahedron. The vertices are occupied by the six O atoms, of which four belong to water molecules [Na—O distances in the range 2.4132 (13)–2.4305 (13) Å] located in the equatorial plane, with two O atoms from two different malonate ligands at the apices [Na—O distances of 2.6027 (13) and 2.5303 (14) Å] (Table 1, Fig. 1). In the crystal structure, adjacent Na polyhedra are linked by a shared edge on opposite sides in the equatorial plane to form an infinite one-dimensional chain. These chains are connected by malonate bridges to form two-dimensional layers (Fig. 2). The VO5N2 polyhedra are grafted onto this layer via carboxyl atoms O1 and O2 of the malonate ligands, which are distributed on both sides of the layers owing to the alternating orientation of the two carboxyl groups (Fig. 2). This arrangement model for VO5N2 favours the minimization of steric hindrance and boosts the stability of the crystal structure.

The remarkable organization of the crystal structure of (I) can be recognized in a view along the c axis (Fig. 3), which shows the two-dimensional layers parallel to the (010) plane. An extensive hydrogen-bonding network (Table 2) links the different layers through different functional groups, such as hydroxylamide O and water O, or hydroxylamide N and carboxyl O. This leads to the formation of a stable three-dimensional supramolecular structure.

Experimental top

NH4VO3 (1.375 mmol), malonic acid (2.637 mmol) and NaOH (7.863 mmol) were dissolved in H2O (10 ml) at room temperature. The resulting light-yellow solution was stirred for approximately 0.5 h in an ice bath. NH2OH.HCl (7.326 mmol) was added gradually with constant stirring for 0.5–1.0 h. The resulting yellow solution (pH 6.02) was filtered. Colourless crystals of (I) suitable for single-crystal X-ray diffraction were obtained by slow evaporation of the filtrate in anhydrous ethanol at 277 K for a few days.

Refinement top

All H atoms are placed in calculated positions and refined using a riding model, with Uiso(H) values of 1.2Ueq(carrier) for NH2 and CH2 groups or 1.5Ueq(carrier) for water molecules.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: APEX2 (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I), showing the atom connectivities and coordination environment.
[Figure 2] Fig. 2. The two-dimensional layer structure of (I), in the ac plane.
[Figure 3] Fig. 3. A packing view of (I), showing the two-dimensional layers parallel to the (010) plane.
poly[di-µ2-aqua-bis(hydroxylamido)-µ3-malonato-oxidosodiumvanadium(V)] top
Crystal data top
[NaV(C3H2O4)(NH2O)2O(H2O)2]F(000) = 592
Mr = 292.06Dx = 1.892 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ybcCell parameters from 8964 reflections
a = 9.6393 (2) Åθ = 2.3–28.3°
b = 15.4265 (4) ŵ = 1.05 mm1
c = 7.4346 (2) ÅT = 296 K
β = 111.984 (1)°Block, colourless
V = 1025.14 (4) Å30.33 × 0.15 × 0.13 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2529 independent reflections
Radiation source: fine-focus sealed tube2306 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1212
Tmin = 0.825, Tmax = 0.873k = 2020
13757 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.4548P]
where P = (Fo2 + 2Fc2)/3
2529 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[NaV(C3H2O4)(NH2O)2O(H2O)2]V = 1025.14 (4) Å3
Mr = 292.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6393 (2) ŵ = 1.05 mm1
b = 15.4265 (4) ÅT = 296 K
c = 7.4346 (2) Å0.33 × 0.15 × 0.13 mm
β = 111.984 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2529 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
2306 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.873Rint = 0.022
13757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.02Δρmax = 0.36 e Å3
2529 reflectionsΔρmin = 0.30 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.66549 (2)0.030524 (13)0.82126 (3)0.01925 (8)
Na11.01299 (8)0.26225 (4)0.99029 (10)0.04198 (17)
O10.73448 (10)0.16375 (6)0.86457 (14)0.02439 (19)
O1W1.03107 (12)0.15091 (7)1.22936 (17)0.0368 (2)
H1WA0.95860.11721.17000.055*
H1WB1.11340.12371.27650.055*
O20.45932 (10)0.08666 (6)0.72781 (14)0.0251 (2)
O2W1.03287 (12)0.15212 (7)0.77066 (17)0.0377 (3)
H2WA0.98060.10820.77400.057*
H2WB1.11410.12740.84060.057*
O30.73206 (12)0.30576 (6)0.83574 (16)0.0303 (2)
O40.27930 (13)0.18351 (9)0.6450 (2)0.0495 (3)
O50.82068 (11)0.01576 (6)0.72403 (15)0.0274 (2)
O60.81309 (11)0.01388 (6)1.07294 (14)0.0275 (2)
O70.58800 (12)0.06300 (6)0.77496 (15)0.0301 (2)
N10.69554 (13)0.04561 (8)0.56848 (17)0.0266 (2)
H1A0.71240.09330.52510.032*
H2A0.65980.00760.48160.032*
N20.68257 (14)0.03947 (7)1.09821 (17)0.0259 (2)
H1B0.64830.00021.14990.031*
H2B0.68950.08861.15160.031*
C10.40806 (14)0.16396 (9)0.67419 (19)0.0241 (3)
C20.51172 (15)0.23007 (9)0.6398 (2)0.0262 (3)
H2C0.46690.28700.63160.031*
H2D0.51780.21800.51490.031*
C30.67016 (14)0.23368 (8)0.79161 (18)0.0205 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.02139 (12)0.01616 (11)0.01975 (12)0.00077 (7)0.00718 (9)0.00044 (7)
Na10.0529 (4)0.0390 (4)0.0382 (4)0.0112 (3)0.0220 (3)0.0050 (3)
O10.0218 (4)0.0185 (4)0.0294 (5)0.0005 (3)0.0056 (4)0.0003 (4)
O1W0.0327 (5)0.0303 (5)0.0417 (6)0.0012 (4)0.0073 (5)0.0039 (4)
O20.0215 (4)0.0226 (4)0.0299 (5)0.0025 (3)0.0080 (4)0.0026 (4)
O2W0.0334 (6)0.0302 (5)0.0496 (7)0.0033 (4)0.0157 (5)0.0052 (5)
O30.0325 (5)0.0189 (4)0.0386 (6)0.0045 (4)0.0124 (4)0.0016 (4)
O40.0235 (5)0.0487 (7)0.0756 (9)0.0069 (5)0.0177 (6)0.0131 (6)
O50.0266 (5)0.0265 (5)0.0305 (5)0.0030 (4)0.0125 (4)0.0003 (4)
O60.0268 (5)0.0273 (5)0.0251 (5)0.0048 (4)0.0059 (4)0.0034 (4)
O70.0357 (5)0.0213 (5)0.0324 (5)0.0060 (4)0.0116 (4)0.0009 (4)
N10.0339 (6)0.0244 (5)0.0224 (6)0.0012 (5)0.0115 (5)0.0003 (4)
N20.0328 (6)0.0238 (5)0.0226 (5)0.0005 (4)0.0122 (5)0.0010 (4)
C10.0208 (6)0.0265 (6)0.0229 (6)0.0003 (5)0.0059 (5)0.0004 (5)
C20.0250 (6)0.0224 (6)0.0287 (7)0.0013 (5)0.0071 (5)0.0062 (5)
C30.0229 (6)0.0202 (6)0.0218 (6)0.0008 (4)0.0120 (5)0.0005 (4)
Geometric parameters (Å, º) top
V1—N12.0193 (11)O1W—H1WB0.8497
V1—N22.0080 (12)O2—C11.2952 (16)
V1—O12.1470 (9)O2W—H2WA0.8498
V1—O22.0368 (9)O2W—H2WB0.8506
V1—O51.9030 (10)O3—C31.2464 (16)
V1—O61.8969 (10)O4—C11.2153 (17)
V1—O71.6017 (10)N1—O51.4000 (15)
Na1—O12.9173 (12)N2—O61.3969 (15)
Na1—O1W2.4305 (13)N1—H1A0.8436
Na1—O1Wi2.4169 (13)N1—H2A0.8448
Na1—O2W2.4132 (13)N2—H1B0.8479
Na1—O2Wii2.4140 (13)N2—H2B0.8457
Na1—O32.6027 (13)C1—C21.5149 (18)
Na1—O4iii2.5303 (14)C2—C31.5228 (18)
Na1—C33.1052 (15)C2—H2C0.9700
O1—C31.2612 (16)C2—H2D0.9700
O1W—H1WA0.8500
O1—V1—O684.60 (4)O2W—Na1—Na1ii129.16 (4)
O1—V1—O7171.06 (5)O2Wii—Na1—Na1ii39.27 (3)
O2—V1—O5136.61 (4)O1Wi—Na1—Na1ii151.82 (4)
O2—V1—O6132.05 (4)O1W—Na1—Na1ii39.44 (3)
O2—V1—O789.58 (5)O4iii—Na1—Na1ii87.65 (4)
O5—V1—O687.28 (4)O3—Na1—Na1ii94.46 (3)
O5—V1—O7100.38 (5)O1—Na1—Na1ii85.60 (3)
O6—V1—O7101.96 (5)C3—Na1—Na1ii93.59 (3)
N1—V1—N2163.98 (5)Na1i—Na1—Na1ii168.39 (4)
N1—V1—O295.46 (4)C3—O1—V1132.80 (8)
N1—V1—O541.69 (5)C3—O1—Na186.42 (7)
N1—V1—O6128.15 (5)V1—O1—Na1137.98 (4)
N1—V1—O796.99 (5)Na1ii—O1W—Na1100.85 (4)
N2—V1—O290.89 (4)Na1ii—O1W—H1WA117.6
N2—V1—O5128.56 (5)Na1—O1W—H1WA103.5
N2—V1—O641.80 (5)Na1ii—O1W—H1WB106.3
N2—V1—O797.75 (5)Na1—O1W—H1WB116.9
O1—V1—O281.49 (4)H1WA—O1W—H1WB111.7
O1—V1—O585.88 (4)C1—O2—V1135.03 (8)
N2—V1—O183.02 (4)Na1—O2W—Na1i101.44 (4)
N1—V1—O183.39 (4)Na1—O2W—H2WA110.1
O2W—Na1—O2Wii165.64 (5)Na1i—O2W—H2WA127.2
O2W—Na1—O1Wi78.42 (4)Na1—O2W—H2WB100.9
O2Wii—Na1—O1Wi112.55 (5)Na1i—O2W—H2WB122.0
O2W—Na1—O1W89.73 (4)H2WA—O2W—H2WB92.6
O2Wii—Na1—O1W78.14 (4)C3—O3—Na1101.69 (8)
O1Wi—Na1—O1W166.33 (5)C1—O4—Na1iv163.29 (12)
O2W—Na1—O4iii102.50 (5)N1—O5—V173.60 (6)
O2Wii—Na1—O4iii71.78 (4)N2—O6—V173.36 (6)
O1Wi—Na1—O4iii79.39 (5)O5—N1—V164.70 (6)
O1W—Na1—O4iii96.80 (5)O5—N1—H1A111.9
O2W—Na1—O3102.47 (4)V1—N1—H1A124.9
O2Wii—Na1—O388.47 (4)O5—N1—H2A112.5
O1Wi—Na1—O383.02 (4)V1—N1—H2A118.1
O1W—Na1—O3106.44 (4)H1A—N1—H2A113.3
O3—Na1—O4iii145.72 (5)O6—N2—V164.84 (6)
O2W—Na1—O173.33 (4)O6—N2—H1B112.5
O2Wii—Na1—O1109.13 (4)V1—N2—H1B121.3
O1Wi—Na1—O1111.45 (4)O6—N2—H2B113.5
O1W—Na1—O170.83 (4)V1—N2—H2B120.3
O4iii—Na1—O1166.70 (5)H1B—N2—H2B113.8
O3—Na1—O146.55 (3)O4—C1—O2121.99 (13)
O2W—Na1—C385.31 (4)O4—C1—C2119.79 (13)
O2Wii—Na1—C3102.40 (4)O2—C1—C2118.17 (11)
O1Wi—Na1—C394.62 (4)C1—C2—C3116.19 (11)
O1W—Na1—C391.13 (4)C1—C2—H2C108.2
O4iii—Na1—C3168.85 (5)C3—C2—H2C108.2
O3—Na1—C323.15 (3)C1—C2—H2D108.2
O1—Na1—C323.91 (3)C3—C2—H2D108.2
O2W—Na1—Na1i39.29 (3)H2C—C2—H2D107.4
O2Wii—Na1—Na1i152.23 (4)O3—C3—O1122.68 (12)
O1Wi—Na1—Na1i39.71 (3)O3—C3—C2118.44 (12)
O1W—Na1—Na1i129.00 (4)O1—C3—C2118.86 (11)
O4iii—Na1—Na1i96.19 (4)O3—C3—Na155.16 (7)
O3—Na1—Na1i88.53 (3)O1—C3—Na169.66 (7)
O1—Na1—Na1i88.35 (3)C2—C3—Na1162.03 (9)
C3—Na1—Na1i84.76 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2; (iv) x1, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.852.583.1245 (15)123
O1W—H1WB···O5v0.852.242.8987 (14)134
O1W—H1WA···O60.852.072.8994 (15)166
O2W—H2WA···O50.852.032.8633 (15)167
O2W—H2WB···O6v0.852.312.9701 (14)135
N1—H1A···O3i0.842.152.9717 (15)163
N1—H2A···O2vi0.842.132.9635 (15)172
N2—H1B···O2vii0.852.102.9418 (15)173
N2—H2B···O3ii0.852.072.9010 (15)168
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (v) x+2, y, z+2; (vi) x+1, y, z+1; (vii) x+1, y, z+2.

Experimental details

Crystal data
Chemical formula[NaV(C3H2O4)(NH2O)2O(H2O)2]
Mr292.06
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.6393 (2), 15.4265 (4), 7.4346 (2)
β (°) 111.984 (1)
V3)1025.14 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.33 × 0.15 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.825, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
13757, 2529, 2306
Rint0.022
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.065, 1.02
No. of reflections2529
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.30

Computer programs: APEX2 (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
V1—N12.0193 (11)Na1—O1W2.4305 (13)
V1—N22.0080 (12)Na1—O1Wi2.4169 (13)
V1—O12.1470 (9)Na1—O2W2.4132 (13)
V1—O22.0368 (9)Na1—O2Wii2.4140 (13)
V1—O51.9030 (10)Na1—O32.6027 (13)
V1—O61.8969 (10)Na1—O4iii2.5303 (14)
V1—O71.6017 (10)N1—O51.4000 (15)
Na1—O12.9173 (12)N2—O61.3969 (15)
O1—V1—O684.60 (4)N1—V1—O541.69 (5)
O1—V1—O7171.06 (5)N1—V1—O6128.15 (5)
O2—V1—O5136.61 (4)N1—V1—O796.99 (5)
O2—V1—O6132.05 (4)N2—V1—O290.89 (4)
O2—V1—O789.58 (5)N2—V1—O5128.56 (5)
O5—V1—O687.28 (4)N2—V1—O641.80 (5)
O5—V1—O7100.38 (5)N2—V1—O797.75 (5)
O6—V1—O7101.96 (5)O2W—Na1—O3102.47 (4)
N1—V1—N2163.98 (5)O3—Na1—O4iii145.72 (5)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O10.852.583.1245 (15)122.7
O1W—H1WB···O5iv0.852.242.8987 (14)134.1
O1W—H1WA···O60.852.072.8994 (15)166.4
O2W—H2WA···O50.852.032.8633 (15)166.5
O2W—H2WB···O6iv0.852.312.9701 (14)135.1
N1—H1A···O3i0.842.152.9717 (15)163.2
N1—H2A···O2v0.842.132.9635 (15)171.6
N2—H1B···O2vi0.852.102.9418 (15)172.8
N2—H2B···O3ii0.852.072.9010 (15)167.7
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iv) x+2, y, z+2; (v) x+1, y, z+1; (vi) x+1, y, z+2.
Selected bond distances (Å) and angles (°) in vanadium(V) hydroxylamide complexes top
CompoundN—OV—OV—NO—V—NReference
NH2OH1.47(a)
[VO(H2NO)(C7H3NO4)(H2O)]1.3710 (4)1.9030 (3)2.0070 (3)40.93 (2)(b)
[VO(H2NO)2(GlyGly)].H2O1.397 (3)1.8961 (14)2.0046 (16)41.87 (7)(c)
1.3960 (19)1.889 (2)2.0165 (15)41.72 (7)
[VO(H2NO)2(GlyGly)].H2O1.4040 (3)1.8920 (3)2.0210 (4)41.90 (2)(d)
1.3970 (4)1.9080 (3)2.0070 (4)41.90 (2)
[VO(H2NO)2(Gly)].H2O1.4050 (3)1.8980 (4)2.0180 (3)41.89 (3)(d)
1.4020 (3)1.9020 (3)2.0100 (4)41.91 (4)
[VO(H2NO)2(Ser)]1.3980 (5)1.8990 (5)2.0100 (3)41.08 (5)(d)
1.3870 (4)1.8940 (4)2.0040 (3)41.56 (15)
[VO(H2NO)2(imidazole)2]1.4030 (4)1.9290 (3)1.9910 (4)41.90 (14)(d)
1.3900 (3)1.9130 (4)1.9940 (3)41.63 (9)
[VO(H2NO)2(Ala)].2H2O1.4070 (11)1.9160 (8)2.0280 (10)41.70 (3)(e)
1.3830 (10)1.9080 (9)1.9970 (10)41.40 (3)
[VO(H2NO)2(Thr)]1.3980 (3)1.8960 (2)2.0140 (3)41.80 (9)(e)
1.3940 (4)1.8830 (2)2.0270 (3)41.33 (12)
Na[VO(NH2O)2(C7H2O4)].H2O1.4002 (15)1.9031 (10)2.0193 (11)41.70 (4)(f)
1.3972 (15)1.8970 (10)2.0080 (12)41.81 (5)
References: (a) Meyers et al. (1955); (b) Nuber et al. (1981); (c) Paul et al. (1997); (d) Keramidas et al. (1997); (e) Li et al. (2004); (f) this work.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds