Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Er(C5H7O2)3(C12H8N2)], is a mixed-ligand metal–organic precursor for chemical vapour deposition, with the Er atom being eight-coordinate. The coordination polyhedron, described as a distorted square anti­prism, is formed by three bidentate (chelating) acetyl­acetonate residues and a phenanthroline ligand in the apical positions. Mol­ecular assembly via C—H...O hydrogen bonds generates a sheet structure in the ac plane. Weak co-operative C—H...π inter­actions form mol­ecular dimers and contribute to the stability of the inter­sheet packing. The supra­molecular assembly contains voids which form hydro­phobic porous channels, surrounded by a cluster of dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107000248/dn3035sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107000248/dn3035Isup2.hkl
Contains datablock I

CCDC reference: 638310

Comment top

Metal–organic (MO) complexes have been widely employed as precursors for chemical vapour deposition (CVD) for the growth of various thin films (Williams, 1989). Several such MOCVD precursors have been previously synthesized and characterized (Patnaik et al., 1996; Urs et al., 2000; Urs, Anitha et al., 2001; Urs, Shalini et al., 2001; Urs et al., 2003a,b; Dharmaprakash et al., 2006). In continuation of this work, the title complex, (I), has been synthesized from its less volatile hydrate precursor i.e. tris(acetylacetonato)erbiumIII trihydrate, (II). The structure and packing of (I) are discussed here.

In this eight-coordinate ErIII complex, six O atoms and two N atoms form the primary coordination sphere, lying at the apices of a distorted square antiprism (Fig. 1). The antiprismatic arrangement is common among rare earth metal complexes and has previously been observed in analogous complexes of europium(III) (Watson et al., 1972), lanthanum(III) (Kuz'mina et al., 1997), cerium(III) and praseodymium(III) (Christidis et al., 1998), and samarium(III) (Urs, Shalini et al., 2001). The Er—O and Er—N bond distances are in the ranges 2.287 (4)–2.324 (4) and 2.523 (5)–2.568 (5) Å, respectively, in good agreement with their average values (Orpen et al., 1989). Selected geometric parameters are provided in Table 1. The metal is displaced by 1.38 (1) and 1.19 (1) Å, respectively, out of the planes of the square faces N1/N2/O1/O2 and O3/O4/O5/O6. The angle between the coplanar square faces is 2.2 (1)°.

The ligands span opposite s-edges of the polyhedron, with O···O and N···N bite distances of 2.750 (6)–2.775 (7) and 2.708 (6) Å, respectively, and O—Er—O and N—Er—N bite angles of 73.0 (2)–74.1 (2) and 64.3 (2)°, respectively. The six-membered chelate rings formed by ErIII and the acetylacetone residues are slightly puckered. The angles between the planes Er1/O1/O2 and C1/C2/C3, Er1/O3/O4 and C6/C7/C8, and Er1/O5/O6 and C11/C12/C13 are 10.4 (8), 21.0 (7) and 12.2 (9)°, respectively. The mean plane defined by the phenanthroline ring (N1/N2/C16–C27) has a maximum atomic deviation of 0.08 (1) Å for atom C24.

Compound (I) is isostructural with previously reported eight-coordinate complexes of europium(III), (III) (Watson et al., 1972), praseodymium(III), (IV) (Christidis et al., 1998) and samarium(III), (V) (Urs, Shalini et al., 2001). The values of the unit-cell similarity index, Π, indicating the degree of isostructurality (Kálmán et al., 1993), between (I) and (III), (I) and (IV), and (I) and (V) are 0.015, 0.004 and 0.002, respectively.

Geometric parameters for the weak intermolecular interactions in (I) are listed in Table 2. Intermolecular associations via C18—H18···O2i and C21—H21···O4ii result in the formation of one-dimensional chains along the [100] direction and an approximate [202] direction. Combining such intermolecular linkages gives rise to a sheet structure in the ac plane (Fig. 2). Cooperative C2—H2···Cg1iii interactions between molecules related by a centre of inversion aggregate the molecules to form dimers and stabilize the intersheet packing. The intersheet packing is not very efficient and consists of significant solvent-accessible voids with approximate volumes of 51 (1) and 49 (1) Å3 (PLATON; Spek, 2003). The voids are located at (0, 1/2, 1/2) and (1/2, 1.0, 1.0), respectively, and are surrounded by clusters of dimers with the methyl groups of the acetylacetone residues exposed to the empty spaces. The voids form hydrophobic porous channels along the a axis, as illustrated in Fig. 3. The presence of nanometre-sized porous frameworks in the supramolecular assembly of metal–organic complexes has implications for chemical storage, separation and heterogeneous catalysis (Kitagawa et al., 2004).

Related literature top

For related literature, see: Christidis et al. (1998); Dharmaprakash et al. (2006); Kálmán et al. (1993); Kitagawa et al. (2004); Kuz'mina, Chugarov, Pisarevsky & Martynenko (1997); Orpen et al. (1989); Patnaik et al. (1996); Spek (2003); Urs et al. (2000, 2003a, 2003b); Urs, Anitha, Raghunathan, Shivashankar, Robinson & Guru Row (2001); Urs, Shalini, Cameron, Shivashankar & Guru Row (2001); Watson et al. (1972); Williams (1989).

Experimental top

The title compound, (I), was synthesized from its precursor trihydrate complex, (II). Acetylacetone (15 mmol) was added to erbium chloride hexahydrate ErCl3·6H2O solution (5 mmol, Volume or concentration?, Solvent?). Ammonia (5 M) was added gradually to achieve a pH of 6–7. After stirring at room temperature for 2 h, the mixture yielded a precipitate which was filtered off, washed with water and dried in a vacuum. The resulting crude product was recrystallized from aqueous ethanol solution to obtain the pure trihydrate complex, (II). To obtain (I) from (II), a solution of 1,10-phenanthroline in ethanol was added to an ethanolic solution of (II) in a 1:1 [Molar?] ratio. After stirring at room temperature for 3 h, the adducted compound precipitated out. The precipitate thus formed was filtered repeatedly, washed with water and dried in a vacuum. Single crystals of (I) suitable for X-ray diffraction were grown by slow evaporation of a solution in ethanol.

Refinement top

All H atoms were placed in calculated positions, with Caryl—H = 0.93 Å and Cmethyl—H = 0.96 Å, and allowed to ride on their parent C atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H. The features in the residual electron density are possibly due to disorder in the crystal. The inclusion of the corresponding peaks, however, did not yield satisfactory results.

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. A perspective view of the eightfold coordination polyhedron of (I), possessing a distorted square-antiprismatic geometry. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The crystal packing of (I), viewed in the ac plane, showing the sheet structure formed by C—H···O hydrogen bonds. H atoms are represented as small spheres of arbitrary radii, but those not involved in hydrogen bonding have been omitted for clarity. C atoms are shown as black, H atoms as white, Er atoms as green, N atoms as blue and O atoms as red. [Symmetry codes: (i) 1 + x, y, z; (ii) 1/2 + x, 1/2 - y, -1/2 + z].
[Figure 3] Fig. 3. The packing of (I), viewed down the a axis, illustrating the putative hydrophobic porous channels in the middle and at the corners of the unit cell. The empty channels are surrounded by a cluster of molecular dimers, which are formed by cooperative C—H···π interactions. H atoms are represented as small spheres of arbitrary radii, but those not involved in hydrogen bonding have been omitted for clarity. Cg1 is the centroid of the N1/C16–C19/C27 ring. [Symmetry code: (i) 1 - x, 1 - y, -z].
Tris(acetylacetonato-κ2O,O')(1,10-phenanthroline-κ2N,N')erbium(III) top
Crystal data top
[Er(C5H7O2)3(C12H8N2)]F(000) = 1284
Mr = 644.78Dx = 1.487 Mg m3
Monoclinic, P21/nMelting point: 251(2) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.466 (1) ÅCell parameters from 937 reflections
b = 21.025 (3) Åθ = 2.5–24°
c = 14.643 (2) ŵ = 2.95 mm1
β = 98.670 (2)°T = 295 K
V = 2881.0 (6) Å3Plate, pale green
Z = 40.26 × 0.14 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5638 independent reflections
Radiation source: fine-focus sealed tube4604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.565, Tmax = 0.747k = 2425
21859 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0271P)2 + 7.0644P]
where P = (Fo2 + 2Fc2)/3
5638 reflections(Δ/σ)max = 0.005
331 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.71 e Å3
Crystal data top
[Er(C5H7O2)3(C12H8N2)]V = 2881.0 (6) Å3
Mr = 644.78Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.466 (1) ŵ = 2.95 mm1
b = 21.025 (3) ÅT = 295 K
c = 14.643 (2) Å0.26 × 0.14 × 0.10 mm
β = 98.670 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5638 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4604 reflections with I > 2σ(I)
Tmin = 0.565, Tmax = 0.747Rint = 0.034
21859 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.26Δρmax = 0.92 e Å3
5638 reflectionsΔρmin = 0.71 e Å3
331 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = -0.71649(0.00162) m2 = 0.20629(0.00192) m3 = 0.66640(0.00152) D = 0.43430(0.01966) Atom d s d/s (d/s)**2 Er1 * 0.0000 0.0003 0.000 0.000 O1 * 0.0000 0.0045 0.000 0.000 O2 * 0.0000 0.0043 0.000 0.000 C1 0.1903 0.0072 26.566 705.744 C2 0.2401 0.0079 30.523 931.655 C3 0.0715 0.0068 10.563 111.575 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 2 m1 = -0.70275(0.00581) m2 = 0.03062(0.01346) m3 = 0.71077(0.00624) D = -1.10365(0.11865) Atom d s d/s (d/s)**2 C1 * 0.0000 0.0072 0.000 0.000 C2 * 0.0000 0.0079 0.000 0.000 C3 * 0.0000 0.0068 0.000 0.000 O1 0.0208 0.0045 4.631 21.444 O2 0.1570 0.0043 36.402 1325.130 C4 - 0.0688 0.0098 - 7.056 49.793 C5 - 0.1765 0.0081 - 21.923 480.600 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 3 m1 = -0.25099(0.00234) m2 = -0.92286(0.00074) m3 = 0.29210(0.00178) D = -6.97282(0.00988) Atom d s d/s (d/s)**2 Er1 * 0.0000 0.0002 0.000 0.000 O3 * 0.0000 0.0046 0.000 0.000 O4 * 0.0000 0.0046 0.000 0.000 C6 - 0.4596 0.0082 - 56.324 3172.374 C7 - 0.6717 0.0092 - 73.008 5330.125 C8 - 0.4246 0.0096 - 44.023 1938.003 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 4 m1 = -0.28177(0.00529) m2 = -0.74307(0.01067) m3 = 0.60701(0.01298) D = -4.38131(0.16096) Atom d s d/s (d/s)**2 C6 * 0.0000 0.0079 0.000 0.000 C7 * 0.0000 0.0090 0.000 0.000 C8 * 0.0000 0.0096 0.000 0.000 O3 0.0161 0.0045 3.532 12.475 O4 - 0.0304 0.0047 - 6.488 42.094 C9 - 0.0174 0.0105 - 1.655 2.739 C10 0.0600 0.0137 4.374 19.134 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 5 m1 = 0.21826(0.00227) m2 = -0.16925(0.00177) m3 = -0.96110(0.00064) D = -2.65570(0.01427) Atom d s d/s (d/s)**2 Er1 * 0.0000 0.0003 0.000 0.000 O5 * 0.0000 0.0046 0.000 0.000 O6 * 0.0000 0.0045 0.000 0.000 C11 0.3345 0.0073 45.790 2096.695 C12 0.4079 0.0089 46.048 2120.425 C13 0.2099 0.0074 28.208 795.671 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 6 m1 = 0.20011(0.00481) m2 = 0.04222(0.01572) m3 = -0.97886(0.00140) D = -1.58642(0.07493) Atom d s d/s (d/s)**2 C11 * 0.0000 0.0073 0.000 0.000 C12 * 0.0000 0.0089 0.000 0.000 C13 * 0.0000 0.0074 0.000 0.000 O5 - 0.0874 0.0046 - 18.815 354.021 O6 0.0553 0.0045 12.336 152.173 C14 0.0640 0.0117 5.475 29.976 C15 - 0.1291 0.0098 - 13.141 172.682 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 7 m1 = -0.17247(0.00211) m2 = 0.85764(0.00123) m3 = -0.48446(0.00177) D = 4.51322(0.01844) Atom d s d/s (d/s)**2 Er1 * 0.0000 0.0003 0.000 0.000 N1 * 0.0000 0.0049 0.000 0.000 N2 * 0.0000 0.0048 0.000 0.000 C16 0.0485 0.0069 7.032 49.445 C25 0.0939 0.0068 13.780 189.882 C26 - 0.2098 0.0058 - 35.901 1288.870 C27 - 0.2144 0.0061 - 35.444 1256.279 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 8 m1 = -0.04411(0.00356) m2 = 0.80322(0.00195) m3 = -0.59404(0.00278) D = 4.71132(0.01717) Atom d s d/s (d/s)**2 N1 * 0.0009 0.0049 0.187 0.035 N2 * -0.0009 0.0048 - 0.179 0.032 C26 * 0.0024 0.0058 0.413 0.171 C27 * -0.0026 0.0060 - 0.433 0.187 Er1 - 0.3807 0.0003 - 1473.250 2170466.750 C16 0.0540 0.0069 7.829 61.300 C25 0.0953 0.0067 14.132 199.719 C19 0.0120 0.0073 1.642 2.697 C22 0.0716 0.0072 9.991 99.824 ============ Sum((d/s)**2) for starred atoms 0.425 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms does not deviate significantly from planarity

Plane 9 m1 = 0.29392(0.00155) m2 = 0.49013(0.00139) m3 = -0.82060(0.00087) D = 1.56778(0.01252) Atom d s d/s (d/s)**2 O3 * -0.0170 0.0045 - 3.810 14.513 O4 * 0.0186 0.0047 3.931 15.449 O5 * 0.0183 0.0046 3.965 15.721 O6 * -0.0167 0.0045 - 3.738 13.973 Er1 1.1862 0.0003 4149.166 17215574.000 ============ Sum((d/s)**2) for starred atoms 59.655 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity

Plane 10 m1 = 0.32065(0.00170) m2 = 0.50873(0.00142) m3 = -0.79898(0.00099) D = 4.41731(0.01272) Atom d s d/s (d/s)**2 N1 * -0.0016 0.0050 - 0.320 0.102 N2 * 0.0015 0.0047 0.310 0.096 O1 * 0.0013 0.0045 0.282 0.079 O2 * -0.0013 0.0044 - 0.286 0.082 Er1 - 1.3806 0.0003 - 4851.617 23538190.000 ============ Sum((d/s)**2) for starred atoms 0.359 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms does not deviate significantly from planarity

Plane 11 m1 = -0.04151(0.00130) m2 = 0.81525(0.00068) m3 = -0.57762(0.00100) D = 4.84331(0.00729) Atom d s d/s (d/s)**2 N1 * 0.0001 0.0049 0.018 0.000 N2 * -0.0467 0.0048 - 9.782 95.697 C16 * 0.0748 0.0069 10.847 117.649 C17 * 0.0088 0.0088 1.000 0.999 C18 * 0.0368 0.0088 4.209 17.717 C19 * -0.0173 0.0073 - 2.369 5.611 C20 * -0.0193 0.0094 - 2.044 4.177 C21 * -0.0133 0.0091 - 1.458 2.126 C22 * -0.0044 0.0072 - 0.617 0.380 C23 * 0.0622 0.0084 7.386 54.551 C24 * 0.0825 0.0078 10.649 113.399 C25 * 0.0274 0.0068 4.063 16.510 C26 * -0.0474 0.0058 - 8.165 66.669 C27 * -0.0285 0.0060 - 4.721 22.292 Er1 - 0.3777 0.0003 - 1469.583 2159672.750 ============ Sum((d/s)**2) for starred atoms 517.778 Chi-squared at 95% for 11 degrees of freedom: 19.70 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 10.43 (3/4) 169.57 (3/4) 1 3 79.39 (0.16) 100.61 (0.16) 1 4 63.06 (0.54) 116.94 (0.54) 1 5 33.72 (0.16) 146.28 (0.16) 1 6 38.10 (0.44) 141.90 (0.44) 1 7 88.72 (0.17) 91.28 (0.17) 1 8 78.55 (0.22) 101.45 (0.22) 1 9 48.98 (0.13) 131.02 (0.13) 1 10 48.91 (0.14) 131.09 (0.14) 1 11 79.22 (0.13) 100.78 (0.13) 2 3 69.16 (0.78) 110.84 (0.78) 2 4 52.65 (0.97) 127.35 (0.97) 2 5 32.68 (0.41) 147.32 (0.41) 2 6 33.38 (0.45) 146.62 (0.45) 2 7 78.65 (0.72) 101.35 (0.72) 2 8 68.49 (0.72) 111.51 (0.72) 2 9 39.21 (0.69) 140.79 (0.69) 2 10 38.95 (0.69) 141.05 (0.69) 2 11 69.12 (0.70) 110.88 (0.70) 3 4 20.97 (0.69) 159.03 (0.69) 3 5 79.67 (0.13) 100.33 (0.13) 3 6 67.97 (0.88) 112.03 (0.88) 3 7 27.16 (0.18) 152.84 (0.18) 3 8 25.35 (0.21) 154.65 (0.21) 3 9 40.02 (0.13) 139.98 (0.13) 3 10 38.43 (0.12) 141.57 (0.12) 3 11 24.40 (0.13) 155.60 (0.13) 4 5 58.73 (0.68) 121.27 (0.68) 4 6 47.01 (1.13) 132.99 (1.13) 4 7 28.02 (0.42) 151.98 (0.42) 4 8 19.09 (0.41) 160.91 (0.41) 4 9 19.07 (0.67) 160.93 (0.67) 4 10 17.57 (2/3) 162.43 (2/3) 4 11 19.14 (0.39) 160.86 (0.39) 5 6 12.23 (0.90) 167.77 (0.90) 5 7 73.57 (0.13) 106.43 (0.13) 5 8 64.83 (1/5) 115.17 (1/5) 5 9 39.66 (0.13) 140.34 (0.13) 5 10 41.25 (0.13) 138.75 (0.13) 5 11 65.91 (0.11) 114.09 (0.11) 6 7 61.58 (0.87) 118.42 (0.87) 6 8 52.66 (0.91) 127.34 (0.91) 6 9 28.02 (0.87) 151.98 (0.87) 6 10 29.80 (0.86) 150.20 (0.86) 6 11 53.73 (0.88) 126.27 (0.88) 7 8 10.17 (0.22) 169.83 (0.22) 7 9 39.90 (0.13) 140.10 (0.13) 7 10 39.82 (0.13) 140.18 (0.13) 7 11 9.53 (0.14) 170.47 (0.14) 8 9 29.75 (0.18) 150.25 (0.18) 8 10 29.64 (0.21) 150.36 (0.21) 8 11 1.18 (0.16) 178.82 (0.16) 9 10 2.24 (0.11) 177.76 (0.11) 9 11 30.53 (0.10) 149.47 (0.10) 10 11 30.35 (0.10) 149.65 (0.10)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Er10.42143 (3)0.346998 (12)0.159196 (18)0.03998 (10)
O10.4798 (5)0.4531 (2)0.1535 (3)0.0563 (11)
O20.2593 (4)0.3904 (2)0.0445 (3)0.0532 (11)
O30.5576 (5)0.3651 (2)0.3004 (3)0.0599 (12)
O40.2675 (5)0.3889 (2)0.2527 (3)0.0611 (12)
O50.5372 (5)0.2514 (2)0.1995 (3)0.0599 (12)
O60.2478 (5)0.2700 (2)0.1533 (3)0.0549 (11)
N10.6665 (5)0.3516 (2)0.1115 (3)0.0457 (12)
N20.4461 (5)0.2926 (2)0.0053 (3)0.0442 (12)
C10.4199 (8)0.5018 (3)0.1154 (5)0.0557 (17)
C20.2997 (8)0.4999 (3)0.0480 (5)0.069 (2)
H20.26270.53870.02510.083*
C30.2305 (7)0.4459 (3)0.0121 (5)0.0551 (16)
C40.4888 (10)0.5652 (4)0.1449 (7)0.091 (3)
H4A0.55460.55970.20100.136*
H4B0.41620.59520.15500.136*
H4C0.53920.58080.09730.136*
C50.1125 (9)0.4496 (4)0.0693 (5)0.081 (2)
H5A0.05570.41160.07210.122*
H5B0.15330.45360.12520.122*
H5C0.05340.48580.06260.122*
C60.5465 (9)0.4055 (4)0.3626 (5)0.071 (2)
C70.4215 (10)0.4351 (4)0.3763 (6)0.088 (3)
H70.42580.46380.42510.105*
C80.2906 (10)0.4252 (5)0.3228 (7)0.087 (3)
C90.6829 (10)0.4217 (5)0.4262 (6)0.114 (4)
H9A0.74600.38570.43120.171*
H9B0.66080.43230.48630.171*
H9C0.72830.45730.40170.171*
C100.1583 (11)0.4588 (7)0.3475 (9)0.162 (6)
H10A0.10730.47870.29330.242*
H10B0.18700.49060.39360.242*
H10C0.09750.42830.37110.242*
C110.5047 (9)0.1938 (3)0.1858 (5)0.066 (2)
C120.3657 (10)0.1710 (4)0.1664 (6)0.081 (3)
H120.35210.12720.16190.097*
C130.2451 (9)0.2102 (4)0.1531 (5)0.066 (2)
C140.6290 (12)0.1476 (4)0.1947 (8)0.112 (4)
H14A0.68700.15300.25390.168*
H14B0.68550.15580.14680.168*
H14C0.59320.10490.18910.168*
C150.0991 (10)0.1799 (4)0.1412 (7)0.092 (3)
H15A0.04050.20130.17960.139*
H15B0.10810.13590.15860.139*
H15C0.05570.18310.07770.139*
C160.7740 (7)0.3820 (3)0.1603 (5)0.0566 (17)
H160.75500.40980.20650.068*
C170.9137 (7)0.3744 (4)0.1458 (5)0.071 (2)
H170.98720.39220.18720.085*
C180.9442 (7)0.3423 (4)0.0745 (6)0.077 (3)
H181.03740.34140.06150.092*
C190.8342 (7)0.3090 (3)0.0173 (5)0.0584 (18)
C200.8543 (10)0.2715 (5)0.0612 (6)0.085 (3)
H200.94630.26650.07520.102*
C210.7465 (11)0.2435 (4)0.1148 (6)0.085 (3)
H210.76410.21950.16520.102*
C220.6039 (9)0.2501 (3)0.0955 (5)0.0648 (19)
C230.4852 (12)0.2240 (4)0.1520 (5)0.083 (3)
H230.49760.20080.20430.100*
C240.3526 (10)0.2326 (4)0.1303 (5)0.076 (2)
H240.27290.21580.16740.091*
C250.3378 (7)0.2674 (3)0.0508 (4)0.0579 (17)
H250.24620.27320.03650.070*
C260.5790 (7)0.2847 (3)0.0174 (4)0.0436 (14)
C270.6953 (6)0.3158 (3)0.0393 (4)0.0425 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Er10.04122 (15)0.03884 (15)0.03956 (15)0.00081 (13)0.00506 (10)0.00146 (13)
O10.058 (3)0.043 (3)0.067 (3)0.001 (2)0.004 (2)0.007 (2)
O20.045 (2)0.051 (3)0.062 (3)0.003 (2)0.005 (2)0.007 (2)
O30.073 (3)0.060 (3)0.043 (2)0.015 (2)0.003 (2)0.008 (2)
O40.063 (3)0.062 (3)0.061 (3)0.002 (2)0.020 (2)0.018 (2)
O50.071 (3)0.046 (3)0.060 (3)0.009 (2)0.001 (2)0.007 (2)
O60.058 (3)0.046 (3)0.062 (3)0.008 (2)0.016 (2)0.004 (2)
N10.038 (3)0.043 (3)0.053 (3)0.003 (2)0.004 (2)0.001 (2)
N20.045 (3)0.047 (3)0.039 (3)0.005 (2)0.001 (2)0.003 (2)
C10.068 (4)0.044 (4)0.058 (4)0.001 (3)0.019 (3)0.004 (3)
C20.078 (5)0.049 (4)0.078 (5)0.010 (4)0.006 (4)0.016 (4)
C30.050 (4)0.056 (4)0.060 (4)0.015 (3)0.010 (3)0.010 (3)
C40.112 (7)0.047 (5)0.111 (7)0.003 (5)0.008 (6)0.002 (4)
C50.077 (5)0.090 (6)0.074 (5)0.015 (5)0.001 (4)0.020 (5)
C60.084 (6)0.070 (5)0.054 (4)0.003 (4)0.005 (4)0.014 (4)
C70.088 (6)0.097 (7)0.077 (6)0.004 (5)0.010 (5)0.046 (5)
C80.080 (6)0.098 (7)0.086 (6)0.015 (5)0.024 (5)0.023 (5)
C90.102 (7)0.146 (10)0.082 (6)0.025 (7)0.025 (6)0.049 (6)
C100.094 (8)0.220 (15)0.170 (12)0.029 (9)0.019 (8)0.129 (11)
C110.093 (6)0.043 (4)0.057 (4)0.011 (4)0.002 (4)0.007 (3)
C120.109 (7)0.038 (4)0.093 (6)0.005 (4)0.006 (5)0.007 (4)
C130.085 (5)0.056 (5)0.061 (5)0.012 (4)0.021 (4)0.008 (4)
C140.127 (9)0.060 (6)0.143 (10)0.030 (6)0.000 (7)0.010 (6)
C150.102 (7)0.064 (5)0.111 (7)0.032 (5)0.015 (6)0.007 (5)
C160.053 (4)0.056 (4)0.056 (4)0.015 (3)0.008 (3)0.007 (3)
C170.044 (4)0.116 (7)0.049 (4)0.018 (4)0.008 (3)0.003 (4)
C180.037 (4)0.090 (6)0.105 (7)0.000 (4)0.013 (4)0.043 (5)
C190.050 (4)0.064 (4)0.064 (4)0.009 (3)0.018 (3)0.014 (4)
C200.079 (6)0.100 (7)0.086 (6)0.018 (5)0.047 (5)0.011 (5)
C210.107 (7)0.090 (6)0.068 (5)0.007 (5)0.046 (5)0.016 (5)
C220.090 (5)0.061 (5)0.044 (4)0.004 (4)0.012 (4)0.010 (3)
C230.128 (8)0.078 (6)0.044 (4)0.011 (6)0.014 (5)0.017 (4)
C240.101 (6)0.069 (5)0.047 (4)0.024 (5)0.018 (4)0.009 (4)
C250.060 (4)0.062 (4)0.047 (4)0.011 (3)0.008 (3)0.000 (3)
C260.054 (4)0.043 (3)0.034 (3)0.000 (3)0.008 (3)0.003 (2)
C270.041 (3)0.045 (3)0.042 (3)0.002 (3)0.008 (3)0.007 (3)
Geometric parameters (Å, º) top
Er1—O22.287 (4)C9—H9C0.9600
Er1—O32.297 (4)C10—H10A0.9600
Er1—O62.300 (4)C10—H10B0.9600
Er1—O12.302 (4)C10—H10C0.9600
Er1—O42.318 (4)C11—C121.389 (12)
Er1—O52.324 (4)C11—C141.516 (11)
Er1—N12.523 (5)C12—C131.398 (11)
Er1—N22.568 (5)C12—H120.9300
O1—C11.260 (8)C13—C151.508 (11)
O2—C31.274 (7)C14—H14A0.9600
O3—C61.261 (8)C14—H14B0.9600
O4—C81.272 (9)C14—H14C0.9600
O5—C111.257 (8)C15—H15A0.9600
O6—C131.257 (8)C15—H15B0.9600
N1—C161.317 (7)C15—H15C0.9600
N1—C271.358 (8)C16—C171.380 (10)
N2—C251.324 (7)C16—H160.9300
N2—C261.359 (8)C17—C181.311 (11)
C1—C21.390 (10)C17—H170.9300
C1—C41.518 (10)C18—C191.419 (11)
C2—C31.375 (10)C18—H180.9300
C2—H20.9300C19—C271.408 (9)
C3—C51.508 (9)C19—C201.429 (11)
C4—H4A0.9600C20—C211.327 (12)
C4—H4B0.9600C20—H200.9300
C4—H4C0.9600C21—C221.427 (12)
C5—H5A0.9600C21—H210.9300
C5—H5B0.9600C22—C231.402 (11)
C5—H5C0.9600C22—C261.405 (9)
C6—C71.378 (11)C23—C241.353 (12)
C6—C91.513 (11)C23—H230.9300
C7—C81.379 (12)C24—C251.399 (10)
C7—H70.9300C24—H240.9300
C8—C101.528 (12)C25—H250.9300
C9—H9A0.9600C26—C271.434 (8)
C9—H9B0.9600
O2—Er1—O3144.89 (16)C6—C9—H9A109.5
O2—Er1—O681.75 (15)C6—C9—H9B109.5
O3—Er1—O6116.83 (17)H9A—C9—H9B109.5
O2—Er1—O174.05 (15)C6—C9—H9C109.5
O3—Er1—O176.51 (16)H9A—C9—H9C109.5
O6—Er1—O1148.74 (16)H9B—C9—H9C109.5
O2—Er1—O482.53 (17)C8—C10—H10A109.5
O3—Er1—O473.92 (17)C8—C10—H10B109.5
O6—Er1—O477.30 (16)H10A—C10—H10B109.5
O1—Er1—O480.16 (16)C8—C10—H10C109.5
O2—Er1—O5140.37 (16)H10A—C10—H10C109.5
O3—Er1—O574.69 (16)H10B—C10—H10C109.5
O6—Er1—O572.99 (17)O5—C11—C12124.5 (7)
O1—Er1—O5137.81 (16)O5—C11—C14115.8 (8)
O4—Er1—O5119.57 (17)C12—C11—C14119.7 (7)
O2—Er1—N1108.94 (15)C11—C12—C13123.6 (7)
O3—Er1—N180.11 (16)C11—C12—H12118.2
O6—Er1—N1134.33 (16)C13—C12—H12118.2
O1—Er1—N173.54 (16)O6—C13—C12125.0 (7)
O4—Er1—N1146.58 (16)O6—C13—C15116.2 (7)
O5—Er1—N171.67 (16)C12—C13—C15118.8 (7)
O2—Er1—N270.91 (16)C11—C14—H14A109.5
O3—Er1—N2138.64 (16)C11—C14—H14B109.5
O6—Er1—N279.21 (15)H14A—C14—H14B109.5
O1—Er1—N2110.19 (16)C11—C14—H14C109.5
O4—Er1—N2146.65 (16)H14A—C14—H14C109.5
O5—Er1—N274.68 (16)H14B—C14—H14C109.5
N1—Er1—N264.25 (15)C13—C15—H15A109.5
C1—O1—Er1135.2 (4)C13—C15—H15B109.5
C3—O2—Er1136.2 (4)H15A—C15—H15B109.5
C6—O3—Er1131.7 (5)C13—C15—H15C109.5
C8—O4—Er1131.1 (5)H15A—C15—H15C109.5
C11—O5—Er1134.2 (5)H15B—C15—H15C109.5
C13—O6—Er1135.9 (5)N1—C16—C17122.6 (7)
C16—N1—C27117.5 (6)N1—C16—H16118.7
C16—N1—Er1122.4 (5)C17—C16—H16118.7
C27—N1—Er1119.6 (4)C18—C17—C16120.9 (7)
C25—N2—C26117.2 (5)C18—C17—H17119.5
C25—N2—Er1124.0 (4)C16—C17—H17119.5
C26—N2—Er1118.7 (3)C17—C18—C19119.6 (7)
O1—C1—C2123.8 (6)C17—C18—H18120.2
O1—C1—C4116.3 (7)C19—C18—H18120.2
C2—C1—C4119.9 (7)C27—C19—C18116.2 (7)
C3—C2—C1126.0 (6)C27—C19—C20118.8 (7)
C3—C2—H2117.0C18—C19—C20124.9 (7)
C1—C2—H2117.0C21—C20—C19122.4 (8)
O2—C3—C2123.4 (6)C21—C20—H20118.8
O2—C3—C5115.7 (6)C19—C20—H20118.8
C2—C3—C5120.9 (6)C20—C21—C22120.4 (8)
C1—C4—H4A109.5C20—C21—H21119.8
C1—C4—H4B109.5C22—C21—H21119.8
H4A—C4—H4B109.5C23—C22—C26117.6 (7)
C1—C4—H4C109.5C23—C22—C21122.9 (8)
H4A—C4—H4C109.5C26—C22—C21119.4 (7)
H4B—C4—H4C109.5C24—C23—C22119.9 (7)
C3—C5—H5A109.5C24—C23—H23120.0
C3—C5—H5B109.5C22—C23—H23120.0
H5A—C5—H5B109.5C23—C24—C25118.5 (7)
C3—C5—H5C109.5C23—C24—H24120.7
H5A—C5—H5C109.5C25—C24—H24120.7
H5B—C5—H5C109.5N2—C25—C24124.1 (7)
O3—C6—C7125.2 (7)N2—C25—H25117.9
O3—C6—C9116.1 (8)C24—C25—H25117.9
C7—C6—C9118.7 (7)N2—C26—C22122.6 (6)
C6—C7—C8124.5 (7)N2—C26—C27117.4 (5)
C6—C7—H7117.8C22—C26—C27120.0 (6)
C8—C7—H7117.8N1—C27—C19122.6 (6)
O4—C8—C7125.5 (8)N1—C27—C26118.5 (5)
O4—C8—C10114.9 (8)C19—C27—C26118.9 (6)
C7—C8—C10119.6 (8)
O2—Er1—O1—C112.4 (6)O1—Er1—N2—C2669.3 (4)
O3—Er1—O1—C1148.3 (6)O4—Er1—N2—C26172.5 (4)
O6—Er1—O1—C128.3 (8)O5—Er1—N2—C2666.6 (4)
O4—Er1—O1—C172.6 (6)N1—Er1—N2—C2610.1 (4)
O5—Er1—O1—C1163.7 (6)Er1—O1—C1—C212.2 (11)
N1—Er1—O1—C1128.3 (6)Er1—O1—C1—C4169.6 (5)
N2—Er1—O1—C174.5 (6)O1—C1—C2—C31.1 (13)
O3—Er1—O2—C329.4 (7)C4—C1—C2—C3177.0 (8)
O6—Er1—O2—C3155.4 (6)Er1—O2—C3—C23.0 (11)
O1—Er1—O2—C34.7 (6)Er1—O2—C3—C5177.7 (5)
O4—Er1—O2—C377.2 (6)C1—C2—C3—O28.5 (12)
O5—Er1—O2—C3154.3 (6)C1—C2—C3—C5172.2 (7)
N1—Er1—O2—C370.5 (6)Er1—O3—C6—C724.7 (13)
N2—Er1—O2—C3123.3 (6)Er1—O3—C6—C9155.5 (6)
O2—Er1—O3—C620.6 (8)O3—C6—C7—C80.9 (16)
O6—Er1—O3—C695.5 (7)C9—C6—C7—C8179.3 (10)
O1—Er1—O3—C654.2 (7)Er1—O4—C8—C719.1 (15)
O4—Er1—O3—C629.2 (7)Er1—O4—C8—C10161.8 (8)
O5—Er1—O3—C6156.9 (7)C6—C7—C8—O41.7 (17)
N1—Er1—O3—C6129.5 (7)C6—C7—C8—C10177.4 (11)
N2—Er1—O3—C6159.6 (6)Er1—O5—C11—C1222.7 (12)
O2—Er1—O4—C8127.4 (8)Er1—O5—C11—C14159.3 (6)
O3—Er1—O4—C826.3 (7)O5—C11—C12—C134.8 (14)
O6—Er1—O4—C8149.4 (8)C14—C11—C12—C13177.2 (8)
O1—Er1—O4—C852.4 (7)Er1—O6—C13—C126.8 (12)
O5—Er1—O4—C887.7 (8)Er1—O6—C13—C15175.6 (5)
N1—Er1—O4—C814.1 (9)C11—C12—C13—O63.1 (14)
N2—Er1—O4—C8164.3 (7)C11—C12—C13—C15174.4 (8)
O2—Er1—O5—C1131.0 (8)C27—N1—C16—C175.7 (10)
O3—Er1—O5—C11146.8 (7)Er1—N1—C16—C17166.5 (6)
O6—Er1—O5—C1121.8 (7)N1—C16—C17—C188.7 (12)
O1—Er1—O5—C11164.7 (6)C16—C17—C18—C197.2 (13)
O4—Er1—O5—C1185.8 (7)C17—C18—C19—C273.2 (11)
N1—Er1—O5—C11128.8 (7)C17—C18—C19—C20178.8 (8)
N2—Er1—O5—C1161.3 (7)C27—C19—C20—C210.9 (13)
O2—Er1—O6—C13135.2 (7)C18—C19—C20—C21177.0 (8)
O3—Er1—O6—C1376.2 (7)C19—C20—C21—C220.0 (14)
O1—Er1—O6—C13174.5 (6)C20—C21—C22—C23177.1 (9)
O4—Er1—O6—C13140.6 (7)C20—C21—C22—C262.1 (13)
O5—Er1—O6—C1313.9 (6)C26—C22—C23—C240.0 (12)
N1—Er1—O6—C1326.8 (7)C21—C22—C23—C24179.2 (8)
N2—Er1—O6—C1363.2 (7)C22—C23—C24—C250.4 (13)
O2—Er1—N1—C16120.8 (5)C26—N2—C25—C241.1 (10)
O3—Er1—N1—C1624.1 (5)Er1—N2—C25—C24173.8 (5)
O6—Er1—N1—C16142.1 (4)C23—C24—C25—N20.1 (12)
O1—Er1—N1—C1654.7 (5)C25—N2—C26—C221.5 (9)
O4—Er1—N1—C1615.1 (6)Er1—N2—C26—C22173.6 (5)
O5—Er1—N1—C16101.1 (5)C25—N2—C26—C27175.5 (6)
N2—Er1—N1—C16177.5 (5)Er1—N2—C26—C279.3 (7)
O2—Er1—N1—C2767.1 (4)C23—C22—C26—N21.0 (10)
O3—Er1—N1—C27148.0 (4)C21—C22—C26—N2179.8 (7)
O6—Er1—N1—C2729.9 (5)C23—C22—C26—C27175.9 (7)
O1—Er1—N1—C27133.3 (4)C21—C22—C26—C273.3 (10)
O4—Er1—N1—C27172.8 (4)C16—N1—C27—C191.7 (9)
O5—Er1—N1—C2771.0 (4)Er1—N1—C27—C19170.7 (5)
N2—Er1—N1—C2710.5 (4)C16—N1—C27—C26177.2 (5)
O2—Er1—N2—C2551.9 (5)Er1—N1—C27—C2610.4 (7)
O3—Er1—N2—C25151.7 (5)C18—C19—C27—N10.5 (9)
O6—Er1—N2—C2533.1 (5)C20—C19—C27—N1178.6 (6)
O1—Er1—N2—C25115.9 (5)C18—C19—C27—C26178.4 (6)
O4—Er1—N2—C2512.8 (7)C20—C19—C27—C260.3 (10)
O5—Er1—N2—C25108.2 (5)N2—C26—C27—N10.5 (8)
N1—Er1—N2—C25175.1 (5)C22—C26—C27—N1176.6 (6)
O2—Er1—N2—C26133.4 (4)N2—C26—C27—C19179.5 (6)
O3—Er1—N2—C2623.1 (5)C22—C26—C27—C192.4 (9)
O6—Er1—N2—C26141.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.393.242 (8)153
C21—H21···O4ii0.932.583.416 (10)150
C2—H2···Cg1iii0.932.983.879 (9)163
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Er(C5H7O2)3(C12H8N2)]
Mr644.78
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.466 (1), 21.025 (3), 14.643 (2)
β (°) 98.670 (2)
V3)2881.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.95
Crystal size (mm)0.26 × 0.14 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.565, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
21859, 5638, 4604
Rint0.034
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.098, 1.26
No. of reflections5638
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.71

Computer programs: SMART (Bruker, 2003), SAINT-Plus (Bruker, 2003), SAINT-Plus, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg & Berndt, 1999) and PLATON (Spek, 2003), SHELXL97 and PLATON.

Selected geometric parameters (Å, º) top
Er1—O22.287 (4)O2—C31.274 (7)
Er1—O32.297 (4)O3—C61.261 (8)
Er1—O62.300 (4)O4—C81.272 (9)
Er1—O12.302 (4)O5—C111.257 (8)
Er1—O42.318 (4)O6—C131.257 (8)
Er1—O52.324 (4)N1—C161.317 (7)
Er1—N12.523 (5)N1—C271.358 (8)
Er1—N22.568 (5)N2—C251.324 (7)
O1—C11.260 (8)N2—C261.359 (8)
O3—Er1—O6116.83 (17)C1—O1—Er1135.2 (4)
O2—Er1—O174.05 (15)C3—O2—Er1136.2 (4)
O3—Er1—O473.92 (17)C6—O3—Er1131.7 (5)
O6—Er1—O477.30 (16)C8—O4—Er1131.1 (5)
O3—Er1—O574.69 (16)C11—O5—Er1134.2 (5)
O6—Er1—O572.99 (17)C13—O6—Er1135.9 (5)
O4—Er1—O5119.57 (17)C16—N1—C27117.5 (6)
O2—Er1—N1108.94 (15)C16—N1—Er1122.4 (5)
O1—Er1—N173.54 (16)C27—N1—Er1119.6 (4)
O2—Er1—N270.91 (16)C25—N2—C26117.2 (5)
O1—Er1—N2110.19 (16)C25—N2—Er1124.0 (4)
N1—Er1—N264.25 (15)C26—N2—Er1118.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.393.242 (8)153
C21—H21···O4ii0.932.583.416 (10)150
C2—H2···Cg1iii0.932.983.879 (9)163
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z1/2; (iii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds