Download citation
Download citation
link to html
In the title dinuclear acetate-bridged complex, [Cu2(C2H3O2)3(NCS)(C10H9N3)2], the two Cu atoms are five-coordinated, with a basal plane consisting of two N atoms of a di-2-pyridylamine (dpyam) ligand and two O atoms of two different acetate ligands. The axial positions of these Cu atoms are coordinated to N and O atoms from thio­cyanate and acetate mol­ecules, respectively, leading to a distorted square-pyramidal geometry with τ values of 0.30 and 0.22. Both CuII ions are linked by an acetate group in the equatorial–equatorial positions and have synanti bridging configurations. Hydrogen-bond inter­actions between the amine H atom and the coordinated and uncoordinated O atoms of the acetate anions generate an infinite one-dimensional chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106054163/dn3030sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106054163/dn3030Isup2.hkl
Contains datablock I

CCDC reference: 638305

Comment top

The coordination chemistry of copper(II) complexes with various carboxylates has been investigated for many years. Carboxylate chemistry is interesting for two reasons. Firstly, carboxylates play a vital role as ligands in biochemical systems involving mono-, di- or polymetallic active sites, and secondly, polynuclear carboxylates are very good probes for exchange-coupling interactions between adjacent metal ions. Carboxylate groups are known to assume different bridging conformations and the important types are syn–syn, anti–anti and syn–anti (Colacio et al., 1993). It may be noted that structurally characterized examples of syn–anti configuration are far less numerous than those with the syn–syn configuration (Sen et al., 1998). We report here the synthesis and crystal structure of a new syn–anti configuration acetate-bridged complex, [Cu2(dpyam)2(µ-O2CCH3)(O2CCH3)2(NCS)], (I).

The structure of (I) consists of a dinuclear [Cu2(dpyam)2(µ-O2CCH3)(O2CCH3)2(NCS)] unit. The Cu atoms are bridged unsymmetrically by an acetate group in a syn–anti arrangement (Fig. 1). Atoms Cu1 and Cu2 are five-coordinated, with a basal plane consisting of two N atoms of the dpyam ligand and two O atoms of two different acetate ligands. The axial positions of Cu1 and Cu2 are coordinated by N and O atoms from thiocyanate and acetate molecules, respectively (Table 1), leading to a square-pyramidal geometry. The square bases of the copper chromophores are non-planar, with tetrahedral twists of 25.7 (1) and 43.7 (1)° for Cu1 and Cu2, respectively. The Cu atoms lie above the basal plane, at 0.280 (1) Å towards N7 for Cu1 and 0.112 (1) Å towards O6 for Cu2.

The distortion of a square pyramid can be best described by the structural parameter τ (τ = 0 for a square pyramid and τ = 1 for a trigonal bipyramid; Addison et al., 1984), which in this case has values of 0.30 and 0.22 for Cu1 and Cu2, respectively. The copper chromophores can be described as having a distorted square-pyramidal geometry, with a high tetrahedral twist of the square bases. The Cu···Cu distance is 4.800 (3) Å. The dihedral angles between the pyridine rings of the dpyam ligands are 20.9 (1)° for Cu1 and 12.0 (1)° for Cu2. The molecular structure and bridging configuration of (I) are very similar to those of the closely related complexes [Cu(dpyam)(µ-O2CH)(OH2)]n(NO3)n (Youngme et al., 2005) and {[Cu(dpa)(µ-O2CCH3)](ClO4)·0.5THF}n with a single carboxylate bridge (Tanase et al., 2005).

Analysis of the crystal packing of (I) shows hydrogen-bonding interactions between the N—H of the amide and the coordinated and uncoordinated O atoms of the acetate anions, with N—H···O contacts of 2.915 (3) and 2.862 (3) Å. A plot of the hydrogen-bond system forming a one-dimensional structure is given in Fig. 2 and details are given in Table 2. Classical N3—H5···O2i [symmetry code: (i) -x + 2, -y + 1, -z + 1] and N6—H15···O1ii [symmetry code: (ii) -x + 1, -y + 1, -z] intermolecular hydrogen bonds between adjacent dimeric units link them into a one-dimensional chain. The resulting motifs, A and B, in the formalism of graph-set analysis of hydrogen-bond patterns (Etter et al., 1990), are characterized as R22(15) [N3, H5, O2i, C21i, O1i, Cu1i, N1i, C5i, N3i, H5i, O2, C21, Cu1, N1 and C5] and R22(20) [N6, H15, O1ii, Cu1ii, O3ii, C23ii, O4ii, Cu2ii, N4ii, C15ii, N6ii, H15ii, O1, Cu1, O3, C23, O4, Cu2, N4 and C15], respectively.

Related literature top

For related literature, see: Addison et al. (1984); Colacio et al. (1993); Etter et al. (1990); Sen et al. (1998); Sheldrick (2000b); Tanase et al. (2005); Youngme et al. (2005).

Experimental top

The title complex was obtained as a by-product in the preparation of [Cu3(dpyam)2(µ-NCS)2(µ-OOCCH3)4] by adding Cu(O2CCH3)2.nH2O (1.5 mmol) to a warm solution of dpyam (1.0 mmol) in dimethylformamide (DMF) (10.0 ml). A solution of NaNCS (1.0 mmol) in DMF (5.0 ml) was then added and the resulting green solution was allowed to evaporate slowly at room temperature. After several days, green crystals of (I) were formed. The crystals were filtered off, washed with mother liquor and dried in air. IR data (KBr, ν, cm-1): 2084 (vs), 1654 (s), 1589 (s), 1556 (s), 1486 (vs), 1424 (s), 1237 (m), 1160 (m), 1019 (m), 784 (m).

Refinement top

H atoms attached to atoms N3 and N6 were located in difference Fourier maps and refined with a DFIX (SHELXTL; Sheldrick, 2000b) restraint of N—H = 0.86 (1) Å. All H atoms attached to C atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl), and with Uiso(H) = 1.2Ueq(aromatic) or 1.5Ueq(methyl).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Sheldrick 2000b) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are represented as spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the packing structure of (I), showing the hydrogen-bonding interactions (dashed lines). The hydrogen-bonded rings A and B are defined in the Comment. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) 2 - x, 1 - y, 1 - z; (ii) 1 - x, 1 - y, -z].
[(Acetato-κ2O,O')(di-2-pyridylamine-κ2N2,N2')copper(II)]-µ-acetato- κ2O:O'-[(acetato-κO)(di-2-pyridylamine-κ2N2,N2')(isothiocyanato- κN)copper(II)] top
Crystal data top
[Cu2(C2H3O2)3(NCS)(C10H9N3)2]V = 1505.09 (4) Å3
Mr = 704.70Z = 2
Triclinic, P1F(000) = 720
Hall symbol: -P 1Dx = 1.555 Mg m3
a = 9.6949 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4915 (2) Åθ = 1.3–30.4°
c = 16.9001 (2) ŵ = 1.54 mm1
α = 97.645 (1)°T = 273 K
β = 101.458 (1)°Polygon, green
γ = 113.215 (1)°0.30 × 0.18 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
5440 independent reflections
Radiation source: fine-focus sealed tube4510 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.4°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000a)
h = 1111
Tmin = 0.732, Tmax = 0.891k = 128
8178 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0423P)2 + 1.2895P]
where P = (Fo2 + 2Fc2)/3
5440 reflections(Δ/σ)max = 0.001
399 parametersΔρmax = 0.34 e Å3
2 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu2(C2H3O2)3(NCS)(C10H9N3)2]γ = 113.215 (1)°
Mr = 704.70V = 1505.09 (4) Å3
Triclinic, P1Z = 2
a = 9.6949 (2) ÅMo Kα radiation
b = 10.4915 (2) ŵ = 1.54 mm1
c = 16.9001 (2) ÅT = 273 K
α = 97.645 (1)°0.30 × 0.18 × 0.08 mm
β = 101.458 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
5440 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000a)
4510 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.891Rint = 0.021
8178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.34 e Å3
5440 reflectionsΔρmin = 0.49 e Å3
399 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.65426 (4)0.43795 (4)0.31247 (2)0.02719 (11)
Cu20.49437 (5)0.71429 (4)0.14258 (2)0.03208 (12)
S10.11020 (11)0.07683 (10)0.21812 (7)0.0524 (3)
O10.7660 (2)0.3883 (2)0.23370 (13)0.0326 (5)
O20.9782 (3)0.4853 (3)0.34124 (14)0.0432 (6)
O30.6492 (3)0.5871 (2)0.25150 (13)0.0344 (5)
O40.7010 (3)0.8018 (2)0.22820 (13)0.0344 (5)
O50.3752 (3)0.6718 (3)0.22647 (15)0.0406 (6)
O60.4062 (4)0.8763 (3)0.19568 (17)0.0546 (7)
N10.6402 (3)0.5470 (3)0.41686 (15)0.0289 (6)
N20.6877 (3)0.3020 (3)0.37880 (16)0.0309 (6)
N30.8092 (3)0.4802 (3)0.50463 (16)0.0316 (6)
N40.3479 (3)0.5391 (3)0.05710 (16)0.0321 (6)
N50.5758 (3)0.8142 (3)0.05899 (16)0.0302 (6)
N60.3664 (3)0.6495 (3)0.05682 (17)0.0368 (7)
N70.4131 (3)0.2952 (3)0.25318 (18)0.0409 (7)
C10.5591 (4)0.6271 (4)0.4093 (2)0.0361 (8)
H10.48980.61040.35820.043*
C20.5748 (5)0.7317 (4)0.4736 (2)0.0443 (9)
H20.51650.78370.46640.053*
C30.6804 (5)0.7577 (4)0.5499 (2)0.0486 (9)
H30.69650.83040.59380.058*
C40.7600 (4)0.6758 (4)0.5599 (2)0.0419 (8)
H40.82980.69140.61070.050*
C50.7346 (4)0.5671 (3)0.49191 (19)0.0287 (7)
C60.7732 (4)0.3457 (3)0.45805 (19)0.0284 (7)
C70.8302 (4)0.2590 (4)0.4971 (2)0.0386 (8)
H70.88920.29120.55230.046*
C80.7977 (5)0.1273 (4)0.4528 (3)0.0552 (11)
H80.83700.06980.47740.066*
C90.7054 (5)0.0788 (4)0.3707 (2)0.0529 (10)
H90.68100.01130.33980.063*
C100.6516 (4)0.1679 (3)0.3367 (2)0.0414 (8)
H100.58760.13520.28250.050*
C110.2836 (4)0.4185 (4)0.0848 (2)0.0384 (8)
H110.31680.42300.14110.046*
C120.1726 (4)0.2913 (4)0.0339 (2)0.0443 (9)
H120.13220.21080.05490.053*
C130.1218 (5)0.2856 (4)0.0500 (2)0.0478 (9)
H130.04440.20120.08570.057*
C140.1859 (4)0.4046 (4)0.0804 (2)0.0425 (8)
H140.15320.40140.13650.051*
C150.3021 (4)0.5317 (3)0.02479 (19)0.0305 (7)
C160.4981 (4)0.7779 (3)0.02211 (18)0.0288 (7)
C170.5478 (4)0.8682 (4)0.0755 (2)0.0367 (8)
H170.49180.84220.13110.044*
C180.6791 (4)0.9945 (4)0.0449 (2)0.0407 (8)
H180.71381.05500.07950.049*
C190.7603 (4)1.0312 (4)0.0388 (2)0.0434 (9)
H190.85041.11620.06080.052*
C200.7057 (4)0.9410 (4)0.0879 (2)0.0393 (8)
H200.75970.96710.14390.047*
C210.9122 (4)0.4239 (3)0.2670 (2)0.0319 (7)
C221.0019 (5)0.3883 (5)0.2110 (3)0.0545 (10)
H22A1.10900.45770.22970.082*
H22B0.95720.38910.15510.082*
H22C0.99630.29530.21260.082*
C230.7351 (4)0.7197 (3)0.26862 (19)0.0294 (7)
C240.8841 (4)0.7883 (4)0.3382 (2)0.0485 (10)
H24A0.86070.80610.39000.073*
H24B0.95240.87680.32880.073*
H24C0.93430.72560.34010.073*
C250.3538 (4)0.7851 (4)0.2360 (2)0.0387 (8)
C260.2705 (6)0.8090 (5)0.2987 (3)0.0678 (13)
H26A0.34580.87190.34930.102*
H26B0.20900.71940.30960.102*
H26C0.20350.85100.27720.102*
C270.2882 (4)0.2042 (3)0.2387 (2)0.0343 (7)
H50.866 (4)0.497 (4)0.5537 (13)0.034 (9)*
H150.329 (4)0.637 (4)0.1093 (12)0.042 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0318 (2)0.0273 (2)0.0202 (2)0.01257 (16)0.00274 (15)0.00595 (15)
Cu20.0356 (2)0.0328 (2)0.0199 (2)0.00848 (17)0.00413 (16)0.00678 (16)
S10.0348 (5)0.0399 (5)0.0647 (7)0.0051 (4)0.0030 (5)0.0071 (5)
O10.0327 (12)0.0411 (13)0.0209 (11)0.0168 (10)0.0009 (9)0.0045 (9)
O20.0363 (13)0.0502 (15)0.0295 (14)0.0127 (11)0.0020 (11)0.0016 (11)
O30.0451 (13)0.0329 (12)0.0269 (12)0.0196 (11)0.0060 (10)0.0098 (9)
O40.0380 (13)0.0321 (12)0.0282 (12)0.0140 (10)0.0002 (10)0.0098 (9)
O50.0509 (15)0.0411 (14)0.0349 (13)0.0212 (12)0.0165 (11)0.0139 (11)
O60.080 (2)0.0583 (17)0.0510 (17)0.0435 (16)0.0320 (15)0.0291 (14)
N10.0311 (14)0.0293 (13)0.0237 (13)0.0111 (11)0.0065 (11)0.0068 (11)
N20.0354 (14)0.0272 (13)0.0250 (14)0.0116 (11)0.0025 (11)0.0048 (11)
N30.0349 (15)0.0307 (14)0.0218 (14)0.0132 (12)0.0024 (12)0.0012 (11)
N40.0341 (14)0.0337 (14)0.0265 (14)0.0138 (12)0.0064 (11)0.0065 (11)
N50.0296 (14)0.0337 (14)0.0230 (13)0.0112 (12)0.0037 (11)0.0065 (11)
N60.0381 (16)0.0397 (16)0.0181 (14)0.0071 (13)0.0016 (12)0.0052 (12)
N70.0339 (16)0.0429 (17)0.0335 (16)0.0097 (14)0.0013 (13)0.0073 (13)
C10.0361 (18)0.045 (2)0.0341 (18)0.0224 (16)0.0103 (15)0.0169 (15)
C20.058 (2)0.045 (2)0.046 (2)0.0335 (19)0.0222 (19)0.0151 (17)
C30.068 (3)0.042 (2)0.037 (2)0.026 (2)0.0155 (19)0.0039 (16)
C40.055 (2)0.0406 (19)0.0245 (17)0.0196 (17)0.0046 (16)0.0026 (14)
C50.0321 (16)0.0277 (16)0.0236 (16)0.0103 (13)0.0073 (13)0.0064 (12)
C60.0295 (16)0.0296 (16)0.0253 (16)0.0126 (13)0.0053 (13)0.0078 (13)
C70.045 (2)0.0383 (19)0.0296 (18)0.0195 (16)0.0006 (15)0.0090 (14)
C80.070 (3)0.044 (2)0.054 (3)0.034 (2)0.000 (2)0.0138 (19)
C90.074 (3)0.036 (2)0.041 (2)0.027 (2)0.001 (2)0.0024 (16)
C100.055 (2)0.0267 (17)0.0316 (19)0.0135 (16)0.0015 (16)0.0030 (14)
C110.043 (2)0.0360 (18)0.0357 (19)0.0161 (16)0.0093 (16)0.0143 (15)
C120.047 (2)0.0331 (19)0.051 (2)0.0133 (16)0.0177 (18)0.0123 (16)
C130.044 (2)0.0352 (19)0.047 (2)0.0076 (16)0.0071 (18)0.0046 (16)
C140.044 (2)0.040 (2)0.0291 (18)0.0123 (17)0.0005 (16)0.0018 (15)
C150.0316 (17)0.0344 (17)0.0235 (16)0.0141 (14)0.0053 (13)0.0042 (13)
C160.0292 (16)0.0361 (17)0.0214 (15)0.0164 (14)0.0031 (13)0.0060 (13)
C170.0415 (19)0.047 (2)0.0233 (17)0.0202 (16)0.0069 (14)0.0128 (14)
C180.045 (2)0.045 (2)0.038 (2)0.0187 (17)0.0159 (16)0.0215 (16)
C190.041 (2)0.0381 (19)0.042 (2)0.0081 (16)0.0065 (16)0.0146 (16)
C200.0340 (18)0.0404 (19)0.0299 (18)0.0073 (15)0.0006 (14)0.0071 (15)
C210.0349 (18)0.0288 (16)0.0296 (18)0.0145 (14)0.0036 (14)0.0049 (13)
C220.046 (2)0.064 (3)0.050 (2)0.025 (2)0.0117 (19)0.002 (2)
C230.0313 (16)0.0365 (18)0.0240 (16)0.0169 (14)0.0091 (13)0.0095 (13)
C240.0320 (19)0.053 (2)0.051 (2)0.0122 (17)0.0021 (17)0.0221 (19)
C250.0403 (19)0.053 (2)0.0294 (18)0.0251 (17)0.0107 (15)0.0132 (16)
C260.085 (3)0.082 (3)0.073 (3)0.056 (3)0.049 (3)0.032 (3)
C270.0353 (19)0.0348 (18)0.0282 (17)0.0144 (16)0.0011 (14)0.0060 (14)
Geometric parameters (Å, º) top
Cu1—O31.996 (2)C4—C51.414 (4)
Cu1—N22.011 (3)C4—H40.9300
Cu1—O12.013 (2)C6—C71.406 (4)
Cu1—N12.030 (3)C7—C81.363 (5)
Cu1—N72.150 (3)C7—H70.9300
Cu2—N41.976 (3)C8—C91.395 (6)
Cu2—N51.976 (3)C8—H80.9300
Cu2—O51.989 (2)C9—C101.372 (5)
Cu2—O41.999 (2)C9—H90.9300
Cu2—O62.339 (3)C10—H100.9300
S1—C271.645 (3)C11—C121.370 (5)
O1—C211.295 (4)C11—H110.9300
O2—C211.240 (4)C12—C131.391 (5)
O3—C231.264 (4)C12—H120.9300
O4—C231.268 (4)C13—C141.377 (5)
O5—C251.280 (4)C13—H130.9300
O6—C251.250 (4)C14—C151.412 (4)
N1—C51.344 (4)C14—H140.9300
N1—C11.360 (4)C16—C171.409 (4)
N2—C61.337 (4)C17—C181.367 (5)
N2—C101.362 (4)C17—H170.9300
N3—C51.382 (4)C18—C191.394 (5)
N3—C61.393 (4)C18—H180.9300
N3—H50.852 (18)C19—C201.362 (5)
N4—C151.349 (4)C19—H190.9300
N4—C111.364 (4)C20—H200.9300
N5—C161.348 (4)C21—C221.510 (5)
N5—C201.362 (4)C22—H22A0.9600
N6—C151.383 (4)C22—H22B0.9600
N6—C161.387 (4)C22—H22C0.9600
N6—H150.860 (18)C23—C241.506 (5)
N7—C271.160 (4)C24—H24A0.9600
C1—C21.377 (5)C24—H24B0.9600
C1—H10.9300C24—H24C0.9600
C2—C31.395 (5)C25—C261.507 (5)
C2—H20.9300C26—H26A0.9600
C3—C41.369 (5)C26—H26B0.9600
C3—H30.9300C26—H26C0.9600
O3—Cu1—N2173.03 (10)C7—C8—H8120.1
O3—Cu1—O186.58 (9)C9—C8—H8120.1
N2—Cu1—O190.75 (10)C10—C9—C8118.1 (3)
O3—Cu1—N191.91 (10)C10—C9—H9121.0
N2—Cu1—N187.77 (10)C8—C9—H9121.0
O1—Cu1—N1154.89 (10)N2—C10—C9123.0 (3)
O3—Cu1—N793.57 (11)N2—C10—H10118.5
N2—Cu1—N793.31 (11)C9—C10—H10118.5
O1—Cu1—N7103.31 (10)N4—C11—C12123.2 (3)
N1—Cu1—N7101.80 (11)N4—C11—H11118.4
N4—Cu2—N592.41 (11)C12—C11—H11118.4
N4—Cu2—O595.05 (11)C11—C12—C13118.2 (3)
N5—Cu2—O5156.16 (11)C11—C12—H12120.9
N4—Cu2—O4142.76 (10)C13—C12—H12120.9
N5—Cu2—O494.46 (10)C14—C13—C12120.1 (3)
O5—Cu2—O493.21 (10)C14—C13—H13119.9
N4—Cu2—O6120.17 (11)C12—C13—H13119.9
N5—Cu2—O696.50 (10)C13—C14—C15118.8 (3)
O5—Cu2—O660.28 (9)C13—C14—H14120.6
O4—Cu2—O695.34 (10)C15—C14—H14120.6
C21—O1—Cu1114.53 (19)N4—C15—N6120.9 (3)
C23—O3—Cu1131.0 (2)N4—C15—C14121.3 (3)
C23—O4—Cu2116.6 (2)N6—C15—C14117.8 (3)
C25—O5—Cu297.3 (2)N5—C16—N6121.5 (3)
C25—O6—Cu282.2 (2)N5—C16—C17121.4 (3)
C5—N1—C1118.1 (3)N6—C16—C17117.1 (3)
C5—N1—Cu1121.4 (2)C18—C17—C16119.5 (3)
C1—N1—Cu1118.9 (2)C18—C17—H17120.3
C6—N2—C10118.2 (3)C16—C17—H17120.3
C6—N2—Cu1122.3 (2)C17—C18—C19119.1 (3)
C10—N2—Cu1117.8 (2)C17—C18—H18120.5
C5—N3—C6129.1 (3)C19—C18—H18120.5
C5—N3—H5116 (2)C20—C19—C18119.1 (3)
C6—N3—H5112 (2)C20—C19—H19120.5
C15—N4—C11118.3 (3)C18—C19—H19120.5
C15—N4—Cu2125.2 (2)N5—C20—C19123.1 (3)
C11—N4—Cu2116.4 (2)N5—C20—H20118.4
C16—N5—C20117.9 (3)C19—C20—H20118.4
C16—N5—Cu2124.2 (2)O2—C21—O1122.6 (3)
C20—N5—Cu2117.0 (2)O2—C21—C22120.5 (3)
C15—N6—C16130.8 (3)O1—C21—C22116.9 (3)
C15—N6—H15115 (2)C21—C22—H22A109.5
C16—N6—H15113 (2)C21—C22—H22B109.5
C27—N7—Cu1162.6 (3)H22A—C22—H22B109.5
N1—C1—C2123.1 (3)C21—C22—H22C109.5
N1—C1—H1118.4H22A—C22—H22C109.5
C2—C1—H1118.4H22B—C22—H22C109.5
C1—C2—C3118.3 (3)O3—C23—O4122.0 (3)
C1—C2—H2120.8O3—C23—C24121.4 (3)
C3—C2—H2120.8O4—C23—C24116.6 (3)
C4—C3—C2119.7 (3)C23—C24—H24A109.5
C4—C3—H3120.1C23—C24—H24B109.5
C2—C3—H3120.1H24A—C24—H24B109.5
C3—C4—C5118.9 (3)C23—C24—H24C109.5
C3—C4—H4120.5H24A—C24—H24C109.5
C5—C4—H4120.5H24B—C24—H24C109.5
N1—C5—N3120.3 (3)O6—C25—O5120.2 (3)
N1—C5—C4121.6 (3)O6—C25—C26120.9 (3)
N3—C5—C4118.1 (3)O5—C25—C26118.8 (3)
N2—C6—N3120.5 (3)C25—C26—H26A109.5
N2—C6—C7121.7 (3)C25—C26—H26B109.5
N3—C6—C7117.8 (3)H26A—C26—H26B109.5
C8—C7—C6119.1 (3)C25—C26—H26C109.5
C8—C7—H7120.5H26A—C26—H26C109.5
C6—C7—H7120.5H26B—C26—H26C109.5
C7—C8—C9119.8 (3)N7—C27—S1179.2 (3)
O3—Cu1—O1—C21109.1 (2)C1—N1—C5—N3174.5 (3)
N2—Cu1—O1—C2164.5 (2)Cu1—N1—C5—N319.9 (4)
N1—Cu1—O1—C2121.9 (4)C1—N1—C5—C45.2 (5)
N7—Cu1—O1—C21158.1 (2)Cu1—N1—C5—C4160.5 (3)
O1—Cu1—O3—C2399.2 (3)C6—N3—C5—N119.5 (5)
N1—Cu1—O3—C2355.7 (3)C6—N3—C5—C4160.1 (3)
N7—Cu1—O3—C23157.7 (3)C3—C4—C5—N13.3 (5)
N4—Cu2—O4—C2338.1 (3)C3—C4—C5—N3176.3 (3)
N5—Cu2—O4—C23138.0 (2)C10—N2—C6—N3178.0 (3)
O5—Cu2—O4—C2364.6 (2)Cu1—N2—C6—N316.9 (4)
O6—Cu2—O4—C23125.0 (2)C10—N2—C6—C72.2 (5)
N4—Cu2—O5—C25122.1 (2)Cu1—N2—C6—C7162.9 (3)
N5—Cu2—O5—C2514.3 (4)C5—N3—C6—N221.5 (5)
O4—Cu2—O5—C2594.3 (2)C5—N3—C6—C7158.7 (3)
O6—Cu2—O5—C250.0 (2)N2—C6—C7—C80.2 (5)
N4—Cu2—O6—C2577.6 (2)N3—C6—C7—C8179.6 (4)
N5—Cu2—O6—C25174.2 (2)C6—C7—C8—C91.8 (6)
O5—Cu2—O6—C250.0 (2)C7—C8—C9—C100.8 (7)
O4—Cu2—O6—C2590.6 (2)C6—N2—C10—C93.3 (6)
O3—Cu1—N1—C5133.4 (2)Cu1—N2—C10—C9162.6 (3)
N2—Cu1—N1—C539.6 (2)C8—C9—C10—N21.8 (7)
O1—Cu1—N1—C547.4 (4)C15—N4—C11—C121.4 (5)
N7—Cu1—N1—C5132.5 (2)Cu2—N4—C11—C12175.6 (3)
O3—Cu1—N1—C132.1 (2)N4—C11—C12—C130.8 (6)
N2—Cu1—N1—C1154.8 (2)C11—C12—C13—C141.8 (6)
O1—Cu1—N1—C1118.1 (3)C12—C13—C14—C150.6 (6)
N7—Cu1—N1—C161.9 (3)C11—N4—C15—N6178.2 (3)
O1—Cu1—N2—C6116.8 (3)Cu2—N4—C15—N65.1 (4)
N1—Cu1—N2—C638.1 (3)C11—N4—C15—C142.6 (5)
N7—Cu1—N2—C6139.8 (3)Cu2—N4—C15—C14174.0 (3)
O1—Cu1—N2—C1048.4 (3)C16—N6—C15—N413.8 (5)
N1—Cu1—N2—C10156.7 (3)C16—N6—C15—C14167.0 (3)
N7—Cu1—N2—C1055.0 (3)C13—C14—C15—N41.6 (5)
N5—Cu2—N4—C1518.2 (3)C13—C14—C15—N6179.2 (3)
O5—Cu2—N4—C15139.1 (3)C20—N5—C16—N6178.8 (3)
O4—Cu2—N4—C15118.8 (3)Cu2—N5—C16—N612.7 (4)
O6—Cu2—N4—C1580.7 (3)C20—N5—C16—C170.7 (5)
N5—Cu2—N4—C11165.1 (2)Cu2—N5—C16—C17167.8 (2)
O5—Cu2—N4—C1137.6 (3)C15—N6—C16—N59.7 (5)
O4—Cu2—N4—C1164.5 (3)C15—N6—C16—C17169.9 (3)
O6—Cu2—N4—C1195.9 (2)N5—C16—C17—C181.1 (5)
N4—Cu2—N5—C1621.9 (3)N6—C16—C17—C18178.5 (3)
O5—Cu2—N5—C1686.4 (4)C16—C17—C18—C190.4 (5)
O4—Cu2—N5—C16165.2 (3)C17—C18—C19—C200.6 (6)
O6—Cu2—N5—C1698.9 (3)C16—N5—C20—C190.3 (5)
N4—Cu2—N5—C20169.6 (3)Cu2—N5—C20—C19169.6 (3)
O5—Cu2—N5—C2082.2 (4)C18—C19—C20—N51.0 (6)
O4—Cu2—N5—C2026.2 (3)Cu1—O1—C21—O20.9 (4)
O6—Cu2—N5—C2069.7 (3)Cu1—O1—C21—C22179.5 (3)
O3—Cu1—N7—C27159.3 (10)Cu1—O3—C23—O4169.8 (2)
N2—Cu1—N7—C2721.8 (10)Cu1—O3—C23—C2410.4 (5)
O1—Cu1—N7—C27113.4 (10)Cu2—O4—C23—O35.5 (4)
N1—Cu1—N7—C2766.6 (10)Cu2—O4—C23—C24174.8 (2)
C5—N1—C1—C23.1 (5)Cu2—O6—C25—O50.0 (3)
Cu1—N1—C1—C2162.9 (3)Cu2—O6—C25—C26177.5 (4)
N1—C1—C2—C30.8 (6)Cu2—O5—C25—O60.0 (4)
C1—C2—C3—C42.7 (6)Cu2—O5—C25—C26177.5 (3)
C2—C3—C4—C50.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···O2i0.85 (2)2.02 (2)2.862 (3)168
N6—H15···O1ii0.86 (2)2.06 (2)2.915 (3)178
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)3(NCS)(C10H9N3)2]
Mr704.70
Crystal system, space groupTriclinic, P1
Temperature (K)273
a, b, c (Å)9.6949 (2), 10.4915 (2), 16.9001 (2)
α, β, γ (°)97.645 (1), 101.458 (1), 113.215 (1)
V3)1505.09 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.30 × 0.18 × 0.08
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000a)
Tmin, Tmax0.732, 0.891
No. of measured, independent and
observed [I > 2σ(I)] reflections
8178, 5440, 4510
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.099, 1.05
No. of reflections5440
No. of parameters399
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.49

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Sheldrick, 2000b), SHELXTL (Sheldrick 2000b) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—O31.996 (2)Cu2—N41.976 (3)
Cu1—N22.011 (3)Cu2—N51.976 (3)
Cu1—O12.013 (2)Cu2—O51.989 (2)
Cu1—N12.030 (3)Cu2—O41.999 (2)
Cu1—N72.150 (3)Cu2—O62.339 (3)
O3—Cu1—N2173.03 (10)N4—Cu2—N592.41 (11)
O3—Cu1—O186.58 (9)N4—Cu2—O595.05 (11)
N2—Cu1—O190.75 (10)N5—Cu2—O5156.16 (11)
O3—Cu1—N191.91 (10)N4—Cu2—O4142.76 (10)
N2—Cu1—N187.77 (10)N5—Cu2—O494.46 (10)
O1—Cu1—N1154.89 (10)O5—Cu2—O493.21 (10)
O3—Cu1—N793.57 (11)N4—Cu2—O6120.17 (11)
N2—Cu1—N793.31 (11)N5—Cu2—O696.50 (10)
O1—Cu1—N7103.31 (10)O5—Cu2—O660.28 (9)
N1—Cu1—N7101.80 (11)O4—Cu2—O695.34 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···O2i0.852 (18)2.022 (18)2.862 (3)168.40
N6—H15···O1ii0.860 (18)2.055 (18)2.915 (3)177.80
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds