Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
A new coordination polymer, catena-poly[[(dipyrido[3,2-a:2′,3′-c]phenazine-κ2N,N′)nickel(II)]-μ-2,6-dipicolinato-κ4O2,N,O6:O2′], [Ni(C7H3NO4)(C18H10N4)]n, exhibits a one-dimensional structure in which 2,6-dipicolinate acts as a bridging ligand inter­connecting adjacent nickel(II) centers to form a chain structure. The asymmetric unit contains one NiII center, one dipyrido[3,2-a:2′,3′-c]phenazine ligand and one 2,6-dipicolinate ligand. Each NiII center is six-coordinated and surrounded by three N atoms and three O atoms from one dipyrido[3,2-a:2′,3′-c]phenazine ligand and two different 2,6-dipicolinate ligands, leading to a distorted octa­hedral geometry. Adjacent chains are linked by π–π stacking inter­actions and weak inter­actions to form a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107053851/dn3067sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107053851/dn3067Isup2.hkl
Contains datablock I

CCDC reference: 672402

Comment top

In the past decade, the technology of design and synthesis of inorganic-organic coordination polymers has been developed very quickly because there has been much interest in their intriguing topologies and fascinating applications as functional materials (Moulton & Zaworotko, 2001; Eddaoudi et al., 2001; Tong et al., 2003; Zhang et al., 2004; Seo et al., 2000; Tao et al., 2000). Many networks with various structural motifs, including honeycomb, brick wall, rectangular grid, bilayer, ladder, herringbone, diamondoid and octahedral geometries, have been documented (Hayashi et al., 1991; Gable et al., 1990; Fujita et al.,1994; Kondo et al., 1997; Losier & Zaworotko, 1996; Withersby et al., 1999; Yaghi & Li, 1995; Soma et al., 1994). Recently, building blocks with heterocyclic carboxylic acids such as pyridine-, pyrazole- and imidazolecarboxylic acids have been used in the construction of coordination polymers (Tong et al., 2005; Zhao et al., 2005; Pan et al., 2001; Lu et al., 2006; Han et al., 2006). Among them, 2,6-dipicolinate is an important ligand for transition metal complexes owing to its having versatile bidentate, tridentate or bridging coordination modes, applications to diverse areas of technology, and the capacity to stabilize unusual oxidation states (Ma et al., 2003; Scapin et al., 1997; Pocker & Fong, 1980).

With the intention of studying the influences of the size of the aromatic chelate ligands on the framework structure of the [M/pydc/L] system (M is a transition metal, pydc is 2,6-dipicolinate and L is a chelating ligand), we choose the planar aromatic chelate dipyrido[3,2 - a:2',3'-c]phenazine as a second ligand (Han, Cheng & Chen, 2005), and a new coordination polymer, [Ni(pydc)(DPPZ)]n, (I) (DPPZ is dipyrido[3,2 - a:2',3'-c]phenazine) was successfully synthesized. The coordination environment of the nickel center in complex (I) is shown in Fig. 1. The six atoms around the nickel center form a distorted octahedron. The O,N,O-tridentate chelation of the pydc ligand and the bidentate chelation of the DPPZ ligand have an important effect on the distorted octahedron. Each NiII ion is six-coordinated by three N atoms and three O atoms from a chelating DPPZ ligand and two different pydc ligands (Table 1), so the Ni center is octahedral with a mer arrangement (three N and three O atoms in two perpendicular planes).

The pydc ligand adopts O,N,O-tridentate chelating and monodentate bridging coordination modes to link two adjacent NiII centers to form a one-dimensional chain, in which the 2-carboxyl group of the pydc ligand bridges two adjacent NiII centers in an antianti coordination mode, with the DPPZ ligands pointing away from the chain like wings, as shown in Fig. 2, forming a roof-like arrangement. The conformation of the chain is severely puckered, with an Ni···Ni···Ni angle between adjacent metal centres of 80.72 (7)°. The pydc ligands within the chain give a dihedral angle of 32.8 (3)° and the minimum distance observed between two adjacent pyridine rings centroids is 4.131 (2) Å (Streb et al., 2007).

The lateral DPPZ ligands from adjacent chains are paired to furnish ππ stacking interactions (Han, Cheng, Li & Chen, 2005; Han et al., 2007) and the data are listed in Table 3. ππ stacking is observed between two phenazine rings of the DPPZ ligands with perpendicular separation of 3.338 Å, a centroid-to-centroid distance of 3.510 Å and a slip angle (the angle between the centroid vector normal to the plane) of 18.38° [are s.u. values available?]. These values are typical for aromatic ππ stacking interactions (Hunter, 1994). Atom O3 of the pydc ligand also has weak interactions with a DPPZ aromatic ring [C11/C12/C19/C20/C24/C25 at (x - 1, y, z)] of an adjacent chain [the O3 atom–ring centroid distance is ca 2.662 (2) Å]. Adjacent chains are further linked via hydrogen bonds and ππ stacking interactions to construct a three-dimensional supramolecular network (Tables 2 and 3). These weak interactions enhance the stability of the complex.

In the [M/pydc/L] system, the similar complexes [Cu(pydc)(2,2'-bipyridine)] (Bresciain-Pahor et al., 1985), [Mn(pydc)(1,10-phenanthroline)] (Ma et al., 2002) and [Co(pydc)(1,10-phenanthroline)] (Yin & Jiang, 2001) have been reported before. These complexes have simple discrete structures. In this paper, the remarked feature of (I) is that the title complex has a rooflike chain. To the best of our knowledge, this type of rooflike chain has not been reported so far.

Related literature top

For related literature, see:

Bresciain-Pahor et al., (1985); Dickeson & Summers (1970); Eddaoudi et al. (2001); Fujita et al. (1994); Gable et al. (1990); Han et al. (2006, 2007); Han, Cheng & Chen (2005a); Han, Cheng, Li & Chen (2005b); Hayashi et al. (1991); Hunter (1994); Kondo et al. (1997); Losier & Zaworotko (1996); Lu et al. (2006); Ma et al. (2002); Ma et al., (2003); Moulton & Zaworotko (2001); Pan et al. (2001); Pocker & Fong (1980); Scapin et al. (1997); Seo et al. (2000); Soma et al. (1994); Streb et al. (2007); Tao et al. (2000); Tong et al. (2003, 2005); Withersby et al. (1999); Yaghi & Li (1995); Yin & Jiang, (2001); Zhang et al. (2004); Zhao et al. (2005)

Experimental top

DPPZ was prepared according to the method reported by Dickeson & Summers (1970). A mixture of Ni(NO3)2.6H2O (0.145 g, 0.5 mmol), H2pydc (0.084 g, 0.5 mmol), DPPZ (0.141 g, 0.5 mmol), NaOH (0.04 g, 1 mmol) and water (10 ml) was mixed in a 23 ml Teflon reactor and stirred for 20 min in air. It was then heated at 433 K for five days, followed by cooling to room temperature at a rate of 5 K h-1. Green block crystals of (I) were isolated.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation (C—H = 0.93 Å), with their Uiso(H) parameters set to 1.2Ueq of the parent atoms. Standard DFIX restraints (SHELXL97; Sheldrick, 1997) were used for the atoms C11 and C25 [C11—C25 = 1.395 (5) Å].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The coordination environment of the NiII center, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, -y + 1/2, z + 1/2; (ii) x, 1/2 - y, -1/2 + z.]
[Figure 2] Fig. 2. ; A partial packing view, showing the roof-like arrangement of the chains.
catena-poly[(dipyrido[3,2 - a:2',3'-c]phenazine-κ2N,N')nickel(II)]-µ-2,6-dipicolinato-κ3O2,O6:O2'] top
Crystal data top
[Ni(C7H3NO4)(C18H10N4)]F(000) = 1032
Mr = 506.11Dx = 1.690 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3623 reflections
a = 7.3482 (11) Åθ = 2.4–26.3°
b = 35.825 (4) ŵ = 1.02 mm1
c = 7.8986 (12) ÅT = 293 K
β = 106.906 (12)°Block, green
V = 1989.4 (5) Å30.37 × 0.32 × 0.26 mm
Z = 4
Data collection top
Bruker APEX area-detector
diffractometer
3504 independent reflections
Radiation source: fine-focus sealed tube2860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scanθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
'(SADABS; Sheldrick, 1996)'
h = 88
Tmin = 0.704, Tmax = 0.780k = 142
4459 measured reflectionsl = 91
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0536P)2 + 1.7276P]
where P = (Fo2 + 2Fc2)/3
3504 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.64 e Å3
2 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ni(C7H3NO4)(C18H10N4)]V = 1989.4 (5) Å3
Mr = 506.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3482 (11) ŵ = 1.02 mm1
b = 35.825 (4) ÅT = 293 K
c = 7.8986 (12) Å0.37 × 0.32 × 0.26 mm
β = 106.906 (12)°
Data collection top
Bruker APEX area-detector
diffractometer
3504 independent reflections
Absorption correction: multi-scan
'(SADABS; Sheldrick, 1996)'
2860 reflections with I > 2σ(I)
Tmin = 0.704, Tmax = 0.780Rint = 0.021
4459 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.08Δρmax = 0.64 e Å3
3504 reflectionsΔρmin = 0.60 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.82244 (5)0.185119 (10)0.64973 (5)0.02248 (15)
C10.8131 (4)0.25886 (9)0.4786 (4)0.0245 (7)
C20.6213 (4)0.24791 (9)0.4585 (4)0.0244 (7)
C30.4735 (5)0.27022 (10)0.3964 (5)0.0311 (8)
H3A0.48560.29520.36900.037*
C40.3081 (5)0.25400 (11)0.3767 (5)0.0386 (9)
H4A0.19710.26780.33360.046*
C50.2962 (5)0.21686 (11)0.4191 (5)0.0361 (9)
H5A0.17710.20580.39710.043*
C60.4508 (4)0.19662 (9)0.4903 (4)0.0255 (7)
C70.4676 (5)0.15682 (9)0.5624 (4)0.0278 (7)
C81.1226 (5)0.15194 (10)0.9717 (5)0.0320 (8)
H8A1.10540.17261.03680.038*
C91.2380 (5)0.12336 (11)1.0570 (5)0.0399 (9)
H9A1.30030.12411.17770.048*
C101.2557 (5)0.09312 (10)0.9510 (5)0.0368 (9)
H10A1.33110.07311.00510.044*
C111.1607 (4)0.09087 (8)0.7554 (4)0.0271 (7)
C121.1744 (4)0.06117 (9)0.6383 (5)0.0284 (7)
C131.2856 (5)0.00363 (9)0.5917 (6)0.0360 (9)
C141.3943 (5)0.02765 (10)0.6627 (6)0.0451 (10)
H14A1.45620.02960.78310.054*
C151.4053 (6)0.05583 (11)0.5437 (7)0.0518 (12)
H15A1.47780.07680.58970.062*
C161.3118 (6)0.05511 (11)0.3517 (7)0.0515 (11)
H16A1.32620.07510.28180.062*
C171.2049 (6)0.02541 (11)0.2768 (7)0.0490 (11)
H17A1.14390.02430.15590.059*
C181.1903 (5)0.00476 (10)0.3955 (6)0.0376 (9)
C191.0778 (4)0.06153 (9)0.4384 (5)0.0281 (7)
C200.9642 (4)0.09347 (9)0.3624 (5)0.0264 (7)
C210.8637 (5)0.09625 (11)0.1724 (5)0.0352 (8)
H21A0.87180.07710.09550.042*
C220.7602 (5)0.12692 (11)0.1118 (5)0.0374 (9)
H22A0.69590.13020.00750.045*
C230.7549 (5)0.15433 (10)0.2423 (5)0.0335 (8)
H23A0.68240.17550.20180.040*
C240.9509 (4)0.12229 (9)0.4840 (4)0.0225 (7)
C251.0507 (4)0.12140 (8)0.6841 (4)0.0231 (7)
N10.6076 (3)0.21282 (7)0.5092 (4)0.0223 (6)
N21.0299 (4)0.15092 (7)0.7891 (4)0.0249 (6)
N30.8472 (4)0.15269 (7)0.4247 (4)0.0257 (6)
N41.2762 (4)0.03168 (8)0.7101 (4)0.0336 (7)
N51.0869 (4)0.03420 (8)0.3203 (4)0.0346 (7)
O10.8402 (3)0.28967 (6)0.4126 (3)0.0339 (6)
O20.9272 (3)0.23526 (6)0.5597 (3)0.0331 (6)
O30.3351 (3)0.13674 (7)0.5182 (4)0.0450 (7)
O40.6220 (3)0.14774 (6)0.6653 (3)0.0308 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0147 (2)0.0195 (2)0.0307 (3)0.00195 (15)0.00253 (16)0.00072 (17)
C10.0215 (15)0.0237 (17)0.0265 (17)0.0029 (13)0.0040 (13)0.0010 (13)
C20.0216 (15)0.0234 (16)0.0258 (17)0.0004 (13)0.0032 (13)0.0015 (13)
C30.0294 (18)0.0303 (18)0.0299 (18)0.0087 (14)0.0028 (14)0.0055 (15)
C40.0206 (17)0.049 (2)0.041 (2)0.0121 (16)0.0011 (15)0.0025 (18)
C50.0156 (15)0.049 (2)0.039 (2)0.0011 (15)0.0012 (15)0.0007 (18)
C60.0182 (15)0.0328 (18)0.0248 (17)0.0023 (13)0.0054 (13)0.0031 (14)
C70.0259 (17)0.0322 (18)0.0265 (18)0.0075 (14)0.0097 (14)0.0044 (14)
C80.0229 (16)0.0341 (19)0.035 (2)0.0070 (14)0.0029 (15)0.0046 (16)
C90.0320 (19)0.045 (2)0.035 (2)0.0091 (17)0.0030 (16)0.0031 (17)
C100.0288 (18)0.036 (2)0.040 (2)0.0139 (15)0.0003 (16)0.0025 (16)
C110.0179 (15)0.0280 (17)0.0350 (19)0.0009 (13)0.0071 (13)0.0033 (14)
C120.0200 (15)0.0248 (17)0.041 (2)0.0000 (13)0.0092 (14)0.0021 (15)
C130.0250 (17)0.0231 (17)0.063 (3)0.0018 (14)0.0173 (17)0.0001 (17)
C140.033 (2)0.029 (2)0.073 (3)0.0073 (16)0.015 (2)0.0070 (19)
C150.035 (2)0.024 (2)0.100 (4)0.0088 (16)0.026 (2)0.000 (2)
C160.041 (2)0.027 (2)0.091 (4)0.0011 (17)0.027 (2)0.016 (2)
C170.038 (2)0.037 (2)0.072 (3)0.0016 (17)0.015 (2)0.015 (2)
C180.0255 (17)0.0250 (18)0.065 (3)0.0012 (14)0.0174 (18)0.0056 (17)
C190.0210 (15)0.0222 (16)0.041 (2)0.0030 (13)0.0092 (14)0.0017 (15)
C200.0195 (15)0.0252 (17)0.0338 (19)0.0013 (13)0.0067 (13)0.0005 (14)
C210.0327 (18)0.038 (2)0.034 (2)0.0022 (15)0.0085 (16)0.0046 (16)
C220.0350 (19)0.045 (2)0.0269 (19)0.0051 (17)0.0006 (15)0.0015 (16)
C230.0302 (18)0.034 (2)0.034 (2)0.0076 (15)0.0051 (15)0.0085 (16)
C240.0148 (14)0.0227 (16)0.0306 (18)0.0001 (12)0.0076 (13)0.0012 (13)
C250.0137 (14)0.0232 (16)0.0321 (18)0.0009 (12)0.0060 (13)0.0002 (13)
N10.0142 (12)0.0208 (13)0.0304 (14)0.0003 (10)0.0042 (11)0.0006 (11)
N20.0178 (13)0.0240 (14)0.0321 (15)0.0012 (10)0.0061 (11)0.0016 (12)
N30.0183 (13)0.0247 (14)0.0325 (16)0.0040 (10)0.0049 (11)0.0025 (12)
N40.0239 (14)0.0223 (15)0.0536 (19)0.0054 (12)0.0097 (13)0.0025 (13)
N50.0265 (15)0.0290 (16)0.0476 (19)0.0003 (12)0.0095 (13)0.0073 (14)
O10.0341 (13)0.0257 (12)0.0398 (14)0.0088 (10)0.0074 (11)0.0047 (11)
O20.0154 (11)0.0291 (13)0.0519 (16)0.0022 (9)0.0051 (10)0.0078 (11)
O30.0286 (13)0.0459 (16)0.0589 (18)0.0196 (12)0.0100 (12)0.0036 (14)
O40.0234 (12)0.0260 (12)0.0398 (14)0.0035 (9)0.0043 (11)0.0031 (10)
Geometric parameters (Å, º) top
Ni1—N11.921 (3)C11—C121.432 (4)
Ni1—N22.015 (3)C12—N41.323 (4)
Ni1—O42.021 (2)C12—C191.532 (5)
Ni1—O22.155 (2)C13—N41.388 (5)
Ni1—N32.175 (3)C13—C141.395 (5)
Ni1—O1i2.233 (2)C13—C181.504 (6)
C1—O21.231 (4)C14—C151.397 (6)
C1—O11.261 (4)C14—H14A0.9300
C1—C21.426 (4)C15—C161.472 (7)
C2—C31.322 (5)C15—H15A0.9300
C2—N11.332 (4)C16—C171.352 (6)
C3—C41.315 (5)C16—H16A0.9300
C3—H3A0.9300C17—C181.455 (5)
C4—C51.381 (5)C17—H17A0.9300
C4—H4A0.9300C18—N51.334 (5)
C5—C61.327 (5)C19—N51.367 (4)
C5—H5A0.9300C19—C201.441 (5)
C6—N11.260 (4)C20—C241.432 (5)
C6—C71.527 (5)C20—C211.471 (5)
C7—O31.179 (4)C21—C221.343 (5)
C7—O41.232 (4)C21—H21A0.9300
C8—C91.374 (5)C22—C231.432 (5)
C8—N21.405 (4)C22—H22A0.9300
C8—H8A0.9300C23—N31.403 (4)
C9—C101.398 (5)C23—H23A0.9300
C9—H9A0.9300C24—N31.333 (4)
C10—C111.501 (5)C24—C251.537 (4)
C10—H10A0.9300C25—N21.380 (4)
C11—C251.379 (3)O1—Ni1ii2.233 (2)
N1—Ni1—N2173.60 (11)N4—C13—C18125.1 (3)
N1—Ni1—O483.48 (10)C14—C13—C18118.4 (3)
N2—Ni1—O490.72 (10)C13—C14—C15116.7 (4)
N1—Ni1—O272.01 (9)C13—C14—H14A121.7
N2—Ni1—O2113.65 (10)C15—C14—H14A121.7
O4—Ni1—O2155.40 (9)C14—C15—C16125.4 (4)
N1—Ni1—N393.08 (11)C14—C15—H15A117.3
N2—Ni1—N383.80 (10)C16—C15—H15A117.3
O4—Ni1—N386.07 (10)C17—C16—C15120.2 (4)
O2—Ni1—N393.01 (10)C17—C16—H16A119.9
N1—Ni1—O1i98.30 (10)C15—C16—H16A119.9
N2—Ni1—O1i84.69 (10)C16—C17—C18116.4 (4)
O4—Ni1—O1i93.33 (10)C16—C17—H17A121.8
O2—Ni1—O1i92.29 (9)C18—C17—H17A121.8
N3—Ni1—O1i168.47 (9)N5—C18—C17116.1 (4)
O2—C1—O1130.6 (3)N5—C18—C13120.9 (3)
O2—C1—C2111.8 (3)C17—C18—C13123.0 (3)
O1—C1—C2117.7 (3)N5—C19—C20115.0 (3)
C3—C2—N1123.8 (3)N5—C19—C12126.7 (3)
C3—C2—C1123.6 (3)C20—C19—C12118.3 (3)
N1—C2—C1112.6 (3)C24—C20—C19116.0 (3)
C4—C3—C2114.1 (3)C24—C20—C21121.6 (3)
C4—C3—H3A123.0C19—C20—C21122.5 (3)
C2—C3—H3A123.0C22—C21—C20118.9 (3)
C3—C4—C5121.2 (3)C22—C21—H21A120.5
C3—C4—H4A119.4C20—C21—H21A120.5
C5—C4—H4A119.4C21—C22—C23115.8 (3)
C6—C5—C4121.5 (3)C21—C22—H22A122.1
C6—C5—H5A119.3C23—C22—H22A122.1
C4—C5—H5A119.3N3—C23—C22127.2 (3)
N1—C6—C5116.0 (3)N3—C23—H23A116.4
N1—C6—C7114.5 (3)C22—C23—H23A116.4
C5—C6—C7129.4 (3)N3—C24—C20119.8 (3)
O3—C7—O4123.9 (3)N3—C24—C25115.5 (3)
O3—C7—C6119.3 (3)C20—C24—C25124.7 (3)
O4—C7—C6116.9 (3)C11—C25—N2121.1 (3)
C9—C8—N2122.0 (3)C11—C25—C24118.9 (3)
C9—C8—H8A119.0N2—C25—C24120.0 (2)
N2—C8—H8A119.0C6—N1—C2123.1 (3)
C8—C9—C10115.8 (3)C6—N1—Ni1113.6 (2)
C8—C9—H9A122.1C2—N1—Ni1122.7 (2)
C10—C9—H9A122.1C25—N2—C8122.1 (3)
C9—C10—C11124.2 (3)C25—N2—Ni1109.6 (2)
C9—C10—H10A117.9C8—N2—Ni1127.5 (2)
C11—C10—H10A117.9C24—N3—C23116.8 (3)
C25—C11—C10114.8 (3)C24—N3—Ni1108.9 (2)
C25—C11—C12118.0 (3)C23—N3—Ni1133.3 (2)
C10—C11—C12127.3 (3)C12—N4—C13115.0 (3)
N4—C12—C11117.0 (3)C18—N5—C19113.4 (3)
N4—C12—C19118.9 (3)C1—O1—Ni1ii139.9 (2)
C11—C12—C19124.1 (3)C1—O2—Ni1119.3 (2)
N4—C13—C14116.5 (4)C7—O4—Ni1109.4 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2iii0.932.483.190 (4)134
C22—H22A···O4iv0.932.563.456 (4)162
Symmetry codes: (iii) x1, y+1/2, z1/2; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Ni(C7H3NO4)(C18H10N4)]
Mr506.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3482 (11), 35.825 (4), 7.8986 (12)
β (°) 106.906 (12)
V3)1989.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.37 × 0.32 × 0.26
Data collection
DiffractometerBruker APEX area-detector
diffractometer
Absorption correctionMulti-scan
'(SADABS; Sheldrick, 1996)'
Tmin, Tmax0.704, 0.780
No. of measured, independent and
observed [I > 2σ(I)] reflections
4459, 3504, 2860
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.08
No. of reflections3504
No. of parameters316
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.60

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Selected geometric parameters (Å, º) top
Ni1—N11.921 (3)Ni1—O22.155 (2)
Ni1—N22.015 (3)Ni1—N32.175 (3)
Ni1—O42.021 (2)Ni1—O1i2.233 (2)
N1—Ni1—N2173.60 (11)N2—Ni1—O2113.65 (10)
N1—Ni1—O483.48 (10)O4—Ni1—O2155.40 (9)
N2—Ni1—O490.72 (10)O2—Ni1—O1i92.29 (9)
N1—Ni1—O272.01 (9)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O2ii0.93002.48003.190 (4)134.00
C22—H22A···O4iii0.93002.56003.456 (4)162.00
Symmetry codes: (ii) x1, y+1/2, z1/2; (iii) x, y, z1.
π-π stacking parameters for the title compound top
Cg···Cg is the distance between ring centroids (Å); CgI_Perp is the perpendicular distance of CgI from ring J (Å); CgJ_Perp is the perpendicular distance of CgJ on ring I (Å); Slippage is the distance between CgI and the erpendicular projection of CgJ on ring I (Å). Cg7 is the centroid of the N4/C12/C19/N5/C18/C13 plane, Cg8 is the centroid of the C11/C12/C19/C20/C24/C25 plane and Cg9 is the centroid of the C13–C18 plane.
CgI, CgJCgI···CgJCgI_PerpCgJ_PerpSlippage
Cg7, Cg7iv3.5102 (18)3.2943.2941.14
Cg7, Cg9iv3.574 (2)3.2903.3041.29
Cg8, Cg9iv3.509 (2)3.2943.2981.14
Cg9, Cg9v3.410 (2)3.2563.2560.97
Symmetry codes: (iv) 2-x, -y, 1-z; (v) 3-x, -y, 1-z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds