Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the title compound, (C6H7N2O)6[V10O28]·2H2O, at 120 (2) K has monoclinic (C2/c) symmetry. The asymmetric unit consists of one half-deca­vanadate anion of Ci symmetry, three cations and one water mol­ecule. Each water mol­ecule is hydrogen bonded to two deca­vanadate anions, thus forming a one-dimensional chain of anions. The three-dimensional supra­molecular structure is formed by a network of N—H...O, O—H...O and C—H...O hydrogen bonds, in which the cations, anions and water mol­ecules are involved, and by nonparallel-displaced π-stacking inter­actions between pyridine rings. As a result of hydrogen bonding, the carboxamide groups of the cations are somewhat twisted from the pyridine ring plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107028557/dn3044sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107028557/dn3044Isup2.hkl
Contains datablock I

CCDC reference: 661790

Comment top

The title compound, (I), was synthesized as a part of our studies focused on interaction between both oxovanadium and oxoperoxovanadium species with biologically important organic substrates. The oxovanadates(V) and peroxovanadium compounds are of great interest in biochemistry and medicine because of their diverse biological activity; the former compounds also have applications in catalysis and materials science. The interaction of nicotinamide with vanadium(V) compounds, and the nature of the products formed, are of interest with respect to the use of amides of pyridine- and pyrazinecarboxylic acids as antituberculotics, and to the potential use of vanadium compounds as insulin mimetic drugs in human medicine (Crans, 1998). From the same reaction solution, V2O5–H2O2–H2O, but containing picolinamide or pyrazinamide, we have isolated and structurally characterized monoperoxovanadium(V) complexes (Sivák et al., 2000; Maďarová et al., 2004; Pacigová et al., 2007).

The asymmetric unit of (I) consists of one-half decavanadate anion of Ci symmetry (although its symmetry is close to the D2h point group) lying on a special position on the glide plane, three 1-H-nicotinamidium(1+) cations and one water molecule of crystallization (Fig. 1). The angle between the (020) glide plane and the central plane of the V10O286– anion [formed by atoms V1, V1i, V3, V3i, V5 and V5i; symmetry code: (i) -x, -y + 1, -z] is 86.29 (1)°. The terminal vanadium–oxygen bond lengths, V—OT, are in the range 1.601 (1)–1.618 (1) Å, with an average value 1.609 (9) Å. The bond lengths of the bridging O atoms with coordination numbers two, three and six have mean values 1.85 (12), 2.00 (7) and 2.24 (10) Å.

The supramolecular structure is formed by D—H···O hydrogen bonds [(D = N, O or C, with H···O 2.72 Å and D—H···O > 119°, as defined by Brown (1992)] between cations and anions, cations and cations, water molecules and anions, and water molecules and cations, and by non-parallel displaced π-stacking interactions between the pyridine rings.

Two V10O286– anions are bridged via two water molecules, forming rings with graph-set N2 = R44(12) (Etter et al., 1990 and Bernstein et al., 1995) and subsequently chains along the c axis (Fig. 2a, detail in Fig. 3a). The colinearly arranged O5, O9 and O12 atoms act as acceptors of pyridinium H atoms H12, H13 and H11, and terminal O atoms O6 and O10 are acceptors of amide H atoms H23A and H22A. The anion-bridging water molecule acts as an acceptor of the corresponding H21A atom. The 1-H-nicotinamidium(1+) cations form two types of hydrogen-bonded chains along the b axis, almost parallel to the (101) plane (Figs. 2b, 3b and 3c). One type is formed by chains with graph set N1= C(4) containing crystallographically equivalent nicotinamidium molecules containing the Cx1/N11 (x = 1–5) pyridinium ring. The next two chains, with graph set N2= C22(8) and running in opposite directions, are formed by the alternation of the two remaining nicotinamidium cations; both types form sheet-like structures (Athimoolam & Natarajan, 2006). There are two types of C—H···O bond, the first containing decavanadate O atoms and the second containing carboxamide O atoms as acceptors. Bonds of the second type reinforce interactions in the cationic chains mentioned above. All nicotinamidium chains present are mutually π-stacked.

To evaluate the ππ interactions between the pyridine rings, least-square planes n defined by atoms C1n–C5n and N1n were calculated. The mean distance of the plane 1 atoms from plane 3, R(31), is 3.32 (17) Å, and the mean distance of the plane 3 atoms from plane 1,R(13), is 3.32 (17) Å, with an angle between the planes, γ(1), of 9.42 (9)°, corresponding centroid–centroid distance, Rct(1), is 3.5 Å, and the closest interatomic distance, Rclo(C51···N13), is 3.156 (2) Å; for planes 3 and 2, R(32) = 3.44 (11) Å, R(23) = 3.40 (11) Å, γ(2) = 5.77 (9)°, Rct(2) = 3.6 Å and Rclo(N12···C53) = 3.364 (2) Å. The carboxamide groups of the cations are somewhat twisted from the pyridine ring planes n by 13.61 (14)° (for 1), 5.21 (11)° (for 2) and 6.84 (10)° (for 3), respectively, which is obvious for 1-H-nicotinamidium(1+) compounds (Athimoolam & Natarajan, 2007a,b). In comparison with other 1-H-nicotinaminium(1+) compounds from the Cambridge Structural Database (Version 5.27, update to September 2006; Allen, 2002), the Rct and Rclo distances in (I) are the shortest among all nonparallel displaced structures (Rct in the other nonparallel displaced structures lies between 3.8 and 4.9 Å, and Rclo lies between 3.3 and 3.6 Å) and the Rct values are close to the interplanar distances of parallel-displaced π-stacked structures containing 1-H-nicotinamidium(1+) molecules, which lie between 3.1 and 3.5 Å (Rct in the parallel-displaced structures lies between 3.4 and 3.9 Å).

Related literature top

For related literature, see: Allen (2002); Athimoolam & Natarajan (2006, 2007a, 2007b); Bernstein et al. (1995); Brown (1992); Crans (1998); Etter et al. (1990); Maďarová et al. (2004); Pacigová et al. (2007); Sivák et al. (2000).

Experimental top

The orange crystals of (C6H7N2O)6V10O28·2H2O crystallized within 6–7 d from the V2O5–H2O2–nicotinamide–H2O solution prepared as follows. For the preparation of solution A, V2O5 (0.181 g, 1 mmol) was dissolved in H2O2 (3 ml, w = 0.3) under continuous stiring in an ice bath. For the preparation of solution B, nicotinamide (0.122 g, 1 mmol) was dissolved in 5 ml of water. Solution B was added dropwise to A and the resulting solution was acidified by two drops of concentrated HClO4. The obtained solution (pH = 1.8) was allowed to crystallize in refrigerator at 279 K. The crystals were dried in dissicator above silica gel at the same temperature.

Refinement top

H atoms of the cations were placed in geometrically idealized positions (C—H = 0.95 Å and N—H = 0.89 Å) and constrained to ride on their parent atoms [with Uiso(H) = 1.2Ueq(C,N)]. H atoms of the water molecules were located in a difference map and refined with O—H interatomic distances restrained to be equal with standard deviation set to 0.05 Å and with Uiso(H) values of 1.5Ueq(O), which leads to reasonable geometry [O1W—H1 = O1W—H2 = 0.83 (3) Å and H1—O1W—H2 = 108 (3)°].

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXL97, DIAMOND and publCIF (Westrip, 2007).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
Figure 1. The structure of (I), with the atom-labelling scheme, showing cation–anion and cation–water molecule N—H···O hydrogen bonds. Displacement ellipsoids are drawn at the 50% probability level. The symmetry operation relating labelled atoms to unlabelled ones is (–x, –y + 1, –z).

Figure 2. (a) A view of the anionic chains packing along the b axis. (b) A view of the cationic chains packing along the b axis, involving water molecule contacts. Dashed lines indicate hydrogen bonds.

Figure 3. (a) A detail of the N2 = R44(12) rings in the anionic chains, involving interaction with the cationic chain via the water molecule. (b) The formation of two types of 1-H-nicotinamidium(1+) chains along the b axis and (c) π-stacking patterns of the 1-H-nicotinamidium(1+) chains viewed towards the (203) plane. In (b) and (c), H atoms bonded to C atoms have been omitted for clarity.
Hexakis[3-(aminocarbonyl)pyridinium] decavanadate(V) dihydrate top
Crystal data top
(C6H7N2O)6[V10O28]·2H2OF(000) = 3456
Mr = 1732.25Dx = 2.067 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 24882 reflections
a = 25.806 (9) Åθ = 3.0–27°
b = 9.5460 (13) ŵ = 1.71 mm1
c = 23.577 (10) ÅT = 120 K
β = 106.60 (4)°Prism, orange
V = 5566 (3) Å30.50 × 0.25 × 0.15 mm
Z = 4
Data collection top
Kuma KM-4 CCD
diffractometer
5811 independent reflections
Radiation source: fine-focus sealed tube5173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.012
Detector resolution: 0.06 pixels mm-1θmax = 27.0°, θmin = 3.1°
ω scansh = 3131
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 712
Tmin = 0.481, Tmax = 0.783l = 2930
34597 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0341P)2 + 8.29P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
5811 reflectionsΔρmax = 0.50 e Å3
431 parametersΔρmin = 0.51 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00011 (2)
Crystal data top
(C6H7N2O)6[V10O28]·2H2OV = 5566 (3) Å3
Mr = 1732.25Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.806 (9) ŵ = 1.71 mm1
b = 9.5460 (13) ÅT = 120 K
c = 23.577 (10) Å0.50 × 0.25 × 0.15 mm
β = 106.60 (4)°
Data collection top
Kuma KM-4 CCD
diffractometer
5811 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
5173 reflections with I > 2σ(I)
Tmin = 0.481, Tmax = 0.783Rint = 0.012
34597 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.062H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.50 e Å3
5811 reflectionsΔρmin = 0.51 e Å3
431 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
V10.008016 (10)0.67129 (3)0.000302 (11)0.00823 (7)
V20.101695 (10)0.48085 (3)0.013492 (12)0.00924 (7)
V30.022611 (11)0.68118 (3)0.117265 (12)0.01042 (7)
V40.074926 (11)0.50109 (3)0.108273 (12)0.00898 (7)
V50.028767 (11)0.64077 (3)0.122361 (12)0.01115 (7)
O10.01095 (4)0.50851 (11)0.05138 (5)0.0095 (2)
O20.04199 (5)0.75765 (13)0.16496 (5)0.0175 (3)
O30.02840 (5)0.81248 (13)0.15729 (5)0.0166 (3)
O40.05394 (4)0.64270 (12)0.14404 (5)0.0116 (2)
O50.04560 (4)0.36132 (12)0.14549 (5)0.0119 (2)
O60.13862 (5)0.48444 (12)0.14146 (5)0.0146 (2)
O70.03366 (5)0.52692 (12)0.15828 (5)0.0125 (2)
O80.02113 (4)0.76726 (12)0.05441 (5)0.0116 (2)
O90.07043 (4)0.64440 (12)0.04140 (5)0.0094 (2)
O100.16525 (5)0.46465 (13)0.02131 (5)0.0146 (2)
O110.09879 (4)0.60730 (12)0.06788 (5)0.0118 (2)
O120.09035 (4)0.32674 (12)0.06437 (5)0.0115 (2)
O130.00126 (4)0.78422 (12)0.05094 (5)0.0112 (2)
O140.07921 (4)0.61289 (12)0.03944 (5)0.0093 (2)
C110.26951 (7)0.53389 (18)0.03997 (7)0.0123 (3)
C210.28286 (7)0.39449 (19)0.02525 (7)0.0169 (4)
H210.25990.32170.04570.020*
C310.32974 (7)0.36168 (19)0.01940 (8)0.0197 (4)
H310.33850.26690.03020.024*
C410.36327 (7)0.4686 (2)0.04773 (8)0.0178 (4)
H410.39580.44770.07760.021*
N110.34971 (6)0.60192 (16)0.03287 (6)0.0148 (3)
H110.37130.66920.05130.018*
C510.30434 (7)0.63621 (18)0.00906 (7)0.0131 (3)
H510.29590.73220.01770.016*
C610.22104 (6)0.58422 (18)0.08837 (7)0.0128 (3)
O150.20970 (5)0.71052 (13)0.09074 (5)0.0166 (3)
N210.19367 (6)0.49098 (15)0.12688 (7)0.0160 (3)
H21A0.16580.51760.15610.019*
H21B0.20330.40230.12330.019*
C120.15642 (6)0.06569 (18)0.30448 (7)0.0123 (3)
C220.13039 (7)0.06365 (19)0.29364 (7)0.0166 (3)
H220.14560.14310.31670.020*
C320.08183 (7)0.0756 (2)0.24875 (8)0.0197 (4)
H320.06350.16300.24120.024*
C420.06067 (7)0.0402 (2)0.21544 (8)0.0180 (4)
H420.02780.03280.18450.022*
N120.08637 (6)0.16358 (16)0.22656 (6)0.0154 (3)
H120.07240.23650.20470.019*
C520.13267 (7)0.17933 (18)0.27000 (7)0.0142 (3)
H520.14930.26890.27720.017*
C620.20976 (7)0.09143 (18)0.35067 (7)0.0132 (3)
O160.22781 (5)0.21222 (13)0.35845 (6)0.0202 (3)
N220.23514 (6)0.01731 (15)0.38076 (6)0.0162 (3)
H22A0.26640.00560.40780.019*
H22B0.22080.10150.37380.019*
C130.19492 (6)0.94662 (18)0.17085 (7)0.0110 (3)
C230.17462 (7)1.08220 (18)0.15903 (7)0.0151 (3)
H230.19311.15900.18150.018*
C330.12701 (7)1.10382 (19)0.11400 (8)0.0176 (4)
H330.11291.19570.10500.021*
C430.10052 (7)0.99000 (18)0.08250 (8)0.0149 (3)
H430.06751.00430.05240.018*
N130.12026 (5)0.86005 (15)0.09350 (6)0.0121 (3)
H130.10290.78910.07270.015*
C530.16645 (7)0.83824 (18)0.13626 (7)0.0123 (3)
H530.18020.74560.14320.015*
C630.24579 (6)0.90844 (18)0.21832 (7)0.0127 (3)
O170.26308 (5)0.78670 (13)0.22180 (5)0.0186 (3)
N230.26996 (6)1.00972 (15)0.25507 (6)0.0161 (3)
H23A0.29970.99180.28350.019*
H23B0.25621.09480.25090.019*
O1W0.10168 (6)0.5378 (2)0.23014 (6)0.0363 (4)
H20.0771 (11)0.539 (3)0.2137 (13)0.054*
H10.0897 (12)0.575 (3)0.2633 (12)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
V10.00763 (13)0.00696 (14)0.00844 (13)0.00015 (10)0.00035 (10)0.00004 (10)
V20.00626 (13)0.01072 (14)0.00942 (14)0.00002 (10)0.00013 (10)0.00067 (10)
V30.00883 (13)0.01176 (15)0.00939 (14)0.00046 (10)0.00056 (10)0.00228 (10)
V40.00727 (13)0.01030 (14)0.00724 (14)0.00031 (10)0.00137 (10)0.00014 (10)
V50.01071 (14)0.01250 (15)0.00939 (14)0.00027 (11)0.00147 (10)0.00189 (10)
O10.0092 (5)0.0092 (6)0.0089 (5)0.0001 (4)0.0005 (4)0.0000 (4)
O20.0192 (6)0.0186 (6)0.0150 (6)0.0003 (5)0.0052 (5)0.0045 (5)
O30.0148 (6)0.0184 (6)0.0157 (6)0.0005 (5)0.0028 (5)0.0054 (5)
O40.0097 (5)0.0136 (6)0.0096 (5)0.0004 (4)0.0000 (4)0.0015 (4)
O50.0116 (5)0.0128 (6)0.0094 (5)0.0010 (4)0.0002 (4)0.0020 (4)
O60.0111 (6)0.0173 (6)0.0121 (6)0.0013 (5)0.0019 (4)0.0008 (5)
O70.0111 (5)0.0166 (6)0.0092 (5)0.0008 (5)0.0019 (4)0.0001 (5)
O80.0116 (5)0.0098 (6)0.0122 (5)0.0003 (4)0.0012 (4)0.0013 (4)
O90.0075 (5)0.0095 (6)0.0095 (5)0.0009 (4)0.0005 (4)0.0002 (4)
O100.0093 (5)0.0182 (6)0.0145 (6)0.0008 (5)0.0005 (4)0.0024 (5)
O110.0094 (5)0.0135 (6)0.0119 (5)0.0016 (4)0.0020 (4)0.0004 (5)
O120.0088 (5)0.0129 (6)0.0117 (5)0.0014 (4)0.0009 (4)0.0016 (4)
O130.0103 (5)0.0095 (6)0.0124 (5)0.0000 (4)0.0008 (4)0.0009 (4)
O140.0076 (5)0.0092 (5)0.0096 (5)0.0004 (4)0.0001 (4)0.0007 (4)
C110.0129 (8)0.0129 (8)0.0120 (8)0.0003 (6)0.0048 (6)0.0002 (6)
C210.0198 (9)0.0139 (9)0.0150 (8)0.0019 (7)0.0015 (7)0.0018 (7)
C310.0245 (9)0.0141 (9)0.0183 (9)0.0046 (7)0.0028 (7)0.0008 (7)
C410.0153 (8)0.0227 (10)0.0143 (8)0.0037 (7)0.0024 (7)0.0006 (7)
N110.0133 (7)0.0175 (8)0.0132 (7)0.0028 (6)0.0030 (5)0.0028 (6)
C510.0154 (8)0.0129 (8)0.0118 (8)0.0001 (6)0.0052 (6)0.0001 (6)
C610.0126 (8)0.0144 (8)0.0125 (8)0.0007 (6)0.0055 (6)0.0014 (6)
O150.0205 (6)0.0120 (6)0.0164 (6)0.0027 (5)0.0039 (5)0.0009 (5)
N210.0138 (7)0.0140 (7)0.0167 (7)0.0006 (6)0.0011 (6)0.0001 (6)
C120.0129 (8)0.0148 (8)0.0088 (7)0.0003 (6)0.0024 (6)0.0008 (6)
C220.0183 (8)0.0153 (9)0.0147 (8)0.0007 (7)0.0025 (7)0.0025 (7)
C320.0188 (9)0.0186 (9)0.0200 (9)0.0061 (7)0.0030 (7)0.0011 (7)
C420.0128 (8)0.0245 (10)0.0146 (8)0.0005 (7)0.0008 (6)0.0002 (7)
N120.0141 (7)0.0177 (8)0.0133 (7)0.0039 (6)0.0020 (5)0.0030 (6)
C520.0133 (8)0.0148 (8)0.0141 (8)0.0006 (6)0.0035 (6)0.0007 (6)
C620.0130 (8)0.0152 (9)0.0107 (8)0.0001 (7)0.0023 (6)0.0013 (6)
O160.0195 (6)0.0125 (6)0.0231 (7)0.0009 (5)0.0030 (5)0.0022 (5)
N220.0135 (7)0.0144 (7)0.0158 (7)0.0012 (6)0.0035 (6)0.0016 (6)
C130.0114 (7)0.0124 (8)0.0091 (7)0.0010 (6)0.0026 (6)0.0002 (6)
C230.0168 (8)0.0109 (8)0.0147 (8)0.0016 (7)0.0002 (6)0.0027 (6)
C330.0198 (9)0.0115 (8)0.0187 (9)0.0036 (7)0.0009 (7)0.0014 (7)
C430.0124 (8)0.0172 (9)0.0132 (8)0.0020 (7)0.0004 (6)0.0004 (6)
N130.0118 (6)0.0121 (7)0.0111 (6)0.0035 (5)0.0010 (5)0.0038 (5)
C530.0134 (8)0.0112 (8)0.0123 (8)0.0001 (6)0.0035 (6)0.0002 (6)
C630.0117 (8)0.0143 (8)0.0115 (8)0.0014 (6)0.0022 (6)0.0020 (6)
O170.0184 (6)0.0127 (6)0.0202 (6)0.0018 (5)0.0019 (5)0.0024 (5)
N230.0142 (7)0.0153 (7)0.0138 (7)0.0010 (6)0.0042 (6)0.0012 (6)
O1W0.0161 (7)0.0776 (13)0.0151 (7)0.0057 (7)0.0041 (5)0.0094 (8)
Geometric parameters (Å, º) top
V1—O12.1165 (12)N11—H110.8800
V1—O1i2.1105 (12)C51—H510.9500
V1—O81.6817 (12)C61—O151.238 (2)
V1—O91.9955 (14)C61—N211.323 (2)
V1—O131.6864 (12)N21—H21A0.8800
V1—O141.8923 (13)N21—H21B0.8800
V2—O1i2.2576 (14)C12—C521.389 (2)
V2—O9i2.0862 (12)C12—C221.394 (2)
V2—O101.6182 (13)C12—C621.511 (2)
V2—O111.7470 (12)C22—C321.395 (2)
V2—O121.8677 (12)C22—H220.9500
V2—O141.9739 (12)C32—C421.376 (3)
V3—O12.3425 (12)C32—H320.9500
V3—O31.6014 (12)C42—N121.340 (2)
V3—O41.9296 (13)C42—H420.9500
V3—O71.8282 (12)N12—C521.342 (2)
V3—O12i1.8362 (14)N12—H120.8800
V3—O132.0516 (13)C52—H520.9500
V4—O12.2401 (15)C62—O161.237 (2)
V4—O41.7587 (12)C62—N221.321 (2)
V4—O51.8714 (12)N22—H22A0.8800
V4—O61.6139 (14)N22—H22B0.8800
V4—O9i2.0793 (12)C13—C531.390 (2)
V4—O141.9717 (13)C13—C231.394 (2)
V5—O1i2.3415 (13)C13—C631.507 (2)
V5—O21.6017 (12)C23—C331.391 (2)
V5—O5i1.8394 (13)C23—H230.9500
V5—O7i1.8322 (12)C33—C431.382 (2)
V5—O82.0600 (13)C33—H330.9500
V5—O111.9214 (14)C43—N131.338 (2)
C11—C511.385 (2)C43—H430.9500
C11—C211.393 (2)N13—C531.339 (2)
C11—C611.511 (2)N13—H130.8800
C21—C311.394 (2)C53—H530.9500
C21—H210.9500C63—O171.239 (2)
C31—C411.380 (3)C63—N231.329 (2)
C31—H310.9500N23—H23A0.8800
C41—N111.340 (2)N23—H23B0.8800
C41—H410.9500O1W—H20.83 (3)
N11—C511.339 (2)O1W—H10.83 (3)
O8—V1—O13107.20 (6)V2i—O1—V385.16 (5)
O8—V1—O1499.14 (6)V5i—O1—V382.28 (4)
O13—V1—O1498.63 (6)V4—O4—V3114.59 (6)
O8—V1—O995.60 (6)V5i—O5—V4113.33 (6)
O13—V1—O995.64 (6)V3—O7—V5i114.68 (6)
O14—V1—O9155.41 (5)V1—O8—V5110.82 (6)
O8—V1—O1i87.84 (6)V1—O9—V4i106.46 (6)
O13—V1—O1i164.63 (5)V1—O9—V2i106.91 (6)
O14—V1—O1i81.66 (5)V4i—O9—V2i98.04 (5)
O9—V1—O1i79.35 (5)V2—O11—V5116.14 (6)
O8—V1—O1165.12 (5)V3i—O12—V2114.38 (6)
O13—V1—O187.33 (6)V1—O13—V3111.32 (6)
O14—V1—O181.38 (5)V1—O14—V4106.99 (6)
O9—V1—O179.38 (5)V1—O14—V2107.11 (6)
O1i—V1—O177.49 (5)V4—O14—V2105.69 (6)
O10—V2—O11105.24 (6)C51—C11—C21117.72 (15)
O10—V2—O12101.57 (6)C51—C11—C61116.49 (15)
O11—V2—O1296.13 (6)C21—C11—C61125.76 (15)
O10—V2—O14100.30 (6)C11—C21—C31120.15 (16)
O11—V2—O1493.67 (6)C11—C21—H21119.9
O12—V2—O14152.70 (5)C31—C21—H21119.9
O10—V2—O9i98.41 (6)C41—C31—C21119.22 (17)
O11—V2—O9i155.26 (5)C41—C31—H31120.4
O12—V2—O9i85.96 (5)C21—C31—H31120.4
O14—V2—O9i74.82 (5)N11—C41—C31119.66 (16)
O10—V2—O1i172.52 (5)N11—C41—H41120.2
O11—V2—O1i81.74 (5)C31—C41—H41120.2
O12—V2—O1i80.02 (5)C51—N11—C41122.21 (15)
O14—V2—O1i76.26 (5)C51—N11—H11118.9
O9i—V2—O1i74.33 (5)C41—N11—H11118.9
O3—V3—O7105.29 (6)N11—C51—C11121.00 (16)
O3—V3—O12i101.63 (6)N11—C51—H51119.5
O7—V3—O12i93.67 (6)C11—C51—H51119.5
O3—V3—O4102.43 (6)O15—C61—N21123.46 (16)
O7—V3—O488.48 (5)O15—C61—C11118.54 (15)
O12i—V3—O4154.35 (5)N21—C61—C11117.98 (15)
O3—V3—O1399.47 (6)C61—N21—H21A120.0
O7—V3—O13154.93 (5)C61—N21—H21B120.0
O12i—V3—O1385.00 (6)H21A—N21—H21B120.0
O4—V3—O1382.41 (5)C52—C12—C22118.40 (15)
O3—V3—O1173.12 (5)C52—C12—C62116.97 (15)
O7—V3—O181.55 (5)C22—C12—C62124.62 (15)
O12i—V3—O178.36 (5)C12—C22—C32119.54 (16)
O4—V3—O176.68 (5)C12—C22—H22120.2
O13—V3—O173.65 (5)C32—C22—H22120.2
O6—V4—O4104.70 (6)C42—C32—C22119.44 (17)
O6—V4—O5101.23 (6)C42—C32—H32120.3
O4—V4—O595.86 (6)C22—C32—H32120.3
O6—V4—O1499.41 (6)N12—C42—C32120.06 (16)
O4—V4—O1494.36 (6)N12—C42—H42120.0
O5—V4—O14153.78 (5)C32—C42—H42120.0
O6—V4—O9i97.49 (6)C42—N12—C52122.07 (15)
O4—V4—O9i156.76 (5)C42—N12—H12119.0
O5—V4—O9i86.38 (5)C52—N12—H12119.0
O14—V4—O9i75.02 (5)N12—C52—C12120.48 (16)
O6—V4—O1171.85 (5)N12—C52—H52119.8
O4—V4—O182.84 (5)C12—C52—H52119.8
O5—V4—O180.79 (5)O16—C62—N22123.01 (15)
O14—V4—O176.61 (5)O16—C62—C12119.01 (15)
O9i—V4—O174.67 (5)N22—C62—C12117.98 (15)
O2—V5—O7i105.28 (6)C62—N22—H22A120.0
O2—V5—O5i102.28 (6)C62—N22—H22B120.0
O7i—V5—O5i93.29 (5)H22A—N22—H22B120.0
O2—V5—O11101.94 (6)C53—C13—C23117.91 (15)
O7i—V5—O1189.30 (5)C53—C13—C63117.27 (15)
O5i—V5—O11154.01 (5)C23—C13—C63124.82 (15)
O2—V5—O899.45 (6)C33—C23—C13119.34 (16)
O7i—V5—O8154.97 (5)C33—C23—H23120.3
O5i—V5—O885.03 (6)C13—C23—H23120.3
O11—V5—O881.85 (5)C43—C33—C23119.15 (16)
O2—V5—O1i173.01 (5)C43—C33—H33120.4
O7i—V5—O1i81.50 (5)C23—C33—H33120.4
O5i—V5—O1i78.70 (5)N13—C43—C33121.49 (16)
O11—V5—O1i76.12 (5)N13—C43—H43119.3
O8—V5—O1i73.68 (5)C33—C43—H43119.3
V1i—O1—V1102.51 (5)C43—N13—C53119.85 (14)
V1i—O1—V497.20 (5)C43—N13—H13120.1
V1—O1—V490.92 (5)C53—N13—H13120.1
V1i—O1—V2i90.75 (5)N13—C53—C13122.24 (16)
V1—O1—V2i97.09 (5)N13—C53—H53118.9
V4—O1—V2i167.25 (6)C13—C53—H53118.9
V1i—O1—V5i87.66 (5)O17—C63—N23123.11 (15)
V1—O1—V5i169.49 (6)O17—C63—C13119.79 (15)
V4—O1—V5i85.15 (5)N23—C63—C13117.10 (15)
V2i—O1—V5i85.24 (5)C63—N23—H23A120.0
V1i—O1—V3169.42 (6)C63—N23—H23B120.0
V1—O1—V387.70 (5)H23A—N23—H23B120.0
V4—O1—V385.28 (4)H2—O1W—H1108 (3)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O12ii0.881.782.6257 (19)161
N21—H21A···O1W0.882.042.909 (2)168
N21—H21B···O16iii0.882.012.855 (2)161
N12—H12···O50.881.812.679 (2)167
N22—H22A···O10iv0.882.072.929 (2)163
N22—H22B···O15v0.882.032.808 (2)146
N13—H13···O90.881.672.5492 (18)173
N23—H23A···O6vi0.882.032.869 (2)160
N23—H23B···O17vii0.882.052.878 (2)156
O1W—H1···O4iii0.83 (3)2.21 (3)3.039 (2)172 (3)
O1W—H2···O70.83 (3)1.95 (3)2.768 (2)166 (3)
C21—H21···O16iii0.952.413.216 (2)142
C31—H31···O11viii0.952.213.066 (2)149
C51—H51···O10ii0.952.453.265 (2)144
C22—H22···O15v0.952.723.617 (2)158
C32—H32···O3ix0.952.633.222 (2)121
C42—H42···O2i0.952.643.218 (2)119
C42—H42···O3ix0.952.533.176 (2)125
C23—H23···O17vii0.952.553.422 (2)153
C33—H33···O4x0.952.523.267 (2)136
C33—H33···O14x0.952.393.269 (2)154
C43—H43···O13x0.952.683.314 (2)125
C53—H53···O6i0.952.443.173 (2)134
Symmetry codes: (i) x, y+1, z; (ii) x1/2, y+1/2, z; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y1, z+1/2; (vi) x1/2, y+3/2, z1/2; (vii) x1/2, y+1/2, z1/2; (viii) x1/2, y1/2, z; (ix) x, y1, z; (x) x, y+2, z.

Experimental details

Crystal data
Chemical formula(C6H7N2O)6[V10O28]·2H2O
Mr1732.25
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)25.806 (9), 9.5460 (13), 23.577 (10)
β (°) 106.60 (4)
V3)5566 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.50 × 0.25 × 0.15
Data collection
DiffractometerKuma KM-4 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.481, 0.783
No. of measured, independent and
observed [I > 2σ(I)] reflections
34597, 5811, 5173
Rint0.012
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.062, 1.07
No. of reflections5811
No. of parameters431
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.51

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2007), SHELXL97, DIAMOND and publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O12i0.881.782.6257 (19)161.1
N21—H21A···O1W0.882.042.909 (2)168.0
N21—H21B···O16ii0.882.012.855 (2)161.2
N12—H12···O50.881.812.679 (2)166.5
N22—H22A···O10iii0.882.072.929 (2)163.4
N22—H22B···O15iv0.882.032.808 (2)146.1
N13—H13···O90.881.672.5492 (18)172.7
N23—H23A···O6v0.882.032.869 (2)160.1
N23—H23B···O17vi0.882.052.878 (2)156.4
O1W—H1···O4ii0.83 (3)2.21 (3)3.039 (2)172 (3)
O1W—H2···O70.83 (3)1.95 (3)2.768 (2)166 (3)
C21—H21···O16ii0.952.413.216 (2)142.2
C31—H31···O11vii0.952.213.066 (2)148.6
C51—H51···O10i0.952.453.265 (2)144.2
C22—H22···O15iv0.952.723.617 (2)157.9
C32—H32···O3viii0.952.633.222 (2)120.8
C42—H42···O2ix0.952.643.218 (2)119.4
C42—H42···O3viii0.952.533.176 (2)125.3
C23—H23···O17vi0.952.553.422 (2)153.2
C33—H33···O4x0.952.523.267 (2)135.8
C33—H33···O14x0.952.393.269 (2)153.5
C43—H43···O13x0.952.683.314 (2)124.5
C53—H53···O6ix0.952.443.173 (2)133.9
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x, y, z+1/2; (iii) x+1/2, y1/2, z+1/2; (iv) x, y1, z+1/2; (v) x1/2, y+3/2, z1/2; (vi) x1/2, y+1/2, z1/2; (vii) x1/2, y1/2, z; (viii) x, y1, z; (ix) x, y+1, z; (x) x, y+2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds