Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In bis­[1-(3-pyridyl)butane-1,3-dionato]copper(II) (the Cu atom occupies a centre of inversion), [Cu(C9H8NO2)2], (I), and bis­[1-(4-pyridyl)butane-1,3-dionato]copper(II) methanol solvate, [Cu(C9H8NO2)2]·CH3OH, (II), the O,O′-chelating diketonate ligands support square-planar coordination of the metal ions [Cu—O = 1.948 (1)–1.965 (1) Å]. Weaker Cu...N inter­actions [2.405 (2)–2.499 (2) Å], at both axial sides, occur between symmetry-related bis­(1-pyridylbutane-1,3-dion­ato)copper(II) mol­ecules. This causes their self-organization into two-dimensional square-grid frameworks, with uniform [6.48 Å for (I)] or alternating [4.72 and 6.66 Å for (II)] inter­layer separations. Guest methanol mol­ecules in (II) reside between the distal layers and form weak hydrogen bonds to coordinated O atoms [O...O = 3.018 (4) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106025339/dn3015sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025339/dn3015Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106025339/dn3015IIsup3.hkl
Contains datablock II

CCDC references: 621270; 621271

Comment top

The assembly of complementary molecular components (for example, donors and acceptors of coordination or hydrogen bonds) into large well defined structures presents a basis for the concept of supramolecular synthesis. A special, though hitherto poorly recognized, issue of this approach is the self-organization of uniform `building blocks' combining both donor and acceptor sites within a single molecular frame (Boldog et al., 2003). In this way, four-connected coordination topologies may originate in a very illustrative self-organization of Lewis amphoteric molecular complexes preserving two unsaturated coordination positions at the metal ions and two outer donor groups, as provided by pyridyl- (Turner et al., 1997) or nitrile- (Angelova et al., 1989; Burdukov et al., 2003) functionalized copper(II) diketonates. Such self-complementary species allow the one-component construction of extended solid-state architectures and the rational design of inclusion compounds (Soldatov & Ripmeester, 2000) and polymorphs. Thus, despite the simplicity of its square-planar nodes, copper(II) bis[3-(pyridyl-4)pentane-2,4-dionate] generates a variety of 44 and NbO topologies, which could be efficiently controlled by choosing appropriate experimental conditions (e.g. solvent, temperature and guest molecules) (Chen et al., 2003). From the design perspective, the inherent molecular geometry is also particularly prevalent, and the ligand structure offers rich possibilities for tuning the orientation of the diketonate and pyridyl binding sites. In this context, we have examined the mode of solid-state self-organization for two closely related copper(II) complexes with 1-(pyridyl-3)- [(I)] and 1-(pyridyl-4)butane-1,3-diones [(II)] (Faniran et al., 1976), and we report their structures here.

The copper bis(diketonate) fragments in the structures of (I) and (II) are closely related and involve the organic ligands as O,O-chelates towards the metal ions (Figs. 1 and 2), with trans-situation of the pyridyl groups. In (I), the Cu atom resides on a centre of inversion, while for (II), the evident inversion symmetry of the molecule is eliminated by hydrogen bonding with one equivalent of methanol solvent. The Cu—O bond lengths in both molecules range from 1.948 (1) to 1.965 (1) Å (Tables 1 and 2), in good agreement with those reported for the related complexes of bis[1-phenylbutane-1,3-dionato]copper(II) with azo 3- and 4-pyridines [1.919 (8)–2.017 (3) Å; Li et al., 2003]. The six-membered metallochelate rings are planar to within ca 0.17 Å in both compounds, while the dihedral angles between the mean planes of the chelate fragments [0° in (I) and 6.33 (3)° in (II)] have normal values found also for the square-planar complex bis(1-phenyl-l,3-butanedionato)copper (Hon et al., 1966), as well as for octahedral copper diketonates. The C—O [1.258 (3)–1.274 (2) Å] and C—C [1.382 (3)–1.409 (3) Å] distances within the metallacycles have intermediate order between single and double bonds and suggest a significant delocalization of π-electron density, whereas the C—C bonds between diketonate and pyridyl groups [e.g. C1—C5 in (I), and C4—C5 and C13—C14 in (II)] [1.504 (3)–1.509 (3) Å] are typical for C—C single bonds in metal acetylacetonates (1.518 Å; Orpen et al., 1989) and indicate lack of any conjugation between the fragments (Turner et al., 1997).

Unlike the simpler complex bis(1-phenyl-l,3-butanedionato)copper (Hon et al., 1966), in the structures of (I) and (II) the molecular complexes retain additional coordination functionality in the form of two outer pyridyl-N donor groups. Their combination with unsaturated axial coordination positions at the metal ion clearly provides a mechanism for intermolecular interactions and the generation of crystal packing by total interconnection (Cu—N) of the available binding sites. In both structures, the Cu atoms additionally form two weak axial bonds with N atoms from neighbouring symmetry-related diketonates [Cu—N = 2.4987 (17) Å in (I), and 2.4045 (17) and 2.4532 (19) Å in (II)]. These elongated Cu—N bonds are only slightly shorter than those found for Cu(MeCOC(4-py)COCMe)2 [2.567 (9) Å; Turner et al., 1997], and the coordination geometry around the metal centre can be described as 4O+2 N octahedra with an obvious Jahn–Teller distortion.

The aggregation of self-complementary molecules therefore results in the generation of flat square-grid frameworks (Figs. 3 and 4). However, the shapes and metrics of such square grids are not uniform for (I) and (II), as they are dictated by the mutual orientation of the binding directions provided by the molecules. The pyridyl and chelate fragments are not coplanar and, for the pyridyl-3-substituted diketonate, (I), the rotation around the C1—C5 single bond predetermines the orientation of the lone pairs of the N atoms with respect to the CuO4 plane. Since the resulting angle between the Cu1—N1i and N1—Cuiii [symmetry codes: (i) x, 1/2 - y, 1/2 + z; (iii) -x, 1/2 + y, -1/2 + z] vectors is nearly a function of the C2—C1—C5—C9 torsion angle [-28.6 (3)], the self-organization of the molecules (I) cannot afford rectangles and leads to rhombic grids (Cu···Cu···Cu angles are 66.87 and 113.13°) (Fig. 3). Such collapse of the grids results in elimination of any internal cavities and facilitates dense packing of the molecules within the coordination layer. Successive layers of the structure are related by simple translation along the a axis.

For (II), the dihedral angles between the planes of the pyridyl and diketonate groups are even larger (30.7 and 46.5°). However, any orientation of the pyridyl-4 substituent does not alter the nearly orthogonal binding directions, and this predetermines the generation of approximately square grids (Cu···Cu···Cu angles 81.1 and 99.0°) (Fig. 4). This shape maximizes the internal cages of the grids, which became large enough (4.5 × 4.5 Å) to sustain certain guest moieties. Each mesh of the network houses the methyl group from an adjacent layer (Fig. 5), which leads to the formation of an interdigitated pattern by dual population of all available grid cages. The latter has a clear chemical significance, since the tightness of the packing of the two-dimensional coordination nets within and between such double layers is different [interlayer separations 4.72 and 6.66 Å, compared with the uniform interlayer distance of 6.48 Å for (I)] (Fig. 6) and this may favour an effective accommodation of guest molecules between pairs of weakly bonded layers, in the same way as occurs for clays or organic clay mimics (Biradha et al., 1998). In (II), the free space between the interlocked double layers is filled by methanol solvent molecules, which act as hydrogen-bond donors to atoms O2 of the coordinated diketonate, and also as acceptors of a typical weak hydrogen bond, C18iv—H···O [symmetry code: (iv) 1 - x, -1/2 + y, 3/2 - z; Table 3] (Desiraju & Steiner, 1999).

In brief, self-associating copper(II) complexes with 1-pyridyl-substituted butane-1,3-diones reveal a potential for one-component supramolecular synthesis of two-dimensional coordination frameworks with tuneable metrics. Structure (II) suggests the existence of new families of inclusion compounds, in which the guest species are accommodated in the interlayer space provided by the self-assembled coordination layers.

Experimental top

The ligands 1-(3-pyridyl)butane-1,3-dione (HL1) and 1-(4-pyridyl)butane-1,3-dione (HL2) were synthesized using the literature method of Levine & Sneed (1951). For the preparation of complex (I), Cu(OAc)2·H2O (0.050 g, 0.25 mmol) in methanol (5 ml) was added to a solution of HL1 (0.086 g, 0.52 mmol) in dimethylformamide (5 ml). Slow evaporation of the solvent over a period of 10–15 d gave green prismatic crystals of the product in 23% yield. In the same manner, (II) was synthesized in 36% yield, starting with a solution of Cu(OAc)2·H2O (0.050 g, 0.25 mmol) in methanol (5 ml) and HL2 (0.086 g, 0.52 mmol) in CHCl3 (5 ml). Compound (II) readily loses the methanol solvent in air within minutes, with loss of crystallinity. For X-ray analysis, the crystal was sealed in a capillary under the mother solution.

Computing details top

Data collection: SMART-NT (Bruker, 1998) for (I); IPDS Software (Stoe & Cie, 2000) for (II). Cell refinement: SMART-NT for (I); IPDS Software for (II). Data reduction: SMART-NT for (I); IPDS Software for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Version 1.700.00; Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (ii) -x, -y, -z].
[Figure 2] Fig. 2. The structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. The intermolecular hydrogen bond is represented by a dashed line.
[Figure 3] Fig. 3. The two-dimensional network of (I). H atoms have been omitted for clarity. [Symmetry code: (i) x, 1/2 - y, 1/2 + z].
[Figure 4] Fig. 4. The two-dimensional network in the structure of (II). H atoms and methanol solvent molecules have been omitted for clarity.
[Figure 5] Fig. 5. Self-inclusion of coordination layers in the structure of (II). Aromatic H atoms have been omitted for clarity. The methyl group resides exactly inside the rectangular cage (atom C1 deviates from the corresponding Cu4 plane by 0.47 Å). [Symmetry code: (iii) -x, -y, 1 - z].
[Figure 6] Fig. 6. A perspective view of the structure of (II), showing two kinds of interlayer separations and how the guest methanol molecules are accomodated between pairs of closely separated [Text missing?]. H atoms have been omitted and O atoms are shaded grey.
(I) bis[1-(3-pyridyl)butane-1,3-dionato]copper(II) top
Crystal data top
[Cu(C9H8NO2)2]F(000) = 398
Mr = 387.87Dx = 1.547 Mg m3
MonoclinicP21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6044 (11) ÅCell parameters from 2001 reflections
b = 9.2107 (15) Åθ = 2.7–28.0°
c = 13.950 (2) ŵ = 1.34 mm1
β = 101.217 (3)°T = 223 K
V = 832.4 (2) Å3Prism, green
Z = 20.35 × 0.20 × 0.20 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2001 independent reflections
Radiation source: fine-focus sealed tube1725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 28.0°, θmin = 2.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.645, Tmax = 0.768k = 1012
5845 measured reflectionsl = 1418
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0362P)2 + 0.3834P]
where P = (Fo2 + 2Fc2)/3
2001 reflections(Δ/σ)max < 0.001
115 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Cu(C9H8NO2)2]V = 832.4 (2) Å3
Mr = 387.87Z = 2
MonoclinicP21/cMo Kα radiation
a = 6.6044 (11) ŵ = 1.34 mm1
b = 9.2107 (15) ÅT = 223 K
c = 13.950 (2) Å0.35 × 0.20 × 0.20 mm
β = 101.217 (3)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2001 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
1725 reflections with I > 2σ(I)
Tmin = 0.645, Tmax = 0.768Rint = 0.018
5845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.073H-atom parameters constrained
S = 1.08Δρmax = 0.36 e Å3
2001 reflectionsΔρmin = 0.26 e Å3
115 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.00000.02355 (10)
O10.14416 (19)0.08116 (14)0.09843 (9)0.0274 (3)
O20.1782 (2)0.16895 (14)0.00171 (9)0.0300 (3)
N10.2367 (3)0.3709 (2)0.36638 (12)0.0366 (4)
C10.1051 (3)0.2044 (2)0.13878 (12)0.0241 (3)
C20.0327 (3)0.3070 (2)0.11535 (14)0.0320 (4)
H2A0.03760.40000.14680.038*
C30.1641 (3)0.2845 (2)0.04890 (13)0.0287 (4)
C40.3060 (4)0.4066 (2)0.03256 (17)0.0418 (5)
H4A0.44160.37000.03150.050*
H4B0.31120.47690.08380.050*
H4C0.24920.45370.02810.050*
C50.2218 (3)0.2404 (2)0.21817 (12)0.0258 (4)
C60.4143 (3)0.1794 (2)0.21872 (14)0.0326 (4)
H6A0.47520.11180.16900.039*
C70.5172 (3)0.2184 (3)0.29280 (15)0.0383 (5)
H7A0.65180.18000.29410.046*
C80.4244 (3)0.3143 (2)0.36417 (15)0.0355 (4)
H8A0.49670.34040.41510.043*
C90.1396 (3)0.3336 (2)0.29431 (14)0.0332 (4)
H9A0.00490.37340.29530.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03084 (17)0.02208 (16)0.02097 (15)0.00615 (13)0.01306 (11)0.00344 (12)
O10.0341 (7)0.0266 (7)0.0250 (6)0.0051 (5)0.0142 (5)0.0040 (5)
O20.0362 (7)0.0277 (7)0.0305 (6)0.0073 (5)0.0175 (5)0.0044 (5)
N10.0420 (10)0.0398 (10)0.0322 (8)0.0004 (8)0.0176 (7)0.0100 (7)
C10.0272 (8)0.0256 (9)0.0200 (7)0.0015 (7)0.0059 (6)0.0003 (6)
C20.0396 (10)0.0265 (9)0.0333 (9)0.0073 (8)0.0156 (8)0.0091 (8)
C30.0323 (9)0.0285 (9)0.0267 (8)0.0075 (8)0.0092 (7)0.0010 (7)
C40.0500 (13)0.0332 (11)0.0480 (12)0.0151 (10)0.0241 (10)0.0059 (9)
C50.0290 (9)0.0263 (9)0.0237 (8)0.0025 (7)0.0087 (7)0.0011 (7)
C60.0324 (10)0.0367 (11)0.0300 (9)0.0029 (8)0.0093 (7)0.0001 (8)
C70.0304 (10)0.0469 (12)0.0409 (11)0.0001 (9)0.0153 (8)0.0054 (10)
C80.0389 (11)0.0379 (11)0.0353 (10)0.0076 (9)0.0211 (8)0.0023 (8)
C90.0325 (10)0.0387 (11)0.0316 (9)0.0021 (8)0.0140 (8)0.0083 (8)
Geometric parameters (Å, º) top
Cu1—O21.9485 (13)C2—H2A0.9600
Cu1—O2i1.9485 (13)C3—C41.510 (3)
Cu1—O11.9645 (12)C4—H4A0.9600
Cu1—O1i1.9645 (12)C4—H4B0.9600
Cu1—N1ii2.4896 (17)C4—H4C0.9600
Cu1—N1iii2.4896 (17)C5—C91.391 (3)
O1—C11.271 (2)C5—C61.391 (3)
O2—C31.264 (2)C6—C71.390 (3)
N1—C91.338 (2)C6—H6A0.9600
N1—C81.339 (3)C7—C81.382 (3)
C1—C21.395 (3)C7—H7A0.9600
C1—C51.504 (2)C8—H8A0.9600
C2—C31.403 (2)C9—H9A0.9600
O2—Cu1—O2i180.00 (8)O2—C3—C2125.90 (17)
O2—Cu1—O193.51 (5)O2—C3—C4115.97 (16)
O2i—Cu1—O186.49 (5)C2—C3—C4118.12 (17)
O2—Cu1—O1i86.49 (5)C3—C4—H4A110.4
O2i—Cu1—O1i93.51 (5)C3—C4—H4B108.9
O1—Cu1—O1i180.00 (9)H4A—C4—H4B110.5
O2—Cu1—N1ii85.28 (6)C3—C4—H4C108.8
O2i—Cu1—N1ii94.72 (6)H4A—C4—H4C110.5
O1—Cu1—N1ii91.29 (5)H4B—C4—H4C107.7
O1i—Cu1—N1ii88.71 (5)C9—C5—C6117.78 (17)
O2—Cu1—N1iii94.72 (6)C9—C5—C1121.25 (16)
O2i—Cu1—N1iii85.28 (6)C6—C5—C1120.97 (16)
O1—Cu1—N1iii88.71 (5)C7—C6—C5118.65 (19)
O1i—Cu1—N1iii91.29 (5)C7—C6—H6A120.5
N1ii—Cu1—N1iii180.00 (6)C5—C6—H6A120.8
C1—O1—Cu1124.42 (11)C8—C7—C6119.22 (19)
C3—O2—Cu1124.97 (12)C8—C7—H7A120.3
C9—N1—C8117.35 (18)C6—C7—H7A120.5
O1—C1—C2125.94 (16)N1—C8—C7122.97 (18)
O1—C1—C5115.74 (15)N1—C8—H8A118.5
C2—C1—C5118.31 (16)C7—C8—H8A118.6
C1—C2—C3124.77 (17)N1—C9—C5124.00 (18)
C1—C2—H2A117.6N1—C9—H9A118.0
C3—C2—H2A117.6C5—C9—H9A118.0
O2—Cu1—O1—C10.22 (14)C1—C2—C3—O20.7 (3)
O2i—Cu1—O1—C1179.78 (14)C1—C2—C3—C4179.4 (2)
N1ii—Cu1—O1—C185.56 (14)O1—C1—C5—C9151.93 (18)
N1iii—Cu1—O1—C194.44 (14)C2—C1—C5—C928.6 (3)
O1—Cu1—O2—C35.49 (16)O1—C1—C5—C627.0 (2)
O1i—Cu1—O2—C3174.51 (16)C2—C1—C5—C6152.52 (19)
N1ii—Cu1—O2—C385.51 (15)C9—C5—C6—C72.2 (3)
N1iii—Cu1—O2—C394.49 (15)C1—C5—C6—C7178.85 (17)
Cu1—O1—C1—C25.4 (3)C5—C6—C7—C81.0 (3)
Cu1—O1—C1—C5175.18 (11)C9—N1—C8—C71.4 (3)
O1—C1—C2—C36.0 (3)C6—C7—C8—N10.9 (3)
C5—C1—C2—C3174.59 (18)C8—N1—C9—C50.0 (3)
Cu1—O2—C3—C26.6 (3)C6—C5—C9—N11.8 (3)
Cu1—O2—C3—C4174.73 (14)C1—C5—C9—N1179.27 (18)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z1/2.
(II) bis[1-(4-pyridyl)butane-1,3-dionato]copper(II) methanol solvate top
Crystal data top
[Cu(C9H8NO2)2]·CH4OF(000) = 868
Mr = 419.91Dx = 1.436 Mg m3
MonoclinicP21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3492 (12) ÅCell parameters from 4578 reflections
b = 14.1993 (13) Åθ = 3.6–27.9°
c = 12.1291 (12) ŵ = 1.16 mm1
β = 96.410 (3)°T = 293 K
V = 1942.4 (3) Å3Prism, green
Z = 40.14 × 0.14 × 0.12 mm
Data collection top
Stoe IPDS
diffractometer
3072 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.9°, θmin = 3.6°
φ oscillation scansh = 1412
12732 measured reflectionsk = 1318
4578 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0623P)2]
where P = (Fo2 + 2Fc2)/3
4578 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C9H8NO2)2]·CH4OV = 1942.4 (3) Å3
Mr = 419.91Z = 4
MonoclinicP21/cMo Kα radiation
a = 11.3492 (12) ŵ = 1.16 mm1
b = 14.1993 (13) ÅT = 293 K
c = 12.1291 (12) Å0.14 × 0.14 × 0.12 mm
β = 96.410 (3)°
Data collection top
Stoe IPDS
diffractometer
3072 reflections with I > 2σ(I)
12732 measured reflectionsRint = 0.038
4578 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 0.90Δρmax = 0.27 e Å3
4578 reflectionsΔρmin = 0.32 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.20605 (2)0.000458 (18)0.801731 (16)0.03136 (8)
O10.03307 (13)0.00854 (10)0.77864 (11)0.0391 (3)
O20.21217 (13)0.09901 (10)0.68875 (11)0.0370 (3)
O30.37941 (13)0.00327 (10)0.81663 (12)0.0396 (3)
O40.20294 (13)0.09806 (10)0.91436 (11)0.0379 (3)
N10.19066 (17)0.37512 (12)0.43384 (13)0.0405 (4)
N20.2180 (2)0.38006 (14)1.15835 (15)0.0504 (5)
C10.1640 (3)0.0222 (2)0.7080 (3)0.0731 (9)
H1A0.18340.00240.77740.110*
H1B0.21000.07790.68980.110*
H1C0.18360.02380.65090.110*
C20.0341 (2)0.04449 (16)0.71685 (17)0.0430 (5)
C30.0037 (2)0.12168 (17)0.6569 (2)0.0507 (6)
H3A0.05620.16280.62160.061*
C40.12081 (19)0.14284 (14)0.64536 (14)0.0350 (4)
C50.14568 (19)0.22485 (14)0.57273 (14)0.0350 (4)
C60.2269 (2)0.21657 (16)0.49575 (18)0.0486 (6)
H6A0.27040.15910.49030.058*
C70.2446 (2)0.29174 (17)0.42845 (19)0.0520 (6)
H7A0.29870.28400.37360.062*
C80.1160 (2)0.38372 (15)0.51034 (17)0.0424 (5)
H8A0.07890.44370.51820.051*
C90.0899 (2)0.31112 (15)0.58006 (17)0.0433 (5)
H9A0.03310.32000.63220.052*
C100.5752 (2)0.0542 (2)0.8459 (3)0.0670 (8)
H10A0.61310.11420.85860.101*
H10B0.58130.03210.77190.101*
H10C0.61110.00740.89600.101*
C110.4460 (2)0.06039 (16)0.86125 (17)0.0424 (5)
C120.4075 (2)0.13569 (17)0.92342 (19)0.0490 (5)
H12A0.46580.18100.95220.059*
C130.29224 (19)0.14938 (14)0.94664 (15)0.0363 (4)
C140.2665 (2)0.23149 (15)1.01916 (15)0.0381 (4)
C150.1757 (2)0.22540 (17)1.08623 (17)0.0455 (5)
H15A0.12740.16981.08530.055*
C160.1547 (2)0.30046 (18)1.15373 (19)0.0526 (6)
H16A0.09160.29531.19990.063*
C170.3034 (2)0.38625 (16)1.09149 (18)0.0523 (6)
H17A0.34730.44401.09140.063*
C180.3308 (2)0.31465 (16)1.02167 (18)0.0485 (5)
H18A0.39420.32190.97630.058*
O50.4665 (3)0.1463 (3)0.6613 (2)0.1416 (14)
H10.39770.12860.67380.212*
C190.5217 (4)0.1895 (3)0.7516 (4)0.1151 (15)
H19A0.50190.15910.81780.173*
H19B0.60600.18700.74960.173*
H19C0.49800.25440.75220.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03024 (13)0.02754 (12)0.03689 (12)0.00039 (9)0.00638 (8)0.00557 (8)
O10.0342 (8)0.0375 (8)0.0459 (7)0.0030 (6)0.0060 (6)0.0089 (6)
O20.0350 (8)0.0340 (7)0.0427 (7)0.0024 (6)0.0079 (6)0.0098 (5)
O30.0319 (7)0.0363 (7)0.0511 (7)0.0019 (7)0.0065 (6)0.0070 (6)
O40.0375 (8)0.0336 (7)0.0438 (7)0.0045 (6)0.0097 (6)0.0099 (6)
N10.0443 (11)0.0339 (9)0.0440 (8)0.0002 (8)0.0082 (7)0.0070 (7)
N20.0593 (14)0.0429 (11)0.0512 (10)0.0033 (9)0.0163 (9)0.0122 (8)
C10.0358 (15)0.079 (2)0.102 (2)0.0096 (14)0.0032 (13)0.0326 (16)
C20.0353 (12)0.0435 (12)0.0500 (11)0.0024 (10)0.0040 (9)0.0077 (9)
C30.0370 (13)0.0504 (13)0.0636 (13)0.0026 (11)0.0011 (10)0.0225 (11)
C40.0380 (12)0.0329 (10)0.0345 (8)0.0002 (9)0.0052 (7)0.0032 (7)
C50.0371 (12)0.0325 (10)0.0356 (9)0.0008 (8)0.0044 (7)0.0057 (7)
C60.0558 (16)0.0369 (11)0.0566 (12)0.0113 (10)0.0224 (11)0.0089 (9)
C70.0606 (17)0.0469 (13)0.0536 (12)0.0104 (12)0.0283 (11)0.0103 (10)
C80.0453 (13)0.0327 (10)0.0507 (11)0.0067 (9)0.0112 (9)0.0051 (8)
C90.0436 (13)0.0386 (11)0.0501 (11)0.0073 (10)0.0162 (9)0.0077 (8)
C100.0353 (15)0.0701 (19)0.096 (2)0.0010 (13)0.0109 (13)0.0260 (15)
C110.0342 (12)0.0447 (12)0.0483 (11)0.0015 (9)0.0041 (8)0.0063 (9)
C120.0392 (13)0.0476 (13)0.0603 (12)0.0048 (10)0.0056 (10)0.0195 (10)
C130.0399 (12)0.0335 (10)0.0357 (9)0.0022 (9)0.0048 (7)0.0042 (7)
C140.0404 (12)0.0372 (10)0.0366 (9)0.0019 (9)0.0033 (8)0.0061 (8)
C150.0468 (14)0.0414 (12)0.0492 (11)0.0080 (10)0.0088 (9)0.0098 (9)
C160.0560 (16)0.0494 (14)0.0552 (12)0.0070 (12)0.0196 (11)0.0141 (10)
C170.0683 (18)0.0377 (12)0.0531 (12)0.0124 (11)0.0167 (11)0.0111 (9)
C180.0568 (16)0.0433 (12)0.0485 (11)0.0111 (11)0.0195 (10)0.0094 (9)
O50.112 (3)0.219 (4)0.0942 (18)0.088 (3)0.0114 (16)0.023 (2)
C190.123 (4)0.105 (3)0.116 (3)0.032 (3)0.007 (3)0.024 (3)
Geometric parameters (Å, º) top
Cu1—O31.9559 (15)C6—H6A0.9600
Cu1—O11.9560 (15)C7—H7A0.9600
Cu1—O41.9584 (13)C8—C91.386 (3)
Cu1—O21.9653 (13)C8—H8A0.9601
Cu1—N1i2.4045 (17)C9—H9A0.9600
Cu1—N2ii2.4531 (18)C10—C111.501 (3)
O1—C21.258 (3)C10—H10A0.9600
O2—C41.272 (2)C10—H10B0.9600
O3—C111.261 (3)C10—H10C0.9600
O4—C131.274 (2)C11—C121.406 (3)
N1—C81.330 (3)C12—C131.382 (3)
N1—C71.338 (3)C12—H12A0.9600
N1—Cu1iii2.4045 (16)C13—C141.509 (3)
N2—C171.335 (3)C14—C151.385 (3)
N2—C161.337 (3)C14—C181.386 (3)
N2—Cu1iv2.4531 (18)C15—C161.381 (3)
C1—C21.499 (4)C15—H15A0.9600
C1—H1A0.9600C16—H16A0.9600
C1—H1B0.9602C17—C181.381 (3)
C1—H1C0.9600C17—H17A0.9600
C2—C31.409 (3)C18—H18A0.9601
C3—C41.384 (3)O5—C191.347 (5)
C3—H3A0.9600O5—H10.8500
C4—C51.506 (3)C19—H19A0.9600
C5—C91.387 (3)C19—H19B0.9600
C5—C61.389 (3)C19—H19C0.9598
C6—C71.372 (3)
O3—Cu1—O1176.10 (6)N1—C7—C6124.1 (2)
O3—Cu1—O492.66 (6)N1—C7—H7A117.8
O1—Cu1—O487.55 (6)C6—C7—H7A118.0
O3—Cu1—O286.35 (6)N1—C8—C9123.6 (2)
O1—Cu1—O293.42 (6)N1—C8—H8A118.1
O4—Cu1—O2179.00 (6)C9—C8—H8A118.2
O3—Cu1—N1i94.05 (6)C8—C9—C5119.17 (19)
O1—Cu1—N1i89.83 (6)C8—C9—H9A120.6
O4—Cu1—N1i92.96 (6)C5—C9—H9A120.2
O2—Cu1—N1i87.27 (6)C11—C10—H10A110.8
O3—Cu1—N2ii86.86 (7)C11—C10—H10B108.0
O1—Cu1—N2ii89.24 (7)H10A—C10—H10B111.2
O4—Cu1—N2ii90.20 (7)C11—C10—H10C108.3
O2—Cu1—N2ii89.59 (7)H10A—C10—H10C111.2
N1i—Cu1—N2ii176.67 (7)H10B—C10—H10C107.2
C2—O1—Cu1125.33 (14)O3—C11—C12124.7 (2)
C4—O2—Cu1123.11 (13)O3—C11—C10116.8 (2)
C11—O3—Cu1124.98 (14)C12—C11—C10118.5 (2)
C13—O4—Cu1123.18 (13)C13—C12—C11125.0 (2)
C8—N1—C7116.49 (18)C13—C12—H12A117.5
C8—N1—Cu1iii119.78 (14)C11—C12—H12A117.5
C7—N1—Cu1iii123.36 (14)O4—C13—C12126.56 (18)
C17—N2—C16116.96 (19)O4—C13—C14114.98 (18)
C17—N2—Cu1iv119.08 (15)C12—C13—C14118.45 (19)
C16—N2—Cu1iv123.17 (15)C15—C14—C18117.66 (19)
C2—C1—H1A109.5C15—C14—C13119.94 (19)
C2—C1—H1B110.4C18—C14—C13122.40 (19)
H1A—C1—H1B109.2C16—C15—C14119.3 (2)
C2—C1—H1C110.0C16—C15—H15A120.4
H1A—C1—H1C109.2C14—C15—H15A120.3
H1B—C1—H1C108.6N2—C16—C15123.4 (2)
O1—C2—C3125.0 (2)N2—C16—H16A118.2
O1—C2—C1116.2 (2)C15—C16—H16A118.5
C3—C2—C1118.8 (2)N2—C17—C18123.5 (2)
C4—C3—C2124.9 (2)N2—C17—H17A118.0
C4—C3—H3A117.6C18—C17—H17A118.5
C2—C3—H3A117.5C17—C18—C14119.2 (2)
O2—C4—C3126.83 (18)C17—C18—H18A120.5
O2—C4—C5115.03 (18)C14—C18—H18A120.3
C3—C4—C5118.13 (18)C19—O5—H1110.0
C9—C5—C6117.41 (18)O5—C19—H19A110.1
C9—C5—C4121.94 (18)O5—C19—H19B109.7
C6—C5—C4120.65 (18)H19A—C19—H19B109.4
C7—C6—C5119.1 (2)O5—C19—H19C109.8
C7—C6—H6A120.7H19A—C19—H19C109.4
C5—C6—H6A120.2H19B—C19—H19C108.4
O4—Cu1—O1—C2174.13 (18)C8—N1—C7—C60.3 (4)
O2—Cu1—O1—C26.10 (18)Cu1iii—N1—C7—C6172.7 (2)
N1i—Cu1—O1—C281.16 (18)C5—C6—C7—N12.0 (4)
N2ii—Cu1—O1—C295.64 (18)C7—N1—C8—C92.1 (4)
O3—Cu1—O2—C4172.22 (15)Cu1iii—N1—C8—C9171.20 (18)
O1—Cu1—O2—C411.68 (15)N1—C8—C9—C51.5 (4)
N1i—Cu1—O2—C477.98 (15)C6—C5—C9—C80.8 (3)
N2ii—Cu1—O2—C4100.90 (15)C4—C5—C9—C8179.6 (2)
O4—Cu1—O3—C1117.24 (17)Cu1—O3—C11—C1211.1 (3)
O2—Cu1—O3—C11162.60 (18)Cu1—O3—C11—C10168.87 (18)
N1i—Cu1—O3—C11110.40 (17)O3—C11—C12—C131.6 (4)
N2ii—Cu1—O3—C1172.81 (17)C10—C11—C12—C13178.4 (2)
O3—Cu1—O4—C1316.96 (16)Cu1—O4—C13—C1211.1 (3)
O1—Cu1—O4—C13159.15 (16)Cu1—O4—C13—C14170.16 (12)
N1i—Cu1—O4—C13111.15 (16)C11—C12—C13—O41.5 (4)
N2ii—Cu1—O4—C1369.91 (16)C11—C12—C13—C14177.2 (2)
Cu1—O1—C2—C32.5 (3)O4—C13—C14—C1529.3 (3)
Cu1—O1—C2—C1177.56 (19)C12—C13—C14—C15149.5 (2)
O1—C2—C3—C49.1 (4)O4—C13—C14—C18150.5 (2)
C1—C2—C3—C4170.9 (3)C12—C13—C14—C1830.7 (3)
Cu1—O2—C4—C39.5 (3)C18—C14—C15—C161.4 (3)
Cu1—O2—C4—C5171.72 (12)C13—C14—C15—C16178.8 (2)
C2—C3—C4—O22.3 (4)C17—N2—C16—C151.6 (4)
C2—C3—C4—C5176.5 (2)Cu1iv—N2—C16—C15168.15 (19)
O2—C4—C5—C9134.5 (2)C14—C15—C16—N20.0 (4)
C3—C4—C5—C946.5 (3)C16—N2—C17—C181.8 (4)
O2—C4—C5—C645.0 (3)Cu1iv—N2—C17—C18168.4 (2)
C3—C4—C5—C6133.9 (2)N2—C17—C18—C140.4 (4)
C9—C5—C6—C72.5 (4)C15—C14—C18—C171.2 (3)
C4—C5—C6—C7177.9 (2)C13—C14—C18—C17179.0 (2)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2; (iii) x, y1/2, z1/2; (iv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O20.852.173.018 (3)172
C18—H18A···O5v0.962.473.416 (4)171
Symmetry code: (v) x+1, y+1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C9H8NO2)2][Cu(C9H8NO2)2]·CH4O
Mr387.87419.91
Crystal system, space groupMonoclinicP21/cMonoclinicP21/c
Temperature (K)223293
a, b, c (Å)6.6044 (11), 9.2107 (15), 13.950 (2)11.3492 (12), 14.1993 (13), 12.1291 (12)
β (°) 101.217 (3) 96.410 (3)
V3)832.4 (2)1942.4 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.341.16
Crystal size (mm)0.35 × 0.20 × 0.200.14 × 0.14 × 0.12
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Stoe IPDS
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.645, 0.768
No. of measured, independent and
observed [I > 2σ(I)] reflections
5845, 2001, 1725 12732, 4578, 3072
Rint0.0180.038
(sin θ/λ)max1)0.6610.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.08 0.032, 0.093, 0.90
No. of reflections20014578
No. of parameters115244
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.260.27, 0.32

Computer programs: SMART-NT (Bruker, 1998), IPDS Software (Stoe & Cie, 2000), SMART-NT, IPDS Software, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 1999), WinGX (Version 1.700.00; Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
Cu1—O21.9485 (13)C1—C51.504 (2)
Cu1—O11.9645 (12)C2—C31.403 (2)
Cu1—N1i2.4896 (17)C3—C41.510 (3)
O1—C11.271 (2)C5—C91.391 (3)
O2—C31.264 (2)C5—C61.391 (3)
N1—C91.338 (2)C6—C71.390 (3)
N1—C81.339 (3)C7—C81.382 (3)
C1—C21.395 (3)
O2—Cu1—O193.51 (5)O1—C1—C2125.94 (16)
O2—Cu1—O1ii86.49 (5)O1—C1—C5115.74 (15)
O2—Cu1—N1i85.28 (6)C2—C1—C5118.31 (16)
O1—Cu1—N1i91.29 (5)C1—C2—C3124.77 (17)
O2—Cu1—N1iii94.72 (6)O2—C3—C2125.90 (17)
O1—Cu1—N1iii88.71 (5)O2—C3—C4115.97 (16)
C1—O1—Cu1124.42 (11)C2—C3—C4118.12 (17)
C3—O2—Cu1124.97 (12)
C2—C1—C5—C928.6 (3)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y, z; (iii) x, y1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
Cu1—O31.9559 (15)C1—C21.499 (4)
Cu1—O11.9560 (15)C2—C31.409 (3)
Cu1—O41.9584 (13)C3—C41.384 (3)
Cu1—O21.9653 (13)C4—C51.506 (3)
Cu1—N1i2.4045 (17)C8—C91.386 (3)
Cu1—N2ii2.4531 (18)C10—C111.501 (3)
O1—C21.258 (3)C11—C121.406 (3)
O2—C41.272 (2)C12—C131.382 (3)
O3—C111.261 (3)C13—C141.509 (3)
O4—C131.274 (2)
O3—Cu1—O1176.10 (6)O4—Cu1—N2ii90.20 (7)
O3—Cu1—O492.66 (6)O2—Cu1—N2ii89.59 (7)
O1—Cu1—O487.55 (6)N1i—Cu1—N2ii176.67 (7)
O3—Cu1—O286.35 (6)C2—O1—Cu1125.33 (14)
O1—Cu1—O293.42 (6)C4—O2—Cu1123.11 (13)
O4—Cu1—O2179.00 (6)C11—O3—Cu1124.98 (14)
O3—Cu1—N1i94.05 (6)C13—O4—Cu1123.18 (13)
O1—Cu1—N1i89.83 (6)O1—C2—C3125.0 (2)
O4—Cu1—N1i92.96 (6)O2—C4—C3126.83 (18)
O2—Cu1—N1i87.27 (6)O3—C11—C12124.7 (2)
O3—Cu1—N2ii86.86 (7)C13—C12—C11125.0 (2)
O1—Cu1—N2ii89.24 (7)O4—C13—C12126.56 (18)
O2—C4—C5—C645.0 (3)O4—C13—C14—C1529.3 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H1···O20.8502.1743.018 (3)172
C18—H18A···O5iii0.9602.4653.416 (4)171
Symmetry code: (iii) x+1, y+1/2, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds