Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The mol­ecules of (±)-2-(4-methoxy­phen­yl)-1-phenethyl-2,3-dihydro­quinazolin-4(1H)-one, C23H22N2O2, (I), and (±)-2-(1,3-benzodioxol-5-yl)-1-phenethyl-2,3-dihydro­quinazolin-4(1H)-one, C23H20N2O3, (II), have T-shaped forms in the crystal structure. The tetrahydro­pyrimidine ring in both structures adopts a sofa conformation. Both mol­ecules are linked by N—H...O and C—H...O hydrogen bonds to form sheets built from alternating R22(8) and R44(26) [R44(24) in (II)] edge-fused rings. Additionally, the structures are stabilized by extensive C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107068850/dn3077sup1.cif
Contains datablocks I, global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107068850/dn3077Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107068850/dn3077IIsup3.hkl
Contains datablock II

CCDC references: 681561; 681562

Comment top

Quinazolinone is a naturally occurring alkaloid and is an impotrant pharmacophore which occurs frequently in medicinal chemistry (Fry et al., 1994; Liu et al., 2006); it is also considered to be a privileged structure in drug discovery (Horton et al., 2003). Structural analysis of these compounds provides an opportunity to study the biological activity and its implications for the structural requirements for binding to the receptors. Ring conformation will often play a crucial role in the structure–activity relationship of the molecule (Fossheim et al., 1982). Furthermore, the substituents on the ring make a substantial contribution to the ring conformation. In continuation of our earlier studies (Swamy & Ravikumar, 2005a,b, 2006) on the influence of substituents on the dihydropyrimidine ring (DHPM) conformation, we report here the crystal structures of the two compounds (I) and (II).

Compounds (I) and (II) posses a stereogenic centre with a relative configuration at C2(S/R). The two molecules are in a `T'-shaped form (Figs. 1 and 2), with the DHPM ring as the junction point. In the molecules of both (I) and (II), atoms C2–C5, N1 and N2 form the pyrimidine ring. The bond lengths and angles about the molecular framework common to structures (I) and (II) are similar. The bond lengths and angles within the central DHPM ring are affected by conjugation. The formal single bonds N1—C5 and N2—C3 in both compounds have partial double-bond character (Tables 1 and 3) and are all shorter than the typical Csp2—N bond distance (1.426 Å; Lorente et al., 1995). As expected, the DHPM ring adopts an envelope conformation, with a Csp3 atom (i.e. atom C2) deviating by -0.624 (3) Å [0.626 (3) Å for (II)] from the least-squres plane defined by the remaining endocyclic atoms. The Cremer & Pople (1975) puckering parameters for (I) are QT = 0.453 (3) Å, θ = 64.4 (4)° and ϕ = 69.4 (4)° [0.460 (6) Å, 64.6 (7)° and 71.2 (8)° for (II)]. The sum of the absolute values of the internal torsion angles (close to zero) of the heterocyclic ring is a measure of planarity. It has been reported by Triggle et al. (1980) that there is an apparent correlation between the pharmacological activity and the planarity of the heterocyclic ring, meaning that increased planarity of the ring correlates with higher activity of the compound. Furthermore, it has been observed by Swamy & Ravikumar (2005a,b), that the substituent at the C2-position in the DHPM ring plays a crucial role on the ring conformation. A correlation has been observed between the bulkiness of the substituent and the DHPM ring conformation (Table 5). In Fig. 3, the molecular weight of the substituent (at the C2-position) is plotted versus θaverage (the average of the C2—N2—C3—C4 and C2—N1—C5—C4 angles) for several quinazolinones obtained from the literature. One can see that there is a near linear correlation between θaverage and the molecular weight of the substituent at the C2-position. The C5—O2 bond distance of 1.234 (3) Å in compounds (I) and (II) is consistent with but slightly longer than the normal CO distance (1.20 Å) due to the effect of substantial conjugation involving atom O2 (Tiekink, 1989). The sum of the bond angles around atoms N1 and N2 [352.3 (1) and 350.7 (2)° in (I), and 356.6 (11) and 351.5 (2)° in (II)] indicates a pyramidal configuration. In both compounds, the phenethyl group has a fully extended conformation with respect to the central pyrimidine ring (Tables 1 and 3). In (I), with respect to the C12—C13 bond, the cis orientation of the C24—O1 bond about the O1—C13 bond [C24—O1—C13—C12 = -1.6 (4)°] results in repulsion between the H atoms attached to atoms C12 and C24, thereby causing the widening of the C12—C13—O1 angle and the narrowing of C14—C13—O1 from 120° (Table 1). Similar observations have been reported in the literature (Mukherjee et al., 2000, 2001).

The methoxyphenyl group of (I) is positioned equatorially at atom C2 of the pyrimidine ring, as defined by the average of the torsion angles C10—C2—N2—C3 and C10—C2—N1—C5 [172.5 (2)°]. Similarly, in (II), the benzodioxol group is also oriented equatorially [the average torsion angle for (II) is 173.4 (3)°] at C2.

In both structures, atom N1 of the pyrimidine ring acts as a hydrogen-bond donor to the quinazolinone atom O2 (Tables 2 and 4), so forming symmetric dimers of R22(8) type (Bernstein et al., 1995) along the c axis [the a axis in (II); Figs. 4 and 5]. These dimers are further connected into a continuous ladder-like chain of C10 type along the c axis. The combination of these two then generates a supramolecular two-dimensional network that consists of R22(26)-type [R22(24) in (II)] rings. The aromatic ring of the quinazolinone unit in (I) is involved in a C—H···π interaction (Table 2) with atom C24 of the methoxy group. In (II), the supramolecular network is further strengthened by weak ππ [the ring-centroid separation is 3.873 (4) Å] and extensive C—H···π interactions (Table 4).

In summary, substitution at the C2-position in the DHPM ring plays an important role in determining the ring conformation; increasing the bulkiness of the substituent group at C2 leads to more distortion in the DHPM ring, which in turn affects the ring conformation. Interestingly, the DHPM ring adopts an envelope conformation if the substituent at C2 is more bulky. Otherwise, if the substituent is compact (e.g. O, S, etc.), the ring aquires a half-chair or boat conformation (Chandra Mohan et al., 2003).

Related literature top

For related literature, see: Bernstein et al. (1995); Chandra Mohan, Ravikumar, Shetty & Velmurugan (2003); Cremer & Pople (1975); Fossheim et al. (1982); Fry et al. (1994); Horton et al. (2003); Liu et al. (2006); Lorente et al. (1995); Mukherjee et al. (2000, 2001); Sadanandam et al. (1987); Swamy & Ravikumar (2005a, 2005b, 2006); Tiekink (1989); Triggle et al. (1980).

Experimental top

Compounds (I) and (II) were prepared according to a literature procedure (Sadanandam et al., 1987) and were recrystalized from methanol.

Refinement top

H atoms attached to N atoms were located in a difference density map and refined isotropically. All other H atoms were placed in geometrycally idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.98 Å, and with Uiso(H)=1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other H atoms.

Computing details top

For both compounds, data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The asymmetric unit of (II), showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The correlation of the DHPM ring distortion with the bulkiness of the substituent group at the C2-position in the ring. The slope, intercept and correlation coefficient obtained by linear regression are 0.198, -1.40 and 0.92, respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (I), highlighting the formation of centrosymmetric dimers through R22 (8) and R44 (26) e dge-fused rings along the c axis. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs have been omitted.
[Figure 5] Fig. 5. Part of the crystal structure of (II), highlighting the formation of centrosymmetric dimers through R22 (8) and R44 (24) e dge-fused rings along the c axis. Dashed lines indicate hydrogen bonds. For the sake of clarity, H atoms not involved in the motifs have been omitted.
(I) (±)-2-(4-methoxyphenyl)-1-phenethyl-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C23H22N2O2Z = 2
Mr = 358.43F(000) = 380
Triclinic, P1Dx = 1.261 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7224 (15) ÅCell parameters from 2135 reflections
b = 10.326 (2) Åθ = 3.0–26.3°
c = 14.694 (3) ŵ = 0.08 mm1
α = 109.331 (4)°T = 293 K
β = 100.233 (4)°Needles, colourless
γ = 90.803 (4)°0.22 × 0.17 × 0.15 mm
V = 944.3 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2172 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.032
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
ω scansh = 77
6526 measured reflectionsk = 1212
3281 independent reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1048P)2 + 0.0862P]
where P = (Fo2 + 2Fc2)/3
3281 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H22N2O2γ = 90.803 (4)°
Mr = 358.43V = 944.3 (3) Å3
Triclinic, P1Z = 2
a = 6.7224 (15) ÅMo Kα radiation
b = 10.326 (2) ŵ = 0.08 mm1
c = 14.694 (3) ÅT = 293 K
α = 109.331 (4)°0.22 × 0.17 × 0.15 mm
β = 100.233 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2172 reflections with I > 2σ(I)
6526 measured reflectionsRint = 0.032
3281 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.190H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.29 e Å3
3281 reflectionsΔρmin = 0.19 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.6401 (3)0.7090 (3)0.22861 (16)0.0471 (6)
C90.5822 (4)0.5897 (3)0.14510 (18)0.0607 (7)
H90.48060.59230.09390.073*
C80.6736 (5)0.4706 (3)0.1386 (2)0.0673 (8)
H80.63150.39340.08300.081*
C70.8257 (5)0.4609 (3)0.2116 (2)0.0668 (8)
H70.88530.37860.20600.080*
C60.8875 (4)0.5768 (3)0.2933 (2)0.0603 (7)
H60.98990.57220.34350.072*
C40.7999 (3)0.6994 (2)0.30189 (17)0.0471 (6)
C50.8865 (4)0.8247 (3)0.38437 (17)0.0455 (6)
C20.5670 (4)0.9219 (3)0.34314 (17)0.0488 (6)
H20.48470.87700.37460.059*
C100.4953 (4)1.0622 (2)0.35316 (17)0.0471 (6)
C110.6035 (4)1.1584 (3)0.3306 (2)0.0582 (7)
H110.72291.13500.30760.070*
C120.5398 (4)1.2879 (3)0.3413 (2)0.0606 (7)
H120.61491.35070.32530.073*
C130.3628 (4)1.3234 (3)0.37595 (19)0.0531 (7)
C140.2530 (4)1.2271 (3)0.39750 (19)0.0590 (7)
H140.13261.24940.41970.071*
C150.3190 (4)1.1000 (3)0.38660 (18)0.0532 (7)
H150.24301.03710.40210.064*
C160.3829 (3)0.8424 (3)0.16797 (17)0.0526 (7)
H16A0.41080.79560.10300.063*
H16B0.37180.93870.17510.063*
C170.1780 (4)0.7821 (3)0.1740 (2)0.0608 (7)
H17A0.18270.68400.16170.073*
H17B0.15000.82500.23950.073*
C180.0121 (4)0.8067 (3)0.09942 (19)0.0558 (7)
C190.0737 (5)0.9296 (4)0.1175 (3)0.0862 (10)
H190.03350.99770.17870.103*
C200.2176 (6)0.9556 (5)0.0480 (4)0.1082 (13)
H200.27431.04000.06240.130*
C210.2768 (5)0.8570 (6)0.0423 (4)0.1016 (13)
H210.37300.87410.09000.122*
C220.1950 (5)0.7345 (5)0.0621 (2)0.0909 (11)
H220.23610.66700.12340.109*
C230.0509 (4)0.7087 (3)0.0078 (2)0.0705 (8)
H230.00460.62390.00710.085*
C240.4088 (5)1.5535 (3)0.3750 (3)0.0771 (9)
H24A0.54241.56680.41450.116*
H24B0.34451.63850.39210.116*
H24C0.41801.52450.30680.116*
N20.5545 (3)0.8327 (2)0.24043 (13)0.0472 (5)
N10.7792 (3)0.9342 (2)0.39205 (16)0.0495 (6)
O21.0521 (3)0.82989 (18)0.43813 (13)0.0608 (5)
O10.2907 (3)1.4496 (2)0.39241 (16)0.0740 (6)
H1N0.811 (4)1.004 (3)0.437 (2)0.057 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0442 (13)0.0537 (15)0.0388 (13)0.0104 (11)0.0054 (11)0.0115 (11)
C90.0639 (17)0.0640 (19)0.0409 (14)0.0093 (14)0.0017 (12)0.0053 (13)
C80.0723 (19)0.0572 (18)0.0552 (17)0.0106 (15)0.0129 (15)0.0032 (14)
C70.0670 (18)0.0509 (17)0.075 (2)0.0005 (13)0.0158 (16)0.0101 (14)
C60.0522 (15)0.0568 (17)0.0658 (18)0.0040 (13)0.0046 (13)0.0165 (14)
C40.0430 (13)0.0471 (15)0.0474 (14)0.0082 (11)0.0056 (11)0.0128 (11)
C50.0414 (13)0.0478 (15)0.0431 (14)0.0087 (11)0.0005 (11)0.0149 (11)
C20.0465 (14)0.0550 (16)0.0408 (13)0.0100 (11)0.0016 (11)0.0147 (11)
C100.0434 (14)0.0506 (15)0.0411 (13)0.0076 (11)0.0045 (11)0.0144 (11)
C110.0434 (14)0.0659 (18)0.0659 (17)0.0009 (13)0.0157 (12)0.0205 (14)
C120.0585 (17)0.0589 (18)0.0694 (18)0.0070 (13)0.0139 (14)0.0281 (14)
C130.0459 (15)0.0534 (16)0.0581 (16)0.0047 (12)0.0009 (12)0.0210 (13)
C140.0443 (14)0.0666 (19)0.0617 (17)0.0021 (13)0.0126 (12)0.0152 (14)
C150.0516 (15)0.0552 (17)0.0504 (15)0.0128 (12)0.0046 (12)0.0182 (12)
C160.0476 (14)0.0669 (17)0.0392 (13)0.0109 (12)0.0029 (11)0.0191 (12)
C170.0507 (15)0.0780 (19)0.0507 (15)0.0147 (13)0.0005 (12)0.0238 (13)
C180.0389 (13)0.0719 (19)0.0534 (16)0.0091 (13)0.0054 (12)0.0191 (14)
C190.0595 (19)0.093 (3)0.090 (2)0.0107 (18)0.0126 (18)0.010 (2)
C200.063 (2)0.117 (3)0.153 (4)0.026 (2)0.020 (3)0.058 (3)
C210.0457 (19)0.160 (4)0.113 (3)0.001 (2)0.006 (2)0.075 (3)
C220.058 (2)0.133 (3)0.066 (2)0.021 (2)0.0151 (17)0.028 (2)
C230.0527 (16)0.079 (2)0.0646 (18)0.0123 (14)0.0085 (14)0.0155 (15)
C240.075 (2)0.0611 (19)0.093 (2)0.0070 (15)0.0100 (17)0.0263 (16)
N20.0452 (11)0.0542 (13)0.0349 (11)0.0064 (9)0.0037 (9)0.0118 (9)
N10.0474 (12)0.0457 (13)0.0419 (12)0.0068 (10)0.0091 (9)0.0065 (10)
O20.0468 (10)0.0582 (12)0.0611 (11)0.0057 (8)0.0139 (9)0.0114 (9)
O10.0629 (12)0.0635 (13)0.1001 (16)0.0077 (10)0.0174 (11)0.0327 (11)
Geometric parameters (Å, º) top
C3—N21.379 (3)C14—C151.358 (3)
C3—C41.409 (3)C14—H140.9300
C3—C91.411 (3)C15—H150.9300
C9—C81.365 (4)C16—N21.453 (3)
C9—H90.9300C16—C171.532 (3)
C8—C71.374 (4)C16—H16A0.9700
C8—H80.9300C16—H16B0.9700
C7—C61.380 (4)C17—C181.506 (4)
C7—H70.9300C17—H17A0.9700
C6—C41.381 (3)C17—H17B0.9700
C6—H60.9300C18—C191.366 (4)
C4—C51.474 (3)C18—C231.378 (4)
C5—O21.234 (3)C19—C201.375 (5)
C5—N11.333 (3)C19—H190.9300
C2—N11.462 (3)C20—C211.365 (6)
C2—N21.472 (3)C20—H200.9300
C2—C101.502 (3)C21—C221.348 (5)
C2—H20.9800C21—H210.9300
C10—C151.375 (4)C22—C231.377 (4)
C10—C111.381 (3)C22—H220.9300
C11—C121.378 (4)C23—H230.9300
C11—H110.9300C24—O11.441 (3)
C12—C131.383 (4)C24—H24A0.9600
C12—H120.9300C24—H24B0.9600
C13—O11.358 (3)C24—H24C0.9600
C13—C141.380 (4)N1—H1N0.79 (3)
N2—C3—C4119.3 (2)C10—C15—H15119.2
N2—C3—C9124.0 (2)N2—C16—C17115.5 (2)
C4—C3—C9116.7 (2)N2—C16—H16A108.4
C8—C9—C3120.7 (3)C17—C16—H16A108.4
C8—C9—H9119.6N2—C16—H16B108.4
C3—C9—H9119.6C17—C16—H16B108.4
C9—C8—C7122.3 (2)H16A—C16—H16B107.5
C9—C8—H8118.9C18—C17—C16110.1 (2)
C7—C8—H8118.9C18—C17—H17A109.6
C8—C7—C6118.1 (3)C16—C17—H17A109.6
C8—C7—H7120.9C18—C17—H17B109.6
C6—C7—H7120.9C16—C17—H17B109.6
C7—C6—C4121.2 (3)H17A—C17—H17B108.2
C7—C6—H6119.4C19—C18—C23117.2 (3)
C4—C6—H6119.4C19—C18—C17121.5 (3)
C6—C4—C3120.9 (2)C23—C18—C17121.2 (3)
C6—C4—C5119.4 (2)C18—C19—C20121.9 (3)
C3—C4—C5119.4 (2)C18—C19—H19119.0
O2—C5—N1122.7 (2)C20—C19—H19119.0
O2—C5—C4122.3 (2)C21—C20—C19119.6 (4)
N1—C5—C4114.8 (2)C21—C20—H20120.2
N1—C2—N2106.9 (2)C19—C20—H20120.2
N1—C2—C10110.06 (19)C22—C21—C20119.7 (4)
N2—C2—C10113.43 (19)C22—C21—H21120.2
N1—C2—H2108.8C20—C21—H21120.2
N2—C2—H2108.8C21—C22—C23120.6 (3)
C10—C2—H2108.8C21—C22—H22119.7
C15—C10—C11117.5 (2)C23—C22—H22119.7
C15—C10—C2120.7 (2)C22—C23—C18121.0 (3)
C11—C10—C2121.8 (2)C22—C23—H23119.5
C12—C11—C10121.9 (2)C18—C23—H23119.5
C12—C11—H11119.0O1—C24—H24A109.5
C10—C11—H11119.0O1—C24—H24B109.5
C11—C12—C13119.2 (2)H24A—C24—H24B109.5
C11—C12—H12120.4O1—C24—H24C109.5
C13—C12—H12120.4H24A—C24—H24C109.5
O1—C13—C14117.1 (2)H24B—C24—H24C109.5
O1—C13—C12123.9 (2)C3—N2—C16119.91 (19)
C14—C13—C12119.0 (2)C3—N2—C2114.97 (18)
C15—C14—C13120.7 (2)C16—N2—C2117.8 (2)
C15—C14—H14119.6C5—N1—C2122.1 (2)
C13—C14—H14119.6C5—N1—H1N121 (2)
C14—C15—C10121.6 (2)C2—N1—H1N114 (2)
C14—C15—H15119.2C13—O1—C24117.9 (2)
N2—C3—C9—C8179.8 (2)C2—C10—C15—C14179.0 (2)
C4—C3—C9—C82.2 (4)N2—C16—C17—C18176.5 (2)
C3—C9—C8—C70.6 (4)C16—C17—C18—C1981.9 (3)
C9—C8—C7—C60.5 (4)C16—C17—C18—C2394.2 (3)
C8—C7—C6—C40.2 (4)C23—C18—C19—C200.2 (5)
C7—C6—C4—C31.9 (4)C17—C18—C19—C20176.5 (3)
C7—C6—C4—C5172.6 (2)C18—C19—C20—C210.5 (6)
N2—C3—C4—C6179.1 (2)C19—C20—C21—C220.6 (6)
C9—C3—C4—C62.9 (3)C20—C21—C22—C230.6 (5)
N2—C3—C4—C56.3 (3)C21—C22—C23—C180.4 (5)
C9—C3—C4—C5171.7 (2)C19—C18—C23—C220.2 (4)
C6—C4—C5—O211.1 (3)C17—C18—C23—C22176.4 (3)
C3—C4—C5—O2163.6 (2)C4—C3—N2—C16176.9 (2)
C6—C4—C5—N1173.3 (2)C9—C3—N2—C165.2 (3)
C3—C4—C5—N112.0 (3)C4—C3—N2—C227.4 (3)
N1—C2—C10—C15129.3 (2)C9—C3—N2—C2154.7 (2)
N2—C2—C10—C15111.0 (2)C17—C16—N2—C377.0 (3)
N1—C2—C10—C1149.9 (3)C17—C16—N2—C271.6 (3)
N2—C2—C10—C1169.9 (3)N1—C2—N2—C351.5 (2)
C15—C10—C11—C120.3 (4)C10—C2—N2—C3173.01 (18)
C2—C10—C11—C12178.9 (2)N1—C2—N2—C16158.36 (19)
C10—C11—C12—C130.3 (4)C10—C2—N2—C1636.8 (3)
C11—C12—C13—O1177.5 (2)O2—C5—N1—C2166.9 (2)
C11—C12—C13—C141.0 (4)C4—C5—N1—C217.6 (3)
O1—C13—C14—C15177.5 (2)N2—C2—N1—C548.4 (3)
C12—C13—C14—C151.1 (4)C10—C2—N1—C5172.0 (2)
C13—C14—C15—C100.5 (4)C14—C13—O1—C24176.9 (2)
C11—C10—C15—C140.2 (3)C12—C13—O1—C241.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.79 (3)2.11 (3)2.888 (3)169 (3)
C6—H6···O1ii0.932.523.340 (4)147
C24—H24C···Cg1iii0.962.833.513129
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y1, z; (iii) x, y+1, z.
(II) (±)-2-(1,3-benzodioxol-5-yl))-1-phenethyl-2,3-dihydroquinazolin-4(1H)-one top
Crystal data top
C23H20N2O3F(000) = 1568
Mr = 372.41Dx = 1.286 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2ycCell parameters from 3399 reflections
a = 29.840 (5) Åθ = 2.9–21.2°
b = 6.6467 (10) ŵ = 0.09 mm1
c = 20.587 (3) ÅT = 293 K
β = 109.529 (2)°Prism, colourless
V = 3848.2 (10) Å30.22 × 0.18 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2799 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.0°, θmin = 1.5°
ω scansh = 3535
17515 measured reflectionsk = 77
3385 independent reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.28 w = 1/[σ2(Fo2) + (0.0691P)2 + 3.2484P]
where P = (Fo2 + 2Fc2)/3
3385 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C23H20N2O3V = 3848.2 (10) Å3
Mr = 372.41Z = 8
Monoclinic, C2/cMo Kα radiation
a = 29.840 (5) ŵ = 0.09 mm1
b = 6.6467 (10) ÅT = 293 K
c = 20.587 (3) Å0.22 × 0.18 × 0.16 mm
β = 109.529 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2799 reflections with I > 2σ(I)
17515 measured reflectionsRint = 0.046
3385 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0870 restraints
wR(F2) = 0.194H atoms treated by a mixture of independent and constrained refinement
S = 1.28Δρmax = 0.25 e Å3
3385 reflectionsΔρmin = 0.15 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.92222 (10)0.1328 (5)0.95648 (14)0.0489 (7)
H20.93530.03790.99460.059*
C30.86386 (10)0.2605 (5)1.00245 (15)0.0475 (7)
C40.89882 (10)0.3902 (5)1.04433 (14)0.0480 (7)
C50.94058 (10)0.4406 (5)1.02503 (14)0.0449 (7)
C60.89215 (12)0.4860 (5)1.10022 (17)0.0614 (9)
H60.91600.56911.12800.074*
C70.85109 (13)0.4605 (6)1.1154 (2)0.0731 (10)
H70.84700.52451.15320.088*
C80.81613 (13)0.3376 (6)1.0734 (2)0.0753 (11)
H80.78800.32031.08290.090*
C90.82181 (11)0.2399 (6)1.01775 (18)0.0640 (9)
H90.79740.15940.99000.077*
C100.93007 (10)0.0484 (5)0.89291 (14)0.0471 (7)
C110.91799 (11)0.1644 (5)0.83271 (16)0.0543 (8)
H110.90580.29390.83090.065*
C120.92496 (11)0.0776 (5)0.77686 (15)0.0553 (8)
C130.94326 (11)0.1127 (5)0.77858 (16)0.0569 (8)
C140.95551 (12)0.2262 (5)0.83675 (19)0.0668 (10)
H140.96810.35470.83810.080*
C150.94830 (11)0.1415 (5)0.89411 (17)0.0566 (8)
H150.95610.21590.93460.068*
C160.83723 (10)0.0217 (5)0.90627 (15)0.0523 (8)
H16A0.84280.00240.86290.063*
H16B0.80570.07890.89580.063*
C170.83770 (12)0.1848 (5)0.93947 (18)0.0637 (9)
H17A0.86840.24800.94810.076*
H17B0.83260.16880.98330.076*
C180.79945 (12)0.3156 (5)0.89282 (17)0.0554 (8)
C190.80755 (18)0.4376 (6)0.8443 (2)0.0854 (12)
H190.83800.44550.84140.102*
C230.75382 (13)0.3090 (6)0.8948 (2)0.0733 (10)
H230.74730.22740.92720.088*
C220.71790 (17)0.4187 (8)0.8505 (3)0.1015 (15)
H220.68740.41050.85310.122*
C210.7262 (3)0.5380 (8)0.8035 (3)0.116 (2)
H210.70140.61270.77380.139*
C200.7705 (3)0.5515 (7)0.7986 (2)0.1135 (19)
H200.77620.63420.76580.136*
C240.92890 (16)0.0084 (7)0.67328 (19)0.0872 (13)
H24A0.95300.06030.65580.105*
H24B0.90140.03020.63430.105*
N10.94653 (9)0.3247 (4)0.97546 (12)0.0492 (7)
N20.87174 (8)0.1671 (4)0.94720 (12)0.0487 (6)
O10.91591 (11)0.1580 (4)0.71250 (12)0.0875 (9)
O20.96678 (7)0.5842 (3)1.05047 (11)0.0600 (6)
O30.94671 (10)0.1605 (4)0.71592 (13)0.0846 (8)
H1N0.9722 (11)0.342 (4)0.9645 (15)0.049 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0455 (17)0.0562 (18)0.0412 (16)0.0062 (14)0.0095 (13)0.0099 (14)
C30.0415 (16)0.0542 (18)0.0447 (16)0.0010 (14)0.0114 (13)0.0122 (14)
C40.0476 (17)0.0530 (18)0.0428 (16)0.0001 (14)0.0144 (13)0.0109 (14)
C50.0405 (15)0.0529 (18)0.0373 (15)0.0075 (14)0.0076 (12)0.0083 (14)
C60.061 (2)0.068 (2)0.057 (2)0.0069 (17)0.0223 (17)0.0005 (17)
C70.074 (2)0.086 (3)0.071 (2)0.002 (2)0.040 (2)0.004 (2)
C80.057 (2)0.092 (3)0.087 (3)0.002 (2)0.038 (2)0.009 (2)
C90.0435 (18)0.078 (2)0.070 (2)0.0069 (17)0.0178 (16)0.0047 (19)
C100.0420 (16)0.0526 (18)0.0424 (16)0.0075 (14)0.0083 (13)0.0043 (14)
C110.0600 (19)0.0479 (18)0.0541 (19)0.0065 (15)0.0178 (15)0.0037 (15)
C120.0565 (19)0.062 (2)0.0451 (17)0.0026 (16)0.0142 (15)0.0026 (16)
C130.0515 (18)0.062 (2)0.0525 (19)0.0035 (16)0.0112 (15)0.0059 (17)
C140.064 (2)0.055 (2)0.078 (3)0.0130 (17)0.0198 (19)0.0050 (19)
C150.0490 (18)0.060 (2)0.0568 (19)0.0029 (15)0.0120 (15)0.0123 (16)
C160.0427 (16)0.0555 (19)0.0499 (18)0.0071 (14)0.0038 (13)0.0066 (15)
C170.0533 (19)0.063 (2)0.066 (2)0.0085 (16)0.0089 (16)0.0135 (17)
C180.062 (2)0.0446 (18)0.0584 (19)0.0044 (15)0.0180 (16)0.0095 (15)
C190.112 (3)0.060 (2)0.092 (3)0.019 (2)0.045 (3)0.011 (2)
C230.068 (2)0.070 (2)0.083 (3)0.020 (2)0.028 (2)0.002 (2)
C220.083 (3)0.089 (3)0.117 (4)0.038 (3)0.013 (3)0.010 (3)
C210.158 (6)0.066 (3)0.090 (4)0.040 (4)0.004 (4)0.006 (3)
C200.203 (6)0.055 (3)0.079 (3)0.002 (4)0.041 (4)0.010 (2)
C240.096 (3)0.112 (4)0.053 (2)0.022 (3)0.024 (2)0.007 (2)
N10.0402 (14)0.0657 (17)0.0424 (14)0.0120 (13)0.0148 (11)0.0009 (12)
N20.0355 (13)0.0586 (16)0.0473 (14)0.0075 (11)0.0076 (11)0.0032 (12)
O10.122 (2)0.094 (2)0.0490 (14)0.0310 (17)0.0326 (14)0.0138 (13)
O20.0564 (13)0.0695 (15)0.0562 (13)0.0239 (12)0.0217 (10)0.0103 (11)
O30.0932 (19)0.094 (2)0.0618 (16)0.0212 (16)0.0201 (14)0.0154 (15)
Geometric parameters (Å, º) top
C2—N11.455 (4)C14—C151.389 (5)
C2—N21.471 (4)C14—H140.9300
C2—C101.512 (4)C15—H150.9300
C2—H20.9800C16—N21.458 (4)
C3—N21.383 (4)C16—C171.531 (4)
C3—C91.398 (4)C16—H16A0.9700
C3—C41.405 (4)C16—H16B0.9700
C4—C61.386 (4)C17—C181.499 (4)
C4—C51.468 (4)C17—H17A0.9700
C5—O21.234 (3)C17—H17B0.9700
C5—N11.337 (4)C18—C191.370 (5)
C6—C71.372 (5)C18—C231.377 (5)
C6—H60.9300C19—C201.408 (7)
C7—C81.379 (5)C19—H190.9300
C7—H70.9300C23—C221.363 (5)
C8—C91.375 (5)C23—H230.9300
C8—H80.9300C22—C211.336 (7)
C9—H90.9300C22—H220.9300
C10—C151.372 (4)C21—C201.362 (8)
C10—C111.400 (4)C21—H210.9300
C11—C121.363 (4)C20—H200.9300
C11—H110.9300C24—O11.414 (4)
C12—O11.369 (4)C24—O31.415 (5)
C12—C131.374 (5)C24—H24A0.9700
C13—C141.358 (5)C24—H24B0.9700
C13—O31.365 (4)N1—H1N0.88 (3)
N1—C2—N2107.2 (2)N2—C16—C17115.9 (2)
N1—C2—C10110.5 (2)N2—C16—H16A108.3
N2—C2—C10113.1 (2)C17—C16—H16A108.3
N1—C2—H2108.6N2—C16—H16B108.3
N2—C2—H2108.6C17—C16—H16B108.3
C10—C2—H2108.6H16A—C16—H16B107.4
N2—C3—C9123.6 (3)C18—C17—C16110.0 (3)
N2—C3—C4119.0 (3)C18—C17—H17A109.7
C9—C3—C4117.4 (3)C16—C17—H17A109.7
C6—C4—C3120.5 (3)C18—C17—H17B109.7
C6—C4—C5119.4 (3)C16—C17—H17B109.7
C3—C4—C5119.8 (3)H17A—C17—H17B108.2
O2—C5—N1122.9 (3)C19—C18—C23117.2 (4)
O2—C5—C4122.4 (3)C19—C18—C17121.9 (4)
N1—C5—C4114.6 (3)C23—C18—C17120.7 (3)
C7—C6—C4121.3 (3)C18—C19—C20121.0 (5)
C7—C6—H6119.4C18—C19—H19119.5
C4—C6—H6119.4C20—C19—H19119.5
C6—C7—C8118.4 (3)C22—C23—C18121.9 (4)
C6—C7—H7120.8C22—C23—H23119.1
C8—C7—H7120.8C18—C23—H23119.1
C9—C8—C7121.6 (3)C21—C22—C23120.5 (5)
C9—C8—H8119.2C21—C22—H22119.8
C7—C8—H8119.2C23—C22—H22119.8
C8—C9—C3120.7 (3)C22—C21—C20120.8 (5)
C8—C9—H9119.6C22—C21—H21119.6
C3—C9—H9119.6C20—C21—H21119.6
C15—C10—C11120.4 (3)C21—C20—C19118.7 (5)
C15—C10—C2120.1 (3)C21—C20—H20120.7
C11—C10—C2119.6 (3)C19—C20—H20120.7
C12—C11—C10116.5 (3)O1—C24—O3108.8 (3)
C12—C11—H11121.7O1—C24—H24A109.9
C10—C11—H11121.7O3—C24—H24A109.9
C11—C12—O1127.9 (3)O1—C24—H24B109.9
C11—C12—C13122.6 (3)O3—C24—H24B109.9
O1—C12—C13109.4 (3)H24A—C24—H24B108.3
C14—C13—O3128.4 (3)C5—N1—C2121.9 (3)
C14—C13—C12121.5 (3)C5—N1—H1N118 (2)
O3—C13—C12110.2 (3)C2—N1—H1N117 (2)
C13—C14—C15116.9 (3)C3—N2—C16119.4 (2)
C13—C14—H14121.6C3—N2—C2114.3 (2)
C15—C14—H14121.6C16—N2—C2117.8 (2)
C10—C15—C14122.1 (3)C12—O1—C24106.0 (3)
C10—C15—H15119.0C13—O3—C24105.7 (3)
C14—C15—H15119.0
N2—C3—C4—C6179.9 (3)N2—C16—C17—C18178.1 (3)
C9—C3—C4—C62.8 (4)C16—C17—C18—C1990.1 (4)
N2—C3—C4—C56.2 (4)C16—C17—C18—C2386.3 (4)
C9—C3—C4—C5171.2 (3)C23—C18—C19—C200.1 (5)
C6—C4—C5—O210.1 (4)C17—C18—C19—C20176.7 (3)
C3—C4—C5—O2163.9 (3)C19—C18—C23—C220.0 (5)
C6—C4—C5—N1173.0 (3)C17—C18—C23—C22176.6 (3)
C3—C4—C5—N113.0 (4)C18—C23—C22—C210.3 (7)
C3—C4—C6—C71.4 (5)C23—C22—C21—C200.4 (8)
C5—C4—C6—C7172.6 (3)C22—C21—C20—C190.2 (8)
C4—C6—C7—C80.4 (5)C18—C19—C20—C210.0 (7)
C6—C7—C8—C90.7 (6)O2—C5—N1—C2166.6 (3)
C7—C8—C9—C30.8 (6)C4—C5—N1—C216.5 (4)
N2—C3—C9—C8179.7 (3)N2—C2—N1—C548.4 (3)
C4—C3—C9—C82.5 (5)C10—C2—N1—C5172.1 (3)
N1—C2—C10—C15125.2 (3)C9—C3—N2—C167.0 (4)
N2—C2—C10—C15114.6 (3)C4—C3—N2—C16175.8 (2)
N1—C2—C10—C1155.7 (3)C9—C3—N2—C2154.4 (3)
N2—C2—C10—C1164.5 (3)C4—C3—N2—C228.4 (4)
C15—C10—C11—C120.6 (4)C17—C16—N2—C375.1 (4)
C2—C10—C11—C12178.5 (3)C17—C16—N2—C271.1 (4)
C10—C11—C12—O1179.7 (3)N1—C2—N2—C352.6 (3)
C10—C11—C12—C130.6 (5)C10—C2—N2—C3174.6 (2)
C11—C12—C13—C140.1 (5)N1—C2—N2—C16159.5 (2)
O1—C12—C13—C14179.8 (3)C10—C2—N2—C1637.4 (3)
C11—C12—C13—O3179.5 (3)C11—C12—O1—C24179.7 (4)
O1—C12—C13—O30.2 (4)C13—C12—O1—C240.6 (4)
O3—C13—C14—C15180.0 (3)O3—C24—O1—C121.2 (4)
C12—C13—C14—C150.5 (5)C14—C13—O3—C24179.5 (4)
C11—C10—C15—C140.0 (5)C12—C13—O3—C240.9 (4)
C2—C10—C15—C14179.1 (3)O1—C24—O3—C131.3 (4)
C13—C14—C15—C100.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (3)2.01 (3)2.875 (3)171 (3)
C6—H6···O1ii0.932.513.217 (4)133
C20—H20···Cg1iii0.932.963.783148
C24—H24A···Cg2iv0.972.773.580142
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z+1/2; (iii) x, y, z1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H22N2O2C23H20N2O3
Mr358.43372.41
Crystal system, space groupTriclinic, P1Monoclinic, C2/c
Temperature (K)293293
a, b, c (Å)6.7224 (15), 10.326 (2), 14.694 (3)29.840 (5), 6.6467 (10), 20.587 (3)
α, β, γ (°)109.331 (4), 100.233 (4), 90.803 (4)90, 109.529 (2), 90
V3)944.3 (3)3848.2 (10)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.080.09
Crystal size (mm)0.22 × 0.17 × 0.150.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6526, 3281, 2172 17515, 3385, 2799
Rint0.0320.046
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.190, 1.05 0.087, 0.194, 1.28
No. of reflections32813385
No. of parameters249257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.190.25, 0.15

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
C3—N21.379 (3)C5—N11.333 (3)
C5—O21.234 (3)
O1—C13—C14117.1 (2)O1—C13—C12123.9 (2)
N2—C3—C4—C6179.1 (2)N1—C2—N2—C351.5 (2)
C3—C4—C5—N112.0 (3)C4—C5—N1—C217.6 (3)
N2—C16—C17—C18176.5 (2)N2—C2—N1—C548.4 (3)
C4—C3—N2—C227.4 (3)C12—C13—O1—C241.6 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.79 (3)2.11 (3)2.888 (3)169 (3)
C6—H6···O1ii0.932.523.340 (4)146.8
C24—H24C···Cg1iii0.962.833.513129
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y1, z; (iii) x, y+1, z.
Selected geometric parameters (Å, º) for (II) top
C3—N21.383 (4)C5—N11.337 (4)
C5—O21.234 (3)
C5—N1—C2121.9 (3)C3—N2—C16119.4 (2)
C5—N1—H1N118 (2)C3—N2—C2114.3 (2)
C2—N1—H1N117 (2)C16—N2—C2117.8 (2)
N2—C3—C4—C6179.9 (3)C4—C5—N1—C216.5 (4)
C3—C4—C5—N113.0 (4)N2—C2—N1—C548.4 (3)
C11—C12—C13—O3179.5 (3)C4—C3—N2—C228.4 (4)
N2—C16—C17—C18178.1 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.88 (3)2.01 (3)2.875 (3)171 (3)
C6—H6···O1ii0.932.513.217 (4)132.6
C20—H20···Cg1iii0.932.963.783148
C24—H24A···Cg2iv0.972.773.580142
Symmetry codes: (i) x+2, y+1, z+2; (ii) x, y+1, z+1/2; (iii) x, y, z1/2; (iv) x+1/2, y+1/2, z+1/2.
Table 5. Conformational analysis of the DHPM ring top
Substituent at C2Molecular weight of the substituentθav (°)
Biphenyla14423.4
Hydroxy-3-methoxyphenylb11621.8
Acetylc403.3
Dimethylaminophenyld11018.4
Methoxyphenyle9620.1
Phenyle7214.1
Nitrophenyle11822.4
Methoxyphenylf10022.5
Benzodioxolf11622.4
(a) Chruszcz et al. (2007); (b) Swamy & Ravikumar (2005a); (c) Chadwick & Easton (1983); (d) Swamy & Ravikumar (2005b); (e) Escalante et al. (2004); (f) this work.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds