Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In cytosinium succinate (systematic name: 4-amino-2-oxo-2,3-dihydro­pyrimidin-1-ium 3-carboxy­propan­oate), C4H6N3O+·C4H5O4, (I), the cytosinium cation forms one-dimensional self-assembling patterns by inter­molecular N—H...O hydrogen bonding, while in cytosinium 4-nitro­benzoate cytosine monohydrate [systematic name: 4-amino-2-oxo-2,3-dihydro­pyrimidin-1-ium 4-nitro­benzoate 4-amino­pyrimidin-2(1H)-one solvate monohydrate], C4H6N3O+·C7H4NO4·C4H5N3O·H2O, (II), the cytosinium–cytosine base pair, held together by triple hydrogen bonds, leads to one-dimensional polymeric ribbons via double N—H...O hydrogen bonds. This study illustrates clearly the different alignment of cytosine mol­ecules in the crystal packing and their ability to form supra­molecular hydrogen-bonded networks with the anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010802979X/dn3096sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010802979X/dn3096Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010802979X/dn3096IIsup3.hkl
Contains datablock II

CCDC references: 707218; 707219

Comment top

The protonated cytosine–cytosine base pair carries important structural implications for biological systems. In particular, this base pair is known to self-assemble in acidic media (Armentano et al., 2004) and is also found in RNA and DNA solutions. Furthermore, X-ray studies have revealed that the cytosine–cytosine base pair contributes to fully intercalated parallel-stranded duplexes of DNA structural motifs in crystals (Kang et al., 1994; Kang et al., 1995). Carboxylic acids belong to an important class of organic molecules and are believed to have existed in the prebiotic earth (Miller & Orgel, 1974; Kvenvolden et al., 1971). Succinic acid may bind to cations in either the monoanionic or the dianionic form, displaying a plethora of interesting structures. Succinic acid, with two carboxyl functions, can exist as a neutral molecule or as single negatively charged or double negatively charged ions (Prasad & Vijayan, 1991). 4-Nitrobenzoic acid can easily lose its acidic H atom and form complexes with other compounds through hydrogen bonding. The present study is a continuation of our ongoing programme on structure elucidation of nucleobases with the carboxylic and aromatic acids.

In the structures of (I) and (II), the bond lengths and angles (Table 1 and 3) correspond to those expected for the atom types and the type of hybridization (Allen et al., 1987). The asymmetric unit of (I) contains one cytosinium cation protonated at atom N3 and one succinate anion, with one of the carboxyl group deprotonated (Fig. 1), while (II) comprises one cytosinium cation (A), one cytosine molecule (B), one 4-nitrobenzoate anion and one water molecule (Fig. 2). As expected, both the succinate and the 4-nitrobenzoate anions of (I) and (II) are planar. In the succinate anion of (I), the two Csp2—Csp2 single-bond distances of the carboxylate (C11—C12) and carboxyl (C13—C14) groups are not identical (Table 1). It is of interest to note that the shorter C13—C14 bond links the carboxyl group, while the longer C11—C12 bond links the carboxylate group. The C11—C12—C13—C14 unit is in a trans conformation in (I) (Table 1). In the 4-nitrobenzoate anion of (II), the mean planes of the carboxylate group (C11/O9/O10) and nitro group (N18/O19/O20) make dihedral angles of 1.9 (3) and 3.8 (2)°, respectively, with respect to the mean plane of the benzene ring (C12–C17). In (I), the O—H bond of the carboxyl group is in a trans conformation with respect to the CO bond, as evidenced from the H16O—O16—C114—O15 torsion angle of 176.9 (6)°.

Cytosine is a quite strong base (pKa1 = 1. 6 and pKa2 = 12.2; Stecher, 1968) and, in the presence of acids, is readily protonated at the N3 ring position. The molecular geometries of the cytosine and cytosinium cation are in good agreement with those of similar structures (Görbitz & Sagstuen, 2004; Garcia-Teran et al., 2007). The N3 protonation or its absence reflects in the C2—N3—C4 bond angle. The N3 protonation of the cytosine ring is consistent with the larger C2—N3—C4 bond angle [124.0 (1)° in (I) and 123.6 (2)° in molecule A of (II)], while for unprotonated cytosine the angle is 119.3 (2)°, which agrees well with the reported value of the unprotonated cytosine molecule of 119.4° (McClure & Craven, 1973).

In (I), the cytosinium cation and succinate anion are held together by two N—H···O hydrogen bonds (Table 2), thereby generating an R22(8) motif (Bernstein et al., 1995), which is further interconnected by intermolecular N—H···O and O—H···O interactions involving the the cytosinium cations and succinate anions leading to the formation of a two-dimensional sheet containing R44(15) and R44(19) motifs (Fig. 3). In the case of (II), the cytosinium–cytosine dimers are formed by two N—H···O and one N—H···N hydrogen bonds (Table 4), thus resembling a pseudo-Watson–Crick pattern. Furthermore, adjacent cytosinium–cytosine base pairs are interlinked by double N—H···O hydrogen bonds (Table 4), leading to one-dimensional supramolecular polymeric ribbons with alternating neutral and protonated cytosine entities (Fig. 4).

In (II), atom N1 of the cytosinium cation forms an N—H···O hydrogen bond with the water molecule, while the corresponding atom of the cytosine molecule forms an N—H···O hydrogen bond with the 4-nitrobenzoate anion. The water molecule plays a dual role as both donor and acceptor in the hydrogen-bonding interactions (Table 4). It is involved in three hydrogen bonds, acting donor to two inversion-related 4-nitrobenzoate anions and acceptor to an adjacent cytosinium cation.

In (II), the combination of N—H···O, N—H···N and O—H···O hydrogen bonds involving the cytosinium–cytosine base pairs, the 4-nitrobnzoate anions and the water molecules leads to two-dimensional hydrogen-bonded network cavities, which extend parallel to the c axis. Each cavity is arranged like a hexamer hydrogen-bonded network consisting of two sets of parallel cytosinium–cytosine base pairs, which are sandwiched between the two 4-nitrobenzoate anions and two water molecules (Fig. 5). The one-dimension polymeric ribbon formed by the cytosinium–cytosine base pair interacts with adjacent ribbons through 4-nitrobenzoate anions and water molecules via N—H···O and O—H···O hydrogen bonds, thereby generating a two-dimensional supramolecular hydrogen-bonded network in the crystal structure. It is very interesting to note that the nitro group of the 4-nitrobenzoate anion does not participate in any conventional hydrogen-bonding interactions. In (II), the water molecule does not have any interaction with the cytosine molecule, while the 4-nitrobenzate anion links the cytosinium cation through a weak C—H···O interaction.

Related literature top

For related literature, see: Allen et al. (1987); Armentano et al. (2004); Bernstein et al. (1995); Görbitz & Sagstuen (2004); Garcia-Teran, Castillo, Luque, Garcia-Coucerio, Beobide & Roman (2007); Kang et al. (1994, 1995); Kvenvolden et al. (1971); McClure & Craven (1973); Miller & Orgel (1974); Prasad & Vijayan (1991); Stecher (1968).

Experimental top

To obtain crystals of (I) suitable for X-ray study, cytosine (0.111 g, 1 mmol) and succinic acid (0.118 g, 1 mmol) were dissolved in water (10 ml) and the solution was allowed to evaporate slowly. Crystals of (II) were obtained by slow evaporation of an equimolar solution of cytosine (0.111 g, 2 mmol) and 4-nitrobenzoic acid (0.167 g, 1 mmol) in water (20 ml).

Refinement top

All N- and O-bound H atoms were located in a difference Fourier map and their positions and isotropic parameters were refined. All other H atoms were located in a difference density map but were positioned geometrically and included as riding atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Hydrogen bond are shown as dashed lines.
[Figure 3] Fig. 3. A packing diagram for (I), viewed down the a axis. Dashed lines indicate O—H···O and N—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity. Only atoms involved in the hydrogen bonds are labelled. [Symmetry codes: (i) x - 1/2, -y + 5/2, z - 1/2; (ii) x, y - 1, z; (iii) x, y + 1, z]
[Figure 4] Fig. 4. A packing diagram for (II), viewed down the b axis. Only atoms involved in the hydrogen bonds are labelled. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry codes: (i) x, y - 1, z; (ii) x, y + 1, z; (iii) -x + 1, -y, -z + 1; (iv) -x + 2, -y, -z + 1.]
[Figure 5] Fig. 5. A view of the hexamer hydrogen-bonded network cavity. Dashed lines indicate O—H···O, N—H···N and N—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted for clarity.
(I) 4-amino-2-oxo-2,3-dihydropyrimidin-1-ium 3-carboxypropanoate top
Crystal data top
C4H6N3O+·C4H5O4F(000) = 960
Mr = 229.20Dx = 1.576 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2934 reflections
a = 15.666 (3) Åθ = 3.0–27.7°
b = 6.6959 (9) ŵ = 0.13 mm1
c = 18.726 (3) ÅT = 294 K
β = 100.480 (4)°Block, colorless
V = 1931.5 (5) Å30.23 × 0.17 × 0.13 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1607 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scanh = 1818
8824 measured reflectionsk = 77
1697 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0619P)2 + 1.1366P]
where P = (Fo2 + 2Fc2)/3
1697 reflections(Δ/σ)max = 0.001
165 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C4H6N3O+·C4H5O4V = 1931.5 (5) Å3
Mr = 229.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 15.666 (3) ŵ = 0.13 mm1
b = 6.6959 (9) ÅT = 294 K
c = 18.726 (3) Å0.23 × 0.17 × 0.13 mm
β = 100.480 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1607 reflections with I > 2σ(I)
8824 measured reflectionsRint = 0.021
1697 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.22 e Å3
1697 reflectionsΔρmin = 0.19 e Å3
165 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.24296 (11)0.9672 (2)0.36715 (9)0.0431 (4)
C40.27374 (8)0.6259 (2)0.40047 (7)0.0293 (3)
C50.21523 (9)0.5640 (2)0.33688 (8)0.0339 (3)
H50.20550.42930.32630.041*
C60.17464 (9)0.7058 (2)0.29278 (8)0.0348 (3)
H60.13650.66780.25100.042*
N10.18750 (8)0.9025 (2)0.30726 (7)0.0379 (3)
H1N0.1598 (14)0.997 (4)0.2797 (12)0.067 (6)*
N30.28423 (8)0.82252 (19)0.41264 (7)0.0342 (3)
H3N0.3223 (14)0.874 (4)0.4538 (12)0.067 (6)*
N70.31822 (9)0.5027 (2)0.44761 (7)0.0381 (3)
H7N0.3552 (12)0.551 (3)0.4872 (10)0.048 (5)*
H8N0.3103 (13)0.372 (4)0.4406 (11)0.062 (6)*
O80.25613 (11)1.14294 (19)0.37986 (8)0.0851 (6)
C110.43913 (9)0.8917 (2)0.56554 (7)0.0323 (3)
C120.49945 (9)1.0063 (2)0.62368 (8)0.0342 (4)
H12A0.48890.96470.67090.041*
H12B0.55890.97190.62100.041*
C130.48910 (9)1.2286 (2)0.61737 (8)0.0354 (4)
H13B0.50011.26960.57020.042*
H13A0.42931.26210.61930.042*
C140.54742 (9)1.3459 (2)0.67471 (7)0.0330 (3)
O90.39163 (7)0.98932 (16)0.51724 (6)0.0445 (3)
O100.43902 (7)0.70284 (16)0.56806 (6)0.0432 (3)
O150.59984 (7)1.26888 (18)0.72319 (6)0.0441 (3)
O160.54141 (8)1.54080 (17)0.67157 (6)0.0446 (3)
H16O0.4996 (15)1.600 (4)0.6292 (13)0.078 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0540 (9)0.0247 (8)0.0411 (9)0.0002 (6)0.0161 (7)0.0012 (6)
C40.0318 (7)0.0244 (7)0.0293 (7)0.0007 (5)0.0010 (5)0.0002 (5)
C50.0392 (8)0.0253 (7)0.0326 (7)0.0030 (6)0.0056 (6)0.0028 (6)
C60.0370 (7)0.0329 (8)0.0298 (7)0.0038 (6)0.0064 (6)0.0023 (6)
N10.0445 (7)0.0282 (7)0.0337 (7)0.0002 (5)0.0123 (5)0.0040 (5)
N30.0407 (7)0.0239 (6)0.0315 (6)0.0012 (5)0.0106 (5)0.0015 (5)
N70.0461 (7)0.0243 (7)0.0367 (7)0.0008 (5)0.0116 (6)0.0006 (5)
O80.1243 (13)0.0215 (7)0.0801 (10)0.0012 (7)0.0598 (9)0.0007 (6)
C110.0338 (7)0.0312 (8)0.0285 (7)0.0030 (6)0.0033 (6)0.0022 (6)
C120.0344 (7)0.0336 (8)0.0302 (7)0.0038 (6)0.0056 (6)0.0022 (6)
C130.0373 (7)0.0319 (8)0.0316 (7)0.0023 (6)0.0082 (6)0.0030 (6)
C140.0347 (7)0.0331 (8)0.0278 (7)0.0026 (6)0.0035 (5)0.0031 (6)
O90.0518 (7)0.0330 (6)0.0386 (6)0.0030 (5)0.0190 (5)0.0015 (5)
O100.0531 (7)0.0283 (6)0.0406 (6)0.0033 (5)0.0118 (5)0.0026 (4)
O150.0472 (6)0.0365 (7)0.0389 (6)0.0005 (5)0.0174 (5)0.0024 (5)
O160.0551 (7)0.0301 (6)0.0402 (6)0.0029 (5)0.0140 (5)0.0036 (5)
Geometric parameters (Å, º) top
C2—O81.211 (2)N7—H8N0.89 (3)
C2—N11.3586 (19)C11—O91.2468 (18)
C2—N31.372 (2)C11—O101.2653 (19)
C4—N71.3125 (19)C11—C121.5141 (19)
C4—N31.3408 (19)C12—C131.500 (2)
C4—C51.4258 (19)C12—H12A0.9700
C5—C61.341 (2)C12—H12B0.9700
C5—H50.9300C13—C141.4993 (19)
C6—N11.352 (2)C13—H13B0.9700
C6—H60.9300C13—H13A0.9700
N1—H1N0.88 (2)C14—O151.2220 (18)
N3—H3N0.95 (2)C14—O161.3089 (19)
N7—H7N0.91 (2)O16—H16O1.01 (3)
O8—C2—N1122.20 (15)H7N—N7—H8N121.4 (18)
O8—C2—N3121.34 (14)O9—C11—O10123.12 (13)
N1—C2—N3116.46 (14)O9—C11—C12117.89 (13)
N7—C4—N3118.00 (13)O10—C11—C12118.98 (12)
N7—C4—C5124.10 (13)C13—C12—C11113.71 (12)
N3—C4—C5117.90 (13)C13—C12—H12A108.8
C6—C5—C4117.97 (13)C11—C12—H12A108.8
C6—C5—H5121.0C13—C12—H12B108.8
C4—C5—H5121.0C11—C12—H12B108.8
C5—C6—N1121.99 (14)H12A—C12—H12B107.7
C5—C6—H6119.0C14—C13—C12114.88 (13)
N1—C6—H6119.0C14—C13—H13B108.5
C6—N1—C2121.72 (13)C12—C13—H13B108.5
C6—N1—H1N122.9 (15)C14—C13—H13A108.5
C2—N1—H1N115.3 (15)C12—C13—H13A108.5
C4—N3—C2123.95 (13)H13B—C13—H13A107.5
C4—N3—H3N122.4 (14)O15—C14—O16119.16 (13)
C2—N3—H3N113.6 (15)O15—C14—C13123.40 (14)
C4—N7—H7N120.2 (12)O16—C14—C13117.43 (12)
C4—N7—H8N118.4 (14)C14—O16—H16O117.3 (14)
N7—C4—C5—C6179.22 (14)O8—C2—N3—C4178.39 (18)
N3—C4—C5—C60.5 (2)N1—C2—N3—C41.1 (2)
C4—C5—C6—N10.3 (2)O9—C11—C12—C133.78 (19)
C5—C6—N1—C20.6 (2)O10—C11—C12—C13176.15 (13)
O8—C2—N1—C6178.57 (19)C11—C12—C13—C14179.41 (11)
N3—C2—N1—C60.9 (2)C12—C13—C14—O150.1 (2)
N7—C4—N3—C2178.81 (14)C12—C13—C14—O16179.66 (13)
C5—C4—N3—C20.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O15i0.88 (2)2.02 (2)2.9018 (18)175 (2)
N3—H3N···O90.95 (2)1.65 (2)2.5916 (15)172 (2)
N7—H7N···O100.91 (2)2.08 (2)2.9854 (18)171.0 (17)
N7—H8N···O8ii0.89 (3)2.00 (2)2.8122 (19)150.5 (19)
O16—H16O···O10iii1.01 (3)1.51 (3)2.5250 (16)176 (2)
C5—H5···O8ii0.932.242.970 (2)135
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x, y1, z; (iii) x, y+1, z.
(II) 4-amino-2-oxo-2,3-dihydropyrimidin-1-ium 4-nitrobenzoate 4-aminopyrimidin-2(1H)-one solvate monohydrate top
Crystal data top
C4H6N3O+·C7H4NO4·C4H5N3O·H2OZ = 2
Mr = 407.36F(000) = 424
Triclinic, P1Dx = 1.539 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7154 (14) ÅCell parameters from 7202 reflections
b = 7.4036 (16) Åθ = 2.2–28.0°
c = 19.228 (4) ŵ = 0.13 mm1
α = 85.525 (4)°T = 294 K
β = 87.576 (4)°Block, colorless
γ = 67.279 (3)°0.19 × 0.16 × 0.08 mm
V = 879.0 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2570 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 25.0°, θmin = 1.1°
ω scanh = 77
8258 measured reflectionsk = 88
3064 independent reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1347P)2 + 0.1481P]
where P = (Fo2 + 2Fc2)/3
3064 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
C4H6N3O+·C7H4NO4·C4H5N3O·H2Oγ = 67.279 (3)°
Mr = 407.36V = 879.0 (3) Å3
Triclinic, P1Z = 2
a = 6.7154 (14) ÅMo Kα radiation
b = 7.4036 (16) ŵ = 0.13 mm1
c = 19.228 (4) ÅT = 294 K
α = 85.525 (4)°0.19 × 0.16 × 0.08 mm
β = 87.576 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2570 reflections with I > 2σ(I)
8258 measured reflectionsRint = 0.044
3064 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0700 restraints
wR(F2) = 0.209H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.43 e Å3
3064 reflectionsΔρmin = 0.45 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2A0.7429 (4)0.1448 (3)0.41776 (12)0.0295 (5)
C4A0.7629 (3)0.1877 (3)0.42401 (12)0.0287 (5)
C5A0.7629 (4)0.1816 (4)0.35042 (12)0.0340 (6)
H5A0.77110.29020.32740.041*
C6A0.7508 (4)0.0155 (4)0.31490 (13)0.0352 (6)
H6A0.75020.00910.26640.042*
N1A0.7395 (3)0.1446 (3)0.34758 (11)0.0355 (5)
H1A0.721 (6)0.256 (6)0.320 (2)0.069 (10)*
N3A0.7537 (3)0.0254 (3)0.45455 (10)0.0293 (5)
H3A0.756 (5)0.024 (5)0.5046 (19)0.059 (9)*
N7A0.7693 (4)0.3395 (3)0.46420 (12)0.0369 (6)
O8A0.7359 (3)0.2871 (2)0.44812 (9)0.0411 (5)
H7A0.772 (4)0.442 (5)0.4462 (15)0.043 (8)*
H8A0.767 (4)0.333 (4)0.5152 (15)0.035 (7)*
C2B0.7662 (4)0.2006 (3)0.63813 (12)0.0276 (5)
C4B0.7400 (3)0.1223 (3)0.63833 (12)0.0280 (5)
C5B0.7524 (4)0.1080 (4)0.71189 (13)0.0349 (6)
H5B0.74990.21250.73630.042*
C6B0.7679 (4)0.0635 (4)0.74500 (13)0.0365 (6)
H6B0.77460.07840.79340.044*
N1B0.7739 (3)0.2145 (3)0.70870 (10)0.0352 (5)
H1B0.770 (6)0.317 (6)0.730 (2)0.068 (10)*
N3B0.7508 (3)0.0296 (3)0.60271 (10)0.0280 (5)
N7B0.7188 (4)0.2883 (3)0.60162 (13)0.0386 (6)
O8B0.7726 (3)0.3444 (2)0.60712 (9)0.0400 (5)
H7B0.713 (5)0.386 (5)0.6241 (17)0.057 (9)*
H8B0.714 (5)0.294 (4)0.5552 (17)0.044 (8)*
C120.8120 (4)0.6443 (4)0.90808 (13)0.0396 (6)
C130.9478 (5)0.6793 (4)0.96393 (15)0.0496 (7)
H131.07160.65170.95800.060*
C140.9056 (6)0.7532 (5)1.02753 (15)0.0584 (8)
H140.99710.77421.06490.070*
C150.7226 (5)0.7960 (4)1.03467 (14)0.0503 (8)
C160.5867 (5)0.7661 (5)0.98061 (17)0.0556 (8)
H160.46490.79660.98660.067*
C170.6309 (5)0.6902 (4)0.91697 (15)0.0504 (7)
H170.53880.66980.87980.060*
C110.8610 (5)0.5530 (4)0.83995 (14)0.0445 (7)
N180.6759 (7)0.8751 (4)1.10258 (15)0.0748 (10)
O91.0263 (4)0.5173 (4)0.83713 (12)0.0805 (8)
O100.7289 (3)0.5132 (3)0.79171 (9)0.0497 (6)
O200.5082 (7)0.9016 (5)1.10923 (16)0.1112 (12)
O190.8051 (7)0.9097 (5)1.14913 (14)0.1159 (13)
O1W0.6864 (4)0.4584 (3)0.25694 (11)0.0500 (6)
H1W0.570 (5)0.469 (4)0.2305 (17)0.049 (8)*
H2W0.771 (7)0.477 (6)0.225 (2)0.091 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2A0.0312 (12)0.0247 (12)0.0348 (13)0.0140 (10)0.0018 (9)0.0004 (9)
C4A0.0295 (12)0.0271 (12)0.0336 (12)0.0147 (9)0.0001 (9)0.0057 (9)
C5A0.0390 (13)0.0332 (13)0.0345 (13)0.0177 (11)0.0005 (10)0.0092 (10)
C6A0.0344 (13)0.0444 (15)0.0311 (12)0.0191 (11)0.0008 (10)0.0071 (11)
N1A0.0411 (12)0.0346 (12)0.0330 (11)0.0181 (10)0.0002 (9)0.0033 (9)
N3A0.0378 (11)0.0245 (11)0.0299 (11)0.0164 (8)0.0008 (8)0.0033 (8)
N7A0.0575 (14)0.0228 (11)0.0379 (13)0.0230 (10)0.0007 (10)0.0060 (9)
O8A0.0622 (12)0.0247 (9)0.0444 (10)0.0251 (8)0.0004 (8)0.0041 (7)
C2B0.0332 (12)0.0217 (11)0.0320 (12)0.0149 (9)0.0000 (9)0.0022 (9)
C4B0.0258 (11)0.0217 (11)0.0390 (13)0.0116 (9)0.0008 (9)0.0048 (9)
C5B0.0406 (14)0.0295 (13)0.0387 (13)0.0162 (11)0.0005 (10)0.0120 (10)
C6B0.0427 (14)0.0415 (15)0.0306 (12)0.0213 (11)0.0015 (10)0.0066 (10)
N1B0.0504 (13)0.0320 (12)0.0306 (11)0.0246 (10)0.0017 (9)0.0024 (9)
N3B0.0342 (11)0.0222 (10)0.0317 (10)0.0149 (8)0.0006 (8)0.0044 (8)
N7B0.0567 (14)0.0218 (11)0.0434 (14)0.0208 (10)0.0040 (10)0.0056 (9)
O8B0.0670 (12)0.0264 (9)0.0366 (10)0.0284 (9)0.0003 (8)0.0047 (7)
C120.0561 (16)0.0327 (14)0.0354 (13)0.0228 (12)0.0027 (11)0.0050 (10)
C130.0610 (18)0.0522 (17)0.0448 (16)0.0322 (15)0.0040 (13)0.0005 (13)
C140.086 (2)0.060 (2)0.0358 (15)0.0351 (18)0.0109 (14)0.0032 (13)
C150.083 (2)0.0368 (16)0.0335 (14)0.0270 (15)0.0111 (14)0.0034 (11)
C160.0612 (18)0.0519 (18)0.0613 (19)0.0322 (15)0.0085 (15)0.0035 (14)
C170.0615 (18)0.0527 (18)0.0457 (16)0.0328 (15)0.0068 (13)0.0070 (13)
C110.0612 (17)0.0425 (16)0.0379 (14)0.0296 (13)0.0013 (13)0.0001 (12)
N180.135 (3)0.0566 (18)0.0426 (17)0.0493 (19)0.0248 (18)0.0073 (13)
O90.0813 (17)0.128 (2)0.0586 (14)0.0745 (17)0.0050 (12)0.0229 (14)
O100.0778 (14)0.0474 (12)0.0380 (10)0.0404 (10)0.0100 (9)0.0068 (8)
O200.158 (3)0.125 (3)0.0767 (19)0.089 (3)0.046 (2)0.0007 (17)
O190.205 (4)0.124 (3)0.0387 (15)0.087 (3)0.0048 (19)0.0130 (15)
O1W0.0575 (13)0.0507 (13)0.0433 (11)0.0250 (10)0.0020 (10)0.0107 (9)
Geometric parameters (Å, º) top
C2A—O8A1.228 (3)C6B—H6B0.9300
C2A—N1A1.351 (3)N1B—H1B0.85 (4)
C2A—N3A1.374 (3)N7B—H7B0.86 (4)
C4A—N7A1.301 (3)N7B—H8B0.89 (3)
C4A—N3A1.357 (3)C12—C131.382 (4)
C4A—C5A1.412 (3)C12—C171.385 (4)
C5A—C6A1.335 (4)C12—C111.509 (4)
C5A—H5A0.9300C13—C141.364 (4)
C6A—N1A1.359 (3)C13—H130.9300
C6A—H6A0.9300C14—C151.382 (5)
N1A—H1A0.91 (4)C14—H140.9300
N3A—H3A0.97 (4)C15—C161.360 (4)
N7A—H7A0.85 (3)C15—N181.461 (4)
N7A—H8A0.98 (3)C16—C171.375 (4)
C2B—O8B1.246 (3)C16—H160.9300
C2B—N1B1.354 (3)C17—H170.9300
C2B—N3B1.360 (3)C11—O91.235 (4)
C4B—N7B1.329 (3)C11—O101.248 (3)
C4B—N3B1.339 (3)N18—O191.216 (5)
C4B—C5B1.414 (3)N18—O201.216 (5)
C5B—C6B1.343 (4)O1W—H1W0.92 (3)
C5B—H5B0.9300O1W—H2W0.85 (5)
C6B—N1B1.350 (3)
O8A—C2A—N1A123.2 (2)C6B—N1B—C2B121.9 (2)
O8A—C2A—N3A120.8 (2)C6B—N1B—H1B120 (2)
N1A—C2A—N3A116.0 (2)C2B—N1B—H1B118 (2)
N7A—C4A—N3A118.1 (2)C4B—N3B—C2B119.34 (19)
N7A—C4A—C5A123.7 (2)C4B—N7B—H7B118 (2)
N3A—C4A—C5A118.2 (2)C4B—N7B—H8B119.6 (19)
C6A—C5A—C4A118.1 (2)H7B—N7B—H8B123 (3)
C6A—C5A—H5A121.0C13—C12—C17118.6 (3)
C4A—C5A—H5A121.0C13—C12—C11119.6 (2)
C5A—C6A—N1A121.9 (2)C17—C12—C11121.8 (2)
C5A—C6A—H6A119.1C14—C13—C12121.9 (3)
N1A—C6A—H6A119.1C14—C13—H13119.1
C2A—N1A—C6A122.3 (2)C12—C13—H13119.1
C2A—N1A—H1A121 (2)C13—C14—C15117.9 (3)
C6A—N1A—H1A117 (2)C13—C14—H14121.0
C4A—N3A—C2A123.6 (2)C15—C14—H14121.0
C4A—N3A—H3A121 (2)C16—C15—C14121.8 (3)
C2A—N3A—H3A115 (2)C16—C15—N18119.8 (3)
C4A—N7A—H7A120 (2)C14—C15—N18118.3 (3)
C4A—N7A—H8A119.4 (16)C15—C16—C17119.5 (3)
H7A—N7A—H8A121 (3)C15—C16—H16120.3
O8B—C2B—N1B119.4 (2)C17—C16—H16120.3
O8B—C2B—N3B121.5 (2)C16—C17—C12120.2 (3)
N1B—C2B—N3B119.2 (2)C16—C17—H17119.9
N7B—C4B—N3B117.2 (2)C12—C17—H17119.9
N7B—C4B—C5B120.9 (2)O9—C11—O10124.9 (3)
N3B—C4B—C5B121.8 (2)O9—C11—C12117.0 (3)
C6B—C5B—C4B117.0 (2)O10—C11—C12118.0 (2)
C6B—C5B—H5B121.5O19—N18—O20123.8 (3)
C4B—C5B—H5B121.5O19—N18—C15118.6 (4)
C5B—C6B—N1B120.7 (2)O20—N18—C15117.6 (4)
C5B—C6B—H6B119.7H1W—O1W—H2W101 (3)
N1B—C6B—H6B119.7
N7A—C4A—C5A—C6A178.5 (2)N1B—C2B—N3B—C4B1.1 (3)
N3A—C4A—C5A—C6A0.9 (3)C17—C12—C13—C141.5 (5)
C4A—C5A—C6A—N1A0.2 (4)C11—C12—C13—C14177.0 (3)
O8A—C2A—N1A—C6A178.9 (2)C12—C13—C14—C151.0 (5)
N3A—C2A—N1A—C6A1.4 (3)C13—C14—C15—C160.1 (5)
C5A—C6A—N1A—C2A1.0 (4)C13—C14—C15—N18180.0 (3)
N7A—C4A—N3A—C2A179.0 (2)C14—C15—C16—C170.3 (5)
C5A—C4A—N3A—C2A0.5 (3)N18—C15—C16—C17179.5 (3)
O8A—C2A—N3A—C4A179.7 (2)C15—C16—C17—C120.2 (5)
N1A—C2A—N3A—C4A0.7 (3)C13—C12—C17—C161.1 (4)
N7B—C4B—C5B—C6B178.3 (2)C11—C12—C17—C16177.4 (3)
N3B—C4B—C5B—C6B2.3 (3)C13—C12—C11—O91.5 (4)
C4B—C5B—C6B—N1B0.8 (4)C17—C12—C11—O9180.0 (3)
C5B—C6B—N1B—C2B0.5 (4)C13—C12—C11—O10176.1 (3)
O8B—C2B—N1B—C6B179.9 (2)C17—C12—C11—O102.3 (4)
N3B—C2B—N1B—C6B0.3 (3)C16—C15—N18—O19176.4 (3)
N7B—C4B—N3B—C2B178.1 (2)C14—C15—N18—O193.7 (5)
C5B—C4B—N3B—C2B2.4 (3)C16—C15—N18—O204.0 (5)
O8B—C2B—N3B—C4B178.66 (19)C14—C15—N18—O20175.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1W0.91 (4)1.80 (4)2.710 (3)173 (3)
N3A—H3A···N3B0.97 (4)1.88 (4)2.846 (3)177 (3)
N7A—H7A···O8Ai0.85 (3)2.11 (3)2.900 (3)154 (3)
N7A—H8A···O8B0.98 (3)1.76 (3)2.747 (3)175 (2)
N1B—H1B···O100.85 (4)1.90 (4)2.731 (3)169 (3)
N7B—H7B···O8Bii0.86 (4)2.18 (4)2.889 (3)139 (3)
N7B—H8B···O8A0.89 (3)2.06 (3)2.949 (3)174 (3)
O1W—H1W···O10iii0.92 (3)1.97 (3)2.847 (3)159 (3)
O1W—H2W···O9iv0.85 (5)1.87 (5)2.723 (3)175 (4)
C5B—H5B···O10ii0.932.323.249 (3)176
C6A—H6A···O19v0.932.383.262 (4)159
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x, y+1, z1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC4H6N3O+·C4H5O4C4H6N3O+·C7H4NO4·C4H5N3O·H2O
Mr229.20407.36
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)294294
a, b, c (Å)15.666 (3), 6.6959 (9), 18.726 (3)6.7154 (14), 7.4036 (16), 19.228 (4)
α, β, γ (°)90, 100.480 (4), 9085.525 (4), 87.576 (4), 67.279 (3)
V3)1931.5 (5)879.0 (3)
Z82
Radiation typeMo KαMo Kα
µ (mm1)0.130.13
Crystal size (mm)0.23 × 0.17 × 0.130.19 × 0.16 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8824, 1697, 1607 8258, 3064, 2570
Rint0.0210.044
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.108, 1.10 0.070, 0.209, 1.10
No. of reflections16973064
No. of parameters165298
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.190.43, 0.45

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (I) top
C11—O91.2468 (18)C11—C121.5141 (19)
C11—O101.2653 (19)C13—C141.4993 (19)
C11—C12—C13—C14179.41 (11)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O15i0.88 (2)2.02 (2)2.9018 (18)175 (2)
N3—H3N···O90.95 (2)1.65 (2)2.5916 (15)172 (2)
N7—H7N···O100.91 (2)2.08 (2)2.9854 (18)171.0 (17)
N7—H8N···O8ii0.89 (3)2.00 (2)2.8122 (19)150.5 (19)
O16—H16O···O10iii1.01 (3)1.51 (3)2.5250 (16)176 (2)
C5—H5···O8ii0.932.242.970 (2)135
Symmetry codes: (i) x1/2, y+5/2, z1/2; (ii) x, y1, z; (iii) x, y+1, z.
Selected bond lengths (Å) for (II) top
C11—O91.235 (4)C11—O101.248 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1A—H1A···O1W0.91 (4)1.80 (4)2.710 (3)173 (3)
N3A—H3A···N3B0.97 (4)1.88 (4)2.846 (3)177 (3)
N7A—H7A···O8Ai0.85 (3)2.11 (3)2.900 (3)154 (3)
N7A—H8A···O8B0.98 (3)1.76 (3)2.747 (3)175 (2)
N1B—H1B···O100.85 (4)1.90 (4)2.731 (3)169 (3)
N7B—H7B···O8Bii0.86 (4)2.18 (4)2.889 (3)139 (3)
N7B—H8B···O8A0.89 (3)2.06 (3)2.949 (3)174 (3)
O1W—H1W···O10iii0.92 (3)1.97 (3)2.847 (3)159 (3)
O1W—H2W···O9iv0.85 (5)1.87 (5)2.723 (3)175 (4)
C5B—H5B···O10ii0.932.323.249 (3)176
C6A—H6A···O19v0.932.383.262 (4)159
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y, z+1; (iv) x+2, y, z+1; (v) x, y+1, z1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds