Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The three title compounds, namely 4-phenyl-1H-imidazolium hexa-μ2-chloro-chloro-μ4-oxo-tris­(4-phenyl-1H-imidazole-κN1)­tetra­copper(II) monohydrate, (C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O, hexa-μ2-chloro-μ4-oxo-tetra­kis­(pyridine N-oxide-κO)tetra­copper(II), [Cu4Cl6O(C5H5NO)4], and hexa-μ2-chloro-tetra­kis(2-methyl-1H-imidazole-κN1)-μ4-oxo-tetra­copper(II) methanol trisolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O, exhibit the same Cu4OCl6 framework, where the O atom at the centre of an almost regular tetra­hedron bridges four copper cations at the corners. This group is in turn surrounded by a Cl6 octa­hedron, leading to a rather globular species. This special arrangement of the CuII cations results in a diversity of magnetic behaviours.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106021354/dn3008sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106021354/dn3008Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106021354/dn3008IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106021354/dn3008IIIsup4.hkl
Contains datablock III

CCDC references: 616120; 616121; 616122

Comment top

Polynuclear CuII complexes with various bridges between the metal centres have attracted much attention in the past decade, from both an experimental and a theoretical point of view, and a significant amount of research has been devoted to analyzing their structural and magnetic properties.

We have for some time focused our interest on a subset of these systems, namely the [Cu4OCl6L4] complexes, where L denotes any Lewis ligand base. They contain both a µ4-bridging O atom and µ2-halogen atoms in their structures, and are usually characterized by an interesting magnetic behaviour, not always easy to model. In this context, our group has presented some years ago a detailed study of one such complex, viz. Cu4OCl6L4, L = imidazole (Atria et al., 1999), where the magnetic properties exhibited by the compound were successfully modelled in a rather simple and elegant fashion.

The structural complexity of these [Cu4OCl6L4] systems as well as their challenging magnetic properties promoted sustained structural work on the subject, as disclosed by a search of the Cambridge Structural Database (CSD; November 2005 version and updates; Allen, 2002) which yielded 52 hits of related structures, ranging from the pioneering works performed some forty years ago (Bertrand, 1967; Kilbourn & Dunitz, 1967) to the most recent ones (viz. Lyakhov et al., 2004; Sun et al., 2004; Skorda et al., 2005).

Following our interest in this family, we describe here the crystal and molecular structures of another three copper complexes sharing the same highly symmetric Cu4OCl6 framework and formulated as (Cu4OCl6)Cl(PhIm)3·(HPhIm)·H2O, (I), (Cu4OCl6)(PyNO)4, (II), and (Cu4OCl6)(MeIm)4·3CH3OH, (III) (PhIm: is phenylimydazole, PyNO is pyridine N-oxide and MeIm is 2-methylimidazole. The present work should be considered as the introductory structural part of a comprehensive magneto-structural study, and it will be followed by the magnetic studies and associated modelling, to be reported elsewhere.

Figs. 1 to 3 show individual ellipsoid plots of the three compounds, while Tables 1, 3 and 4 provide selected bond distances and angles of the central cores. Tables 2 and 5 present some hydrogen-bonding interactions for (I) and (III). In all three structures, the four Cu atoms bound to O1 define an almost perfect tetrahedron with the O atom at its centre, while each chloride anion coordinates to two different Cui,Cuj cations and lies at the bisector of the corresponding Cui—O1—Cuj angles. The Cl6 array defines a nearly perfect octahedron, centred at, though beyond bonding distance to, atom O1 and interpenetrating the copper tetrahedron. The major differences found in the complexes are due to the external ligands attached to copper, viz. three PhIm groups and one chloride ion in (I), four PyNO groups in (II), and four MeIm groups in (III). This situation makes (I) unique in the sense that, since the fourth ligand is an anion, the complete globular core becomes and anion itself, requiring of a charged HPhIm+ cation as a counter-ion to achieve charge balance. The other two cores, instead, are neutral.

Each metal centre is five-coordinate, with τ parameters (Addison et al., 1984) showing coordination geometries biased towards an irregular trigonal bipyramid (ideal τ = 1) rather than to a square pyramid (ideal τ = 0). The observed τ ranges are 0.74–0.87 for (I), 0.62–0.84 for (II) and 0.64–0.82% for (III).

In all three cases, the trigonal base is defined by three chloride ions [mean Cu—Cl values 2.41 (6), 2.41 (8), 2.42 (11) and 2.42 (4) for (I), (II), (II') and (III), respectively], the O atom occupying one of the apical positions [mean Cu—O = 1.909 (9), 1.90 (3), 1.90 (2) and 1.913 (5) Å]. The remaining one is in turn filled either by an aromatic N atom [from PhIm in (I), except for Cu4, where the site is occupied by Cl7, or from MeIm in (III)], or by an O atom [from PyNO in the case of (II)] [mean Cu—N = 1.921 (7) and1.947 (11) Å for (I) and (III); mean Cu—O = 1.910 (19) and 1.904 (16) Å for (II) and (II').

The cage structure is such that all CuII cations are at similar distances to each other, viz. the shortest diagonal of the six rhomboidal Cu—O—Cu—Cl loops in the (Cu4OCl6) cage. Intermetallic distances span the ranges 3.0658 (10)–3.1563 (10) Å, [3.0778 (15)–3.1316 (14) Å, 3.0358 (16)–3.1673 (17) Å and 3.0945 (9)–3.1436 (9) Å. These differences are among the largest reported in similar structures [the maximum being 3.061–3.197 Å for the 7-azaindole-N analogue to the compounds reported here (Poitras & Beauchamp, 1992)].

Table 6 compares the mean values of the Cu—O and Cu—Cl core bond distances in all reported cases in the CSD with those in the structures presented here. The similarity is apparent, confirming the rigidity of the [Cu4OCl6] nucleus.

The external ligands do not exhibit any non-standard feature worth mentioning.

The crystal structures of (I) and (III) are stabilized by different solvates/counter-ions, viz. a HPhIm+ and a (disordered) water molecule in (I) and three methanol molecules (one of them disordered) in (III). Owing to their different capabilities for hydrogen bonding and π contacts, they interact with neighbouring molecules in quite a diverse way, leading to different non-bonding interaction schemes. Structure (I) contains a number of medium strength N—H···X bonds (X = Cl and O) (Table 2), which organize the molecules into broad two-dimensional structures parallel to (−110). A similar state of affairs is found in compound (III), with the difference that here the strongest N—H···X bonds (Table 5) determine by themselves the three-dimensional structure. Finally, in structure (II), there are no significant intermolecular interactions.

In spite of the fact that measurement of the magnetic susceptibility as a function of temperature showed that all three compounds follow the Curie–Weiss law, they have dissimilar magnetic properties. Evaluation of these behaviours, as well as a search for adequate fitting models, is in progress.

Experimental top

All chemicals and reagents are commercially available and were used as received without further purification. The three copper(II) complexes were synthesized by a method previously reported (Atria et al., 1999). A methanol solution of the organic ligand (1 mmol) was added with constant stirring to a solution containing copper chloride (1 mmol) in the same solvent. The resulting solution was refluxed for 45 min. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a solution of the complex in methanol. C,H and N microanalyses were carried out with a Fison Carlo Erba EA 1108 equipment. Calc.(%)/Found(%) values are as follows:

Complex 1: C, 38.95; H, 2.82; N,10.09 / C, 38.70; H, 2.78; N, 9.89.

Complex 2; C, 27.71; H, 2.37; N,6.46 / C, 27.69, H, 2.11; N, 6.25.

Complex 3; C, 25.15; H, 4.00; N,12.34 / C, 24.99; H, 3.87; N, 12.07.

Refinement top

H atoms attached to C and N atoms were placed at calculated positions (N—H = 0.86 Å, C—Haromatic = 0.93 Å and C—Hmethyl = 0.96 Å) and allowed to ride. Even though located in a rather shallow electron density plateau, H atoms from the methyl groups were also included (AFIX 137 in SHELXL97; Sheldrick, 1997) because of their incidence in the refinement. The alcohol OH groups were treated by use of the AFIX 147 instruction in SHELXL97, subject to orientational restraint. H atoms bound to the disordered water molecule in (I) were not included in the model. All H atoms were assigned a Uiso(H) value of xUeq(carrier), with x = 1.2 for aromatic H atoms, and x = 1.5 for methyl and hydroxy H atoms. In spite of the heavy atoms present, the crystals used for data collection were poorly diffracting, and only with measurement times of 20, 20 and 15 s per frame, respectively, was it possible to account for an observed/unique ratio of reflections of ca 0.5. A residual effect of this was the uncertainty with which some solvent molecules could be determined; thus, in (I), a full hydration water molecule appeared split into three partially occupied sites, and was refined with an overall isotropic displacement parameter and occupations restrained to sum to 1, and in (III), one of the three methanol solvent molecules appeared to have its O atom split over two sites, refined with occupation factors adding up to 1. In addition, a PLATON (Spek, 2003) run detected in this latter structure (void) solvent accessible regions of 35 Å3, in which the electron density was hardly differentiable from background. A PLATON SQUEEZE refinement, however, would not significantly improve the refinement. The rather high R indices obtained are probably the result of poor data quality. However, the large number of parameters (518, 708 and 393, respectively) might have played also a non-negligible role [see Krebs (2000) for a detailed analysis].

Computing details top

For all compounds, data collection: SMART-NT (Bruker, 2001). Cell refinement: SAINT-NT (Bruker 2000) for (I); SAINT-NT (Bruker, 2000) for (II), (III). For all compounds, data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A displacement ellipsoid plot of (I) (30% probability level).
[Figure 2] Fig. 2. : A displacement ellipsoid plot of one of the (very similar) independent moieties in (II), as representative of both (30% probability level).
[Figure 3] Fig. 3. : A displacement ellipsoid plot of (III) (30% probability level).
(I) 4-phenyl-1H-imidazolium hexa-µ2-chloro-chloro-µ4-oxo-tris(4-phenyl-1H-imidazole- κN1)tetracopper(II) monohydrate top
Crystal data top
(C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2OZ = 2
Mr = 1114.03F(000) = 1116
Triclinic, P1Dx = 1.701 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 12.394 (3) ÅCell parameters from 5240 reflections
b = 14.823 (3) Åθ = 2.3–27.8°
c = 14.924 (3) ŵ = 2.40 mm1
α = 97.707 (6)°T = 297 K
β = 113.562 (5)°Block, blue
γ = 112.860 (5)°0.25 × 0.19 × 0.17 mm
V = 2175.6 (8) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
9092 independent reflections
Radiation source: fine-focus sealed tube5466 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ϕ and ω scansθmax = 28.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1514
Tmin = 0.57, Tmax = 0.66k = 1919
22917 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0156P)2]
where P = (Fo2 + 2Fc2)/3
7542 reflections(Δ/σ)max = 0.001
517 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
(C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2Oγ = 112.860 (5)°
Mr = 1114.03V = 2175.6 (8) Å3
Triclinic, P1Z = 2
a = 12.394 (3) ÅMo Kα radiation
b = 14.823 (3) ŵ = 2.40 mm1
c = 14.924 (3) ÅT = 297 K
α = 97.707 (6)°0.25 × 0.19 × 0.17 mm
β = 113.562 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
9092 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5466 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.66Rint = 0.057
22917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 0.98Δρmax = 0.35 e Å3
7542 reflectionsΔρmin = 0.44 e Å3
517 parameters
Special details top

Experimental. C,H and N microanalyses were carried out with a Fison Carlo Erba EA 1108 equipment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.77808 (6)0.90319 (4)0.79700 (4)0.03643 (17)
Cu20.98017 (6)0.96676 (4)0.71767 (4)0.03664 (17)
Cu30.81222 (6)0.73106 (4)0.68913 (4)0.03595 (17)
Cu40.67256 (6)0.84118 (4)0.55749 (4)0.03766 (17)
Cl10.58992 (16)0.90048 (13)0.65430 (11)0.0764 (5)
Cl20.85700 (13)0.95999 (10)0.54164 (9)0.0464 (3)
Cl30.64755 (13)0.66407 (9)0.50742 (9)0.0410 (3)
Cl40.98832 (13)1.05698 (9)0.86311 (10)0.0481 (4)
Cl50.79907 (16)0.76009 (10)0.84133 (10)0.0595 (4)
Cl61.04420 (12)0.82723 (9)0.71443 (9)0.0393 (3)
Cl70.50716 (13)0.81194 (10)0.40215 (9)0.0469 (3)
O10.8112 (3)0.8590 (2)0.6882 (2)0.0251 (7)
N110.7364 (4)0.9408 (3)0.9023 (3)0.0420 (11)
N121.1471 (4)1.0781 (3)0.7437 (3)0.0374 (11)
N130.8085 (4)0.6003 (3)0.6925 (3)0.0364 (11)
N210.7563 (4)1.0244 (3)1.0461 (3)0.0417 (11)
H210.78801.07321.10270.050*
N221.3150 (4)1.1707 (3)0.7228 (3)0.0456 (12)
H221.37481.18450.70370.055*
N230.7313 (4)0.4356 (3)0.6762 (3)0.0486 (12)
H230.67610.36990.65240.058*
C110.8110 (5)1.0258 (4)0.9852 (4)0.0382 (13)
H110.89241.08030.99950.046*
C121.2216 (6)1.0759 (4)0.7061 (4)0.0518 (15)
H121.21221.01450.67040.062*
C130.7053 (6)0.5058 (5)0.6414 (4)0.0546 (16)
H130.62280.49010.58660.066*
C210.6404 (6)0.9312 (4)1.0020 (4)0.0437 (14)
C221.2981 (5)1.2404 (4)0.7751 (4)0.0460 (14)
C230.8615 (5)0.4852 (4)0.7569 (4)0.0393 (13)
C310.6291 (5)0.8805 (4)0.9124 (4)0.0447 (14)
H310.55900.81490.86560.054*
C321.1961 (6)1.1845 (4)0.7890 (4)0.0518 (15)
H321.16241.21210.82390.062*
C330.9061 (5)0.5843 (4)0.7638 (4)0.0444 (14)
H330.99340.63710.81130.053*
C410.5540 (5)0.9029 (4)1.0484 (4)0.0468 (14)
C421.3837 (7)1.3558 (4)0.8077 (4)0.0629 (18)
C430.9209 (6)0.4286 (5)0.8126 (5)0.0604 (17)
C510.5640 (6)0.9745 (5)1.1245 (4)0.0532 (16)
H510.62671.04451.14700.064*
C521.4891 (7)1.4013 (5)0.7923 (5)0.079 (2)
H521.51361.36030.76080.095*
C530.8643 (6)0.3233 (5)0.7823 (5)0.081 (2)
H530.77970.28190.72360.097*
C610.4831 (8)0.9438 (6)1.1669 (5)0.081 (2)
H610.49720.99281.22220.097*
C621.5603 (6)1.5075 (5)0.8228 (5)0.081 (2)
H621.63311.53730.81170.097*
C630.9311 (8)0.2780 (5)0.8377 (7)0.096 (3)
H630.89310.20580.81330.115*
C710.3838 (8)0.8460 (8)1.1322 (6)0.100 (3)
H710.32620.82791.15960.120*
C721.5288 (8)1.5698 (5)0.8678 (6)0.102 (3)
H721.58071.64190.89040.123*
C731.0518 (8)0.3346 (7)0.9278 (6)0.096 (3)
H731.09180.30250.96880.115*
C810.3692 (7)0.7719 (6)1.0540 (6)0.104 (3)
H810.30120.70331.02890.125*
C821.4201 (9)1.5259 (5)0.8798 (6)0.116 (3)
H821.39221.56740.90620.140*
C831.1108 (8)0.4399 (6)0.9548 (5)0.119 (3)
H831.19550.48181.01320.143*
C910.4543 (7)0.7994 (5)1.0136 (5)0.081 (2)
H910.44550.74890.96280.098*
C921.3505 (7)1.4193 (5)0.8528 (5)0.103 (3)
H921.27921.39000.86560.124*
C931.0447 (8)0.4841 (5)0.8954 (6)0.120 (3)
H931.08810.55620.91350.144*
N141.0640 (6)0.7829 (4)0.4427 (4)0.0848 (18)
H141.13420.83460.45020.102*
N240.8811 (5)0.6936 (4)0.4373 (3)0.0575 (13)
H240.80840.67820.44010.069*
C140.9707 (7)0.7878 (5)0.4565 (4)0.0607 (17)
H14A0.96740.84840.47670.073*
C240.9175 (8)0.6243 (6)0.4127 (5)0.072 (2)
C341.0316 (8)0.6797 (6)0.4139 (5)0.089 (2)
H341.08130.65350.39790.107*
C440.8391 (8)0.5102 (5)0.3875 (4)0.072 (2)
C540.7303 (7)0.4692 (6)0.3999 (6)0.096 (3)
H540.70150.51200.42310.115*
C640.6609 (8)0.3612 (6)0.3774 (5)0.100 (3)
H640.58740.33180.38760.120*
C740.7024 (9)0.3001 (6)0.3405 (7)0.111 (3)
H740.65330.22830.32280.134*
C840.8063 (9)0.3374 (6)0.3293 (6)0.108 (3)
H840.83470.29380.30730.129*
C940.8759 (7)0.4439 (6)0.3503 (5)0.096 (2)
H940.94880.47080.33890.116*
O1WA1.3172 (9)0.9019 (6)0.4661 (8)0.064 (2)*0.50
O1WB1.3318 (11)0.9224 (8)0.5302 (9)0.065 (4)*0.34
O1WC1.274 (3)0.8854 (19)0.401 (2)0.077 (9)*0.16
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0476 (4)0.0379 (4)0.0331 (4)0.0229 (3)0.0264 (4)0.0111 (3)
Cu20.0334 (4)0.0319 (4)0.0401 (4)0.0095 (3)0.0213 (3)0.0093 (3)
Cu30.0444 (4)0.0299 (4)0.0394 (4)0.0218 (3)0.0212 (4)0.0146 (3)
Cu40.0363 (4)0.0439 (4)0.0364 (4)0.0221 (3)0.0180 (3)0.0156 (3)
Cl10.0773 (13)0.1352 (15)0.0539 (10)0.0804 (12)0.0375 (10)0.0303 (10)
Cl20.0423 (9)0.0550 (9)0.0415 (8)0.0171 (7)0.0223 (7)0.0305 (7)
Cl30.0416 (9)0.0346 (8)0.0384 (8)0.0203 (7)0.0123 (7)0.0076 (6)
Cl40.0565 (10)0.0288 (8)0.0505 (9)0.0089 (7)0.0340 (8)0.0022 (6)
Cl50.1042 (13)0.0453 (9)0.0554 (9)0.0405 (9)0.0548 (10)0.0282 (7)
Cl60.0388 (8)0.0367 (8)0.0461 (8)0.0202 (6)0.0241 (7)0.0083 (6)
Cl70.0420 (9)0.0569 (9)0.0414 (8)0.0258 (7)0.0166 (7)0.0228 (7)
O10.0268 (19)0.0267 (18)0.0219 (17)0.0126 (15)0.0129 (15)0.0073 (14)
N110.043 (3)0.055 (3)0.032 (3)0.023 (2)0.024 (2)0.011 (2)
N120.033 (3)0.051 (3)0.045 (3)0.023 (2)0.030 (2)0.023 (2)
N130.050 (3)0.015 (2)0.038 (3)0.018 (2)0.013 (2)0.011 (2)
N210.043 (3)0.046 (3)0.029 (3)0.020 (2)0.016 (2)0.004 (2)
N220.053 (3)0.062 (3)0.050 (3)0.033 (3)0.042 (3)0.028 (3)
N230.046 (3)0.023 (3)0.068 (3)0.013 (2)0.024 (3)0.017 (2)
C110.027 (3)0.037 (3)0.037 (3)0.009 (3)0.013 (3)0.002 (3)
C120.068 (5)0.050 (4)0.033 (3)0.028 (4)0.023 (3)0.012 (3)
C130.059 (5)0.064 (4)0.066 (4)0.041 (4)0.039 (4)0.034 (4)
C210.061 (4)0.062 (4)0.032 (3)0.036 (3)0.035 (3)0.021 (3)
C220.043 (4)0.052 (4)0.041 (3)0.016 (3)0.024 (3)0.021 (3)
C230.027 (3)0.031 (3)0.048 (3)0.015 (3)0.007 (3)0.013 (3)
C310.049 (4)0.046 (4)0.052 (4)0.026 (3)0.032 (3)0.019 (3)
C320.072 (5)0.041 (4)0.068 (4)0.030 (3)0.053 (4)0.022 (3)
C330.037 (4)0.034 (3)0.057 (4)0.022 (3)0.017 (3)0.008 (3)
C410.042 (4)0.051 (4)0.038 (3)0.019 (3)0.013 (3)0.023 (3)
C420.089 (5)0.037 (4)0.067 (4)0.019 (4)0.050 (4)0.030 (3)
C430.058 (5)0.078 (5)0.061 (4)0.051 (4)0.020 (4)0.042 (4)
C510.079 (5)0.085 (4)0.045 (4)0.056 (4)0.054 (4)0.034 (3)
C520.077 (5)0.054 (5)0.096 (5)0.009 (4)0.055 (5)0.024 (4)
C530.038 (4)0.056 (4)0.162 (7)0.032 (4)0.042 (4)0.069 (5)
C610.093 (7)0.141 (8)0.068 (5)0.088 (6)0.056 (5)0.053 (5)
C620.066 (5)0.065 (5)0.101 (6)0.007 (4)0.058 (5)0.027 (4)
C630.090 (6)0.075 (5)0.183 (9)0.069 (5)0.083 (7)0.079 (6)
C710.069 (6)0.202 (11)0.100 (7)0.090 (7)0.062 (6)0.107 (8)
C720.110 (7)0.055 (5)0.156 (8)0.022 (5)0.094 (7)0.042 (5)
C730.092 (7)0.136 (8)0.124 (7)0.086 (7)0.062 (6)0.100 (7)
C810.078 (6)0.095 (6)0.133 (8)0.017 (5)0.070 (6)0.039 (6)
C820.137 (8)0.045 (5)0.154 (8)0.030 (5)0.082 (7)0.010 (5)
C830.113 (7)0.094 (6)0.087 (6)0.067 (6)0.017 (5)0.017 (5)
C910.083 (6)0.064 (5)0.107 (6)0.022 (4)0.070 (5)0.025 (4)
C920.125 (7)0.041 (5)0.148 (7)0.028 (5)0.090 (6)0.013 (5)
C930.103 (7)0.068 (5)0.125 (7)0.055 (5)0.010 (6)0.025 (5)
N140.083 (5)0.075 (5)0.102 (5)0.031 (4)0.060 (4)0.025 (4)
N240.060 (4)0.054 (3)0.057 (3)0.024 (3)0.034 (3)0.014 (3)
C140.059 (5)0.056 (5)0.052 (4)0.021 (4)0.023 (4)0.013 (3)
C240.086 (6)0.091 (6)0.058 (4)0.064 (5)0.036 (4)0.011 (4)
C340.089 (6)0.094 (6)0.116 (6)0.056 (5)0.073 (6)0.016 (5)
C440.090 (6)0.067 (5)0.052 (4)0.043 (5)0.033 (4)0.007 (3)
C540.085 (6)0.078 (6)0.146 (7)0.053 (5)0.069 (6)0.018 (5)
C640.115 (7)0.085 (6)0.121 (7)0.040 (6)0.084 (6)0.032 (5)
C740.098 (8)0.077 (6)0.151 (8)0.049 (6)0.057 (7)0.011 (5)
C840.093 (7)0.065 (6)0.140 (7)0.053 (5)0.034 (6)0.006 (5)
C940.092 (6)0.096 (6)0.122 (7)0.043 (5)0.079 (6)0.015 (5)
Geometric parameters (Å, º) top
Cu1—O11.921 (3)C41—C911.397 (7)
Cu2—O11.899 (3)C42—C521.345 (7)
Cu3—O11.903 (3)C42—C921.364 (7)
Cu4—O11.913 (3)C43—C931.338 (8)
Cu1—Cu23.0658 (10)C43—C531.356 (7)
Cu1—Cu33.0923 (9)C51—C611.357 (7)
Cu1—Cu43.1272 (10)C51—H510.9300
Cu2—Cu33.1563 (10)C52—C621.368 (7)
Cu2—Cu43.1179 (11)C52—H520.9300
Cu3—Cu43.1394 (9)C53—C631.361 (7)
Cu1—N111.920 (4)C53—H530.9300
Cu2—N121.921 (4)C61—C711.337 (9)
Cu3—N131.929 (3)C61—H610.9300
Cu1—Cl52.3816 (14)C62—C721.334 (7)
Cu1—Cl42.3846 (15)C62—H620.9300
Cu1—Cl12.4310 (16)C63—C731.365 (9)
Cu2—Cl42.3347 (13)C63—H630.9300
Cu2—Cl22.4179 (14)C71—C811.390 (9)
Cu2—Cl62.4878 (13)C71—H710.9300
Cu3—Cl52.3366 (14)C72—C821.346 (9)
Cu3—Cl32.4049 (14)C72—H720.9300
Cu3—Cl62.4988 (15)C73—C831.357 (8)
Cu4—Cl72.2373 (14)C73—H730.9300
Cu4—Cl12.3347 (14)C81—C911.372 (8)
Cu4—Cl22.4081 (14)C81—H810.9300
Cu4—Cl32.4906 (13)C82—C921.376 (8)
N11—C111.316 (5)C82—H820.9300
N11—C311.365 (6)C83—C931.370 (7)
N12—C121.265 (6)C83—H830.9300
N12—C321.397 (5)C91—H910.9300
N13—C131.313 (6)C92—H920.9300
N13—C331.384 (5)C93—H930.9300
N21—C111.332 (5)N14—C141.279 (6)
N21—C211.366 (6)N14—C341.376 (7)
N21—H210.8600N14—H140.8600
N22—C121.338 (6)N24—C141.304 (6)
N22—C221.343 (5)N24—C241.336 (6)
N22—H220.8600N24—H240.8600
N23—C131.314 (5)C14—H14A0.9300
N23—C231.371 (6)C24—C341.323 (8)
N23—H230.8600C24—C441.484 (8)
C11—H110.9300C34—H340.9300
C12—H120.9300C44—C541.347 (8)
C13—H130.9300C44—C941.374 (7)
C21—C311.367 (6)C54—C641.404 (8)
C21—C411.457 (6)C54—H540.9300
C22—C321.330 (6)C64—C741.356 (8)
C22—C421.497 (7)C64—H640.9300
C23—C331.325 (5)C74—C841.280 (9)
C23—C431.455 (6)C74—H740.9300
C31—H310.9300C84—C941.387 (8)
C32—H320.9300C84—H840.9300
C33—H330.9300C94—H940.9300
C41—C511.376 (6)
N11—Cu1—O1177.06 (16)C22—C32—H32124.9
N11—Cu1—Cl594.89 (12)N12—C32—H32124.9
O1—Cu1—Cl583.92 (8)C23—C33—N13112.5 (5)
N11—Cu1—Cl497.77 (14)C23—C33—H33123.8
O1—Cu1—Cl485.17 (9)N13—C33—H33123.8
Cl5—Cu1—Cl4113.91 (6)C51—C41—C91117.7 (5)
N11—Cu1—Cl195.82 (13)C51—C41—C21122.8 (5)
O1—Cu1—Cl182.87 (9)C91—C41—C21119.5 (5)
Cl5—Cu1—Cl1128.60 (6)C52—C42—C92117.5 (6)
Cl4—Cu1—Cl1114.12 (6)C52—C42—C22124.2 (6)
O1—Cu2—N12177.61 (14)C92—C42—C22118.2 (6)
O1—Cu2—Cl487.07 (8)C93—C43—C53117.3 (5)
N12—Cu2—Cl493.09 (13)C93—C43—C23117.7 (6)
O1—Cu2—Cl284.42 (9)C53—C43—C23124.8 (6)
N12—Cu2—Cl293.56 (12)C61—C51—C41120.6 (6)
Cl4—Cu2—Cl2125.31 (5)C61—C51—H51119.7
O1—Cu2—Cl684.65 (8)C41—C51—H51119.7
N12—Cu2—Cl697.24 (12)C42—C52—C62120.4 (6)
Cl4—Cu2—Cl6123.41 (5)C42—C52—H52119.8
Cl2—Cu2—Cl6109.40 (5)C62—C52—H52119.8
O1—Cu3—N13177.67 (14)C43—C53—C63120.1 (7)
O1—Cu3—Cl585.58 (8)C43—C53—H53119.9
N13—Cu3—Cl592.48 (11)C63—C53—H53119.9
O1—Cu3—Cl385.73 (9)C71—C61—C51122.6 (7)
N13—Cu3—Cl394.69 (12)C71—C61—H61118.7
Cl5—Cu3—Cl3133.12 (6)C51—C61—H61118.7
O1—Cu3—Cl684.27 (9)C72—C62—C52122.2 (7)
N13—Cu3—Cl697.72 (13)C72—C62—H62118.9
Cl5—Cu3—Cl6114.59 (5)C52—C62—H62118.9
Cl3—Cu3—Cl6110.20 (5)C53—C63—C73122.4 (7)
O1—Cu4—Cl7177.16 (9)C53—C63—H63118.8
O1—Cu4—Cl185.71 (9)C73—C63—H63118.8
Cl7—Cu4—Cl195.61 (6)C61—C71—C81118.2 (7)
O1—Cu4—Cl284.42 (9)C61—C71—H71120.9
Cl7—Cu4—Cl296.98 (5)C81—C71—H71120.9
Cl1—Cu4—Cl2121.59 (6)C62—C72—C82118.5 (7)
O1—Cu4—Cl383.13 (8)C62—C72—H72120.8
Cl7—Cu4—Cl394.08 (5)C82—C72—H72120.8
Cl1—Cu4—Cl3127.48 (6)C83—C73—C63116.9 (6)
Cl2—Cu4—Cl3108.12 (5)C83—C73—H73121.5
Cu4—Cl1—Cu181.99 (5)C63—C73—H73121.5
Cu4—Cl2—Cu280.49 (4)C91—C81—C71120.5 (7)
Cu3—Cl3—Cu479.76 (4)C91—C81—H81119.8
Cu2—Cl4—Cu181.02 (4)C71—C81—H81119.8
Cu3—Cl5—Cu181.89 (4)C72—C82—C92119.8 (7)
Cu2—Cl6—Cu378.54 (4)C72—C82—H82120.1
Cu2—O1—Cu3112.23 (13)C92—C82—H82120.1
Cu2—O1—Cu4109.75 (13)C73—C83—C93119.6 (7)
Cu3—O1—Cu4110.75 (13)C73—C83—H83120.2
Cu2—O1—Cu1106.73 (13)C93—C83—H83120.2
Cu3—O1—Cu1107.94 (12)C81—C91—C41120.3 (6)
Cu4—O1—Cu1109.32 (13)C81—C91—H91119.9
C11—N11—C31105.3 (4)C41—C91—H91119.9
C11—N11—Cu1127.4 (4)C42—C92—C82121.5 (7)
C31—N11—Cu1127.0 (4)C42—C92—H92119.3
C12—N12—C32103.7 (4)C82—C92—H92119.3
C12—N12—Cu2128.7 (4)C43—C93—C83123.2 (7)
C32—N12—Cu2126.1 (3)C43—C93—H93118.4
C13—N13—C33102.6 (4)C83—C93—H93118.4
C13—N13—Cu3128.4 (4)C14—N14—C34107.6 (6)
C33—N13—Cu3127.9 (4)C14—N14—H14126.2
C11—N21—C21107.2 (4)C34—N14—H14126.2
C11—N21—H21126.4C14—N24—C24110.9 (6)
C21—N21—H21126.4C14—N24—H24124.5
C12—N22—C22107.2 (5)C24—N24—H24124.5
C12—N22—H22126.4N14—C14—N24108.4 (6)
C22—N22—H22126.4N14—C14—H14A125.8
C13—N23—C23108.4 (4)N24—C14—H14A125.8
C13—N23—H23125.8C34—C24—N24104.9 (7)
C23—N23—H23125.8C34—C24—C44130.1 (7)
N11—C11—N21112.1 (4)N24—C24—C44125.0 (7)
N11—C11—H11123.9C24—C34—N14108.1 (6)
N21—C11—H11123.9C24—C34—H34125.9
N12—C12—N22113.3 (5)N14—C34—H34125.9
N12—C12—H12123.4C54—C44—C94118.4 (7)
N22—C12—H12123.4C54—C44—C24121.1 (6)
N13—C13—N23112.6 (5)C94—C44—C24120.5 (7)
N13—C13—H13123.7C44—C54—C64119.2 (6)
N23—C13—H13123.7C44—C54—H54120.4
N21—C21—C31105.8 (4)C64—C54—H54120.4
N21—C21—C41122.2 (5)C74—C64—C54119.3 (7)
C31—C21—C41132.1 (5)C74—C64—H64120.4
C32—C22—N22105.6 (5)C54—C64—H64120.4
C32—C22—C42131.2 (5)C84—C74—C64122.6 (8)
N22—C22—C42123.2 (5)C84—C74—H74118.7
C33—C23—N23103.9 (4)C64—C74—H74118.7
C33—C23—C43134.3 (5)C74—C84—C94119.2 (7)
N23—C23—C43121.8 (5)C74—C84—H84120.4
N11—C31—C21109.6 (5)C94—C84—H84120.4
N11—C31—H31125.2C44—C94—C84121.3 (7)
C21—C31—H31125.2C44—C94—H94119.4
C22—C32—N12110.2 (4)C84—C94—H94119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···Cl6i0.862.443.213 (4)150
N22—H22···Cl7ii0.862.543.373 (4)164
N23—H23···Cl7iii0.862.503.351 (4)169
N14—H14···O1WA0.861.992.782 (10)154
N14—H14···O1WB0.861.972.734 (13)147
N14—H14···O1WC0.862.062.82 (3)146
N24—H24···Cl30.862.523.351 (5)162
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1.
(II) hexa-µ2-chloro-chloro-µ4-oxo-tetrakis(pyridine N-oxide- κO)tetracopper(II) 0.2-hydrate top
Crystal data top
[Cu4Cl6O(C5H5NO)4]·0.2H2OZ = 4
Mr = 863.30F(000) = 1704
Triclinic, P1Dx = 1.908 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.638 (3) ÅCell parameters from 4677 reflections
b = 16.237 (4) Åθ = 2.2–25.0°
c = 17.139 (4) ŵ = 3.36 mm1
α = 106.249 (5)°T = 297 K
β = 102.401 (6)°Block, blue
γ = 94.255 (5)°0.15 × 0.05 × 0.03 mm
V = 3005.7 (13) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
10510 independent reflections
Radiation source: fine-focus sealed tube5765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.64, Tmax = 0.91k = 1918
24860 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0142P)2 + 7.7343P]
where P = (Fo2 + 2Fc2)/3
10510 reflections(Δ/σ)max = 0.001
703 parametersΔρmax = 0.85 e Å3
619 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu4Cl6O(C5H5NO)4]·0.2H2Oγ = 94.255 (5)°
Mr = 863.30V = 3005.7 (13) Å3
Triclinic, P1Z = 4
a = 11.638 (3) ÅMo Kα radiation
b = 16.237 (4) ŵ = 3.36 mm1
c = 17.139 (4) ÅT = 297 K
α = 106.249 (5)°0.15 × 0.05 × 0.03 mm
β = 102.401 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
10510 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5765 reflections with I > 2σ(I)
Tmin = 0.64, Tmax = 0.91Rint = 0.076
24860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068619 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 0.85 e Å3
10510 reflectionsΔρmin = 0.61 e Å3
703 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.37270 (8)0.84751 (6)0.73746 (6)0.0484 (3)
Cu20.63193 (8)0.81493 (6)0.78544 (6)0.0490 (3)
Cu30.42643 (7)0.67239 (6)0.76692 (6)0.0450 (3)
Cu40.47611 (8)0.71397 (6)0.60968 (5)0.0494 (3)
Cl10.32708 (17)0.81897 (13)0.59102 (12)0.0552 (6)
Cl20.68179 (18)0.76224 (16)0.65196 (13)0.0740 (7)
Cl30.36771 (17)0.58603 (12)0.61073 (12)0.0540 (5)
Cl40.54685 (18)0.93899 (13)0.82990 (14)0.0744 (7)
Cl50.26911 (19)0.74902 (14)0.79287 (15)0.0729 (7)
Cl60.62450 (17)0.69134 (14)0.83991 (14)0.0624 (6)
O10.4760 (3)0.7604 (3)0.7215 (3)0.0318 (9)
O110.2809 (5)0.9419 (3)0.7640 (3)0.0634 (16)
O120.7926 (4)0.8637 (3)0.8460 (3)0.0600 (15)
O130.3713 (4)0.5844 (3)0.8099 (3)0.0522 (13)
O140.4912 (4)0.6756 (3)0.4981 (3)0.0595 (14)
N110.1762 (7)0.9340 (5)0.7170 (5)0.069 (2)
N120.8080 (5)0.9344 (4)0.9100 (4)0.0467 (17)
N130.4355 (5)0.5170 (4)0.8067 (4)0.0478 (16)
N140.4035 (5)0.6238 (4)0.4362 (4)0.0420 (15)
C110.0831 (9)0.8896 (7)0.7211 (7)0.094 (3)
H110.09040.85770.75880.113*
C120.7706 (6)0.9305 (5)0.9798 (5)0.050 (2)
H120.73990.87760.98350.061*
C130.5223 (7)0.5177 (5)0.8722 (5)0.058 (2)
H130.54190.56510.92050.069*
C140.3084 (7)0.6573 (5)0.4085 (5)0.060 (2)
H140.30500.71540.43450.072*
C210.0274 (9)0.8878 (7)0.6713 (8)0.111 (4)
H210.09390.85500.67490.133*
C220.7788 (7)1.0057 (6)1.0445 (4)0.066 (3)
H220.74451.00461.08860.079*
C230.5818 (8)0.4478 (6)0.8671 (6)0.075 (3)
H230.64010.44510.91250.090*
C240.2146 (7)0.6109 (6)0.3437 (5)0.069 (3)
H240.15020.63620.32350.083*
C310.0374 (10)0.9370 (9)0.6144 (8)0.120 (4)
H310.11090.93810.58030.144*
C320.8373 (8)1.0814 (6)1.0439 (5)0.073 (3)
H320.84621.13241.08760.088*
C330.5543 (10)0.3840 (7)0.7956 (7)0.096 (3)
H330.60000.33900.79040.115*
C340.2220 (8)0.5249 (7)0.3105 (5)0.076 (3)
H340.15750.48920.27020.092*
C410.0619 (11)0.9821 (8)0.6107 (7)0.127 (4)
H410.05801.01370.57280.153*
C420.8811 (7)1.0786 (6)0.9772 (5)0.065 (2)
H420.92381.12880.97610.079*
C430.4677 (9)0.3800 (5)0.7320 (5)0.067 (3)
H430.44660.33200.68430.081*
C440.3216 (8)0.4905 (6)0.3352 (6)0.084 (3)
H440.33260.43510.30630.101*
C510.1754 (8)0.9815 (7)0.6662 (5)0.083 (3)
H510.24481.01360.66570.100*
C520.8660 (6)1.0066 (6)0.9119 (5)0.057 (2)
H520.89791.00850.86700.069*
C530.4090 (7)0.4512 (6)0.7398 (5)0.059 (2)
H530.34800.45200.69510.071*
C540.4058 (7)0.5422 (5)0.4057 (5)0.047 (2)
H540.46580.51700.43180.057*
Cu1'0.77732 (8)0.77483 (7)0.16179 (6)0.0565 (3)
Cu2'0.90001 (8)0.61293 (7)0.15525 (6)0.0530 (3)
Cu3'1.04378 (9)0.80233 (8)0.23597 (7)0.0814 (4)
Cu4'0.87531 (8)0.72920 (7)0.32565 (6)0.0531 (3)
Cl1'0.71490 (18)0.80582 (14)0.29258 (13)0.0631 (6)
Cl2'0.90027 (17)0.58335 (13)0.29260 (12)0.0551 (5)
Cl3'1.08343 (18)0.82214 (14)0.37812 (12)0.0630 (6)
Cl4'0.71090 (17)0.62569 (14)0.07852 (13)0.0629 (6)
Cl5'0.9296 (2)0.86490 (18)0.14377 (16)0.0972 (9)
Cl6'1.09750 (18)0.65445 (17)0.15285 (14)0.0765 (7)
O1'0.9017 (3)0.7272 (3)0.2213 (3)0.0396 (10)
O11'0.6695 (5)0.8308 (4)0.1018 (3)0.0687 (16)
O12'0.8777 (4)0.4967 (4)0.0828 (3)0.0687 (16)
O13'1.1754 (6)0.8839 (5)0.2399 (4)0.107 (2)
O14'0.8427 (5)0.7390 (4)0.4335 (3)0.0648 (15)
N11'0.5524 (7)0.8032 (5)0.0853 (5)0.0669 (19)
N12'0.9461 (6)0.4377 (4)0.1012 (4)0.0523 (17)
N13'1.2760 (6)0.9049 (6)0.2979 (5)0.076 (2)
N14'0.8974 (5)0.6912 (4)0.4809 (3)0.0446 (15)
C11'0.4961 (8)0.7364 (6)0.0206 (5)0.076 (3)
H11'0.53960.70510.01400.091*
C12'0.9174 (6)0.3929 (5)0.1502 (5)0.051 (2)
H12'0.85230.40320.17310.061*
C13'1.3316 (9)0.9924 (7)0.3294 (6)0.083 (3)
H13'1.29831.03860.31630.100*
C14'0.8249 (8)0.6317 (6)0.4926 (6)0.084 (3)
H14'0.74350.62060.46860.101*
C21'0.3772 (8)0.7121 (7)0.0028 (6)0.087 (3)
H21'0.34100.66580.04450.105*
C22'0.9857 (8)0.3312 (6)0.1663 (5)0.067 (2)
H22'0.96840.30220.20310.081*
C23'1.4460 (8)0.9996 (7)0.3840 (6)0.091 (3)
H23'1.48481.05580.41170.109*
C24'0.8827 (8)0.5872 (6)0.5445 (5)0.080 (3)
H24'0.83670.54740.55920.096*
C31'0.3107 (8)0.7530 (7)0.0517 (6)0.083 (3)
H31'0.22950.73640.04230.100*
C32'1.0788 (8)0.3106 (6)0.1299 (6)0.079 (3)
H32'1.11910.26480.13700.095*
C33'1.5009 (11)0.9402 (8)0.3993 (8)0.110 (4)
H33'1.57900.95190.43130.132*
C34'1.0026 (9)0.5989 (6)0.5749 (5)0.072 (3)
H34'1.03760.56350.60460.087*
C41'0.3743 (10)0.8221 (7)0.1173 (6)0.097 (3)
H41'0.33160.85250.15320.116*
C42'1.1092 (7)0.3598 (6)0.0831 (5)0.064 (2)
H42'1.17410.34950.06000.077*
C43'1.4397 (9)0.8548 (8)0.3664 (7)0.111 (4)
H43'1.47480.81000.38130.133*
C44'1.0669 (8)0.6588 (7)0.5624 (6)0.079 (3)
H44'1.14830.67100.58650.095*
C51'0.4932 (9)0.8515 (7)0.1359 (6)0.086 (3)
H51'0.52990.90080.17990.104*
C52'1.0448 (7)0.4257 (6)0.0691 (5)0.074 (3)
H52'1.06790.46060.03880.088*
C53'1.3240 (9)0.8364 (8)0.3100 (6)0.091 (3)
H53'1.28500.78010.28370.109*
C54'1.0134 (7)0.7039 (5)0.5135 (5)0.062 (2)
H54'1.06020.74580.50210.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0473 (6)0.0445 (6)0.0492 (6)0.0129 (5)0.0102 (5)0.0075 (5)
Cu20.0460 (6)0.0427 (6)0.0489 (6)0.0028 (5)0.0024 (5)0.0070 (5)
Cu30.0392 (5)0.0388 (6)0.0556 (6)0.0064 (4)0.0114 (5)0.0121 (5)
Cu40.0438 (6)0.0578 (7)0.0375 (6)0.0002 (5)0.0064 (4)0.0048 (5)
Cl10.0586 (13)0.0489 (14)0.0470 (12)0.0094 (10)0.0008 (10)0.0055 (10)
Cl20.0519 (13)0.106 (2)0.0487 (13)0.0107 (13)0.0143 (10)0.0027 (13)
Cl30.0526 (12)0.0407 (12)0.0581 (13)0.0026 (10)0.0026 (10)0.0088 (10)
Cl40.0640 (14)0.0489 (14)0.0795 (16)0.0228 (11)0.0178 (12)0.0063 (12)
Cl50.0690 (14)0.0704 (16)0.1076 (19)0.0326 (12)0.0534 (14)0.0419 (15)
Cl60.0463 (12)0.0649 (15)0.0834 (16)0.0043 (10)0.0083 (11)0.0410 (13)
O10.034 (2)0.025 (2)0.040 (2)0.0040 (17)0.0114 (18)0.0138 (19)
O110.069 (3)0.053 (3)0.052 (3)0.039 (3)0.015 (3)0.005 (3)
O120.039 (3)0.057 (4)0.053 (3)0.008 (2)0.013 (2)0.013 (3)
O130.054 (3)0.051 (3)0.072 (4)0.017 (3)0.043 (3)0.028 (3)
O140.058 (3)0.069 (4)0.041 (3)0.010 (3)0.013 (2)0.004 (3)
N110.077 (5)0.056 (5)0.072 (5)0.004 (4)0.004 (4)0.026 (4)
N120.027 (3)0.053 (4)0.037 (4)0.004 (3)0.006 (3)0.018 (3)
N130.032 (3)0.047 (4)0.059 (4)0.003 (3)0.020 (3)0.003 (3)
N140.053 (4)0.040 (4)0.036 (4)0.011 (3)0.008 (3)0.023 (3)
C110.064 (5)0.088 (8)0.127 (9)0.020 (5)0.011 (6)0.034 (6)
C120.027 (4)0.058 (5)0.058 (5)0.008 (4)0.008 (4)0.007 (4)
C130.054 (5)0.049 (5)0.056 (5)0.019 (4)0.005 (4)0.015 (4)
C140.086 (6)0.058 (5)0.035 (5)0.022 (4)0.003 (4)0.022 (4)
C210.064 (6)0.094 (9)0.168 (12)0.027 (6)0.031 (6)0.024 (7)
C220.089 (7)0.085 (6)0.011 (4)0.002 (5)0.014 (4)0.004 (4)
C230.087 (7)0.067 (7)0.065 (6)0.011 (5)0.021 (5)0.042 (5)
C240.061 (5)0.080 (6)0.054 (6)0.012 (5)0.008 (4)0.018 (5)
C310.064 (6)0.150 (12)0.127 (10)0.053 (7)0.011 (7)0.028 (7)
C320.082 (7)0.072 (6)0.048 (5)0.004 (5)0.008 (5)0.000 (5)
C330.123 (9)0.068 (7)0.102 (8)0.012 (6)0.025 (6)0.036 (6)
C340.062 (5)0.091 (7)0.059 (6)0.022 (5)0.007 (5)0.011 (5)
C410.114 (8)0.165 (12)0.120 (9)0.042 (8)0.009 (8)0.081 (8)
C420.067 (6)0.055 (5)0.062 (6)0.007 (5)0.010 (5)0.006 (4)
C430.116 (8)0.034 (5)0.046 (5)0.011 (5)0.034 (5)0.003 (4)
C440.068 (6)0.061 (6)0.094 (7)0.009 (5)0.032 (5)0.031 (5)
C510.079 (6)0.110 (8)0.066 (6)0.040 (6)0.004 (5)0.039 (6)
C520.035 (5)0.069 (6)0.049 (5)0.016 (4)0.002 (4)0.000 (4)
C530.049 (5)0.071 (6)0.044 (5)0.009 (4)0.013 (4)0.002 (4)
C540.063 (5)0.028 (4)0.050 (5)0.008 (4)0.009 (4)0.014 (4)
Cu1'0.0553 (6)0.0590 (7)0.0567 (7)0.0058 (5)0.0094 (5)0.0239 (6)
Cu2'0.0427 (6)0.0682 (7)0.0452 (6)0.0143 (5)0.0095 (5)0.0120 (5)
Cu3'0.0584 (7)0.1193 (11)0.0602 (7)0.0279 (7)0.0095 (6)0.0315 (7)
Cu4'0.0503 (6)0.0695 (8)0.0440 (6)0.0109 (5)0.0139 (5)0.0218 (5)
Cl1'0.0571 (13)0.0727 (16)0.0703 (15)0.0219 (11)0.0220 (11)0.0306 (13)
Cl2'0.0523 (12)0.0587 (14)0.0601 (13)0.0126 (10)0.0192 (10)0.0220 (11)
Cl3'0.0579 (13)0.0730 (16)0.0515 (13)0.0012 (11)0.0064 (10)0.0166 (12)
Cl4'0.0472 (12)0.0622 (15)0.0655 (14)0.0108 (10)0.0061 (10)0.0118 (12)
Cl5'0.0834 (17)0.119 (2)0.105 (2)0.0225 (15)0.0115 (15)0.0765 (18)
Cl6'0.0519 (13)0.120 (2)0.0642 (15)0.0150 (13)0.0205 (11)0.0338 (14)
O1'0.029 (2)0.058 (3)0.030 (2)0.0072 (19)0.0142 (18)0.009 (2)
O11'0.066 (3)0.070 (4)0.083 (4)0.013 (3)0.014 (3)0.046 (3)
O12'0.058 (3)0.071 (3)0.055 (3)0.022 (3)0.012 (3)0.000 (3)
O13'0.081 (4)0.150 (5)0.083 (5)0.046 (4)0.003 (3)0.054 (4)
O14'0.078 (4)0.082 (4)0.059 (3)0.037 (3)0.042 (3)0.035 (3)
N11'0.078 (4)0.063 (5)0.065 (5)0.009 (4)0.012 (4)0.032 (4)
N12'0.047 (4)0.051 (4)0.036 (4)0.003 (3)0.012 (3)0.004 (3)
N13'0.043 (4)0.107 (6)0.074 (5)0.014 (4)0.024 (4)0.019 (5)
N14'0.048 (4)0.056 (4)0.032 (4)0.020 (3)0.010 (3)0.014 (3)
C11'0.058 (5)0.098 (8)0.059 (6)0.017 (5)0.022 (5)0.004 (5)
C12'0.026 (4)0.062 (6)0.056 (5)0.001 (4)0.032 (4)0.010 (4)
C13'0.088 (6)0.095 (6)0.069 (7)0.012 (5)0.038 (5)0.014 (6)
C14'0.050 (5)0.114 (8)0.093 (7)0.031 (5)0.019 (5)0.049 (6)
C21'0.073 (6)0.100 (8)0.078 (7)0.029 (5)0.005 (5)0.017 (5)
C22'0.087 (7)0.067 (6)0.043 (5)0.002 (5)0.019 (5)0.009 (5)
C23'0.054 (6)0.086 (7)0.094 (8)0.032 (5)0.013 (5)0.016 (7)
C24'0.071 (5)0.115 (8)0.054 (6)0.031 (6)0.014 (5)0.036 (5)
C31'0.039 (5)0.116 (9)0.096 (8)0.036 (5)0.007 (4)0.036 (6)
C32'0.074 (6)0.097 (8)0.081 (7)0.030 (5)0.033 (5)0.032 (6)
C33'0.098 (8)0.090 (8)0.129 (10)0.030 (5)0.047 (7)0.004 (7)
C34'0.082 (6)0.068 (7)0.054 (6)0.008 (5)0.006 (5)0.008 (5)
C41'0.107 (7)0.129 (9)0.062 (7)0.021 (7)0.044 (6)0.024 (5)
C42'0.043 (5)0.086 (7)0.065 (6)0.030 (5)0.016 (4)0.021 (5)
C43'0.073 (7)0.108 (7)0.119 (9)0.011 (6)0.014 (6)0.008 (7)
C44'0.048 (5)0.116 (9)0.068 (6)0.010 (5)0.006 (5)0.036 (6)
C51'0.083 (6)0.098 (8)0.062 (6)0.016 (6)0.006 (5)0.006 (5)
C52'0.062 (6)0.105 (8)0.066 (6)0.020 (5)0.024 (5)0.037 (6)
C53'0.097 (7)0.107 (7)0.080 (7)0.040 (6)0.042 (5)0.026 (6)
C54'0.044 (4)0.073 (6)0.072 (6)0.001 (4)0.015 (4)0.027 (5)
Geometric parameters (Å, º) top
Cu1—O11.923 (4)Cu1'—O1'1.926 (5)
Cu2—O11.909 (4)Cu2'—O1'1.879 (5)
Cu3—O11.917 (4)Cu3'—O1'1.907 (4)
Cu4—O11.853 (4)Cu4'—O1'1.871 (4)
Cu1—Cu23.0778 (15)Cu1'—Cu2'3.0697 (15)
Cu1—Cu33.1085 (15)Cu1'—Cu3'3.0358 (16)
Cu1—Cu43.1316 (14)Cu1'—Cu4'3.1067 (15)
Cu2—Cu33.1014 (14)Cu2'—Cu3'3.1673 (17)
Cu2—Cu43.0820 (14)Cu2'—Cu4'3.0873 (14)
Cu3—Cu43.1117 (15)Cu3'—Cu4'3.0962 (15)
Cu1—O111.939 (5)Cu1'—O11'1.896 (5)
Cu2—O121.920 (4)Cu2'—O12'1.910 (5)
Cu3—O131.911 (5)Cu3'—Cl3'2.304 (2)
Cu4—O141.890 (5)Cu4'—O14'1.931 (5)
Cu1—Cl12.353 (2)Cu1'—Cl5'2.341 (2)
Cu1—Cl42.384 (2)Cu1'—Cl4'2.411 (2)
Cu1—Cl52.443 (2)Cu1'—Cl1'2.435 (2)
Cu2—Cl42.320 (2)Cu2'—Cl6'2.359 (2)
Cu2—Cl22.419 (2)Cu2'—Cl4'2.365 (2)
Cu2—Cl62.442 (2)Cu2'—Cl2'2.530 (2)
Cu3—Cl62.327 (2)Cu3'—O13'1.926 (6)
Cu3—Cl52.340 (2)Cu3'—Cl5'2.344 (3)
Cu3—Cl32.563 (2)Cu3'—Cl6'2.622 (3)
Cu4—Cl22.351 (2)Cu4'—Cl2'2.331 (2)
Cu4—Cl32.356 (2)Cu4'—Cl1'2.375 (2)
Cu4—Cl12.554 (2)Cu4'—Cl3'2.591 (2)
O11—N111.284 (8)O11'—N11'1.346 (8)
O12—N121.317 (6)O12'—N12'1.349 (7)
O13—N131.366 (7)O13'—N13'1.315 (8)
O14—N141.336 (7)O14'—N14'1.368 (7)
N11—C111.283 (11)N11'—C11'1.321 (10)
N11—C511.314 (10)N11'—C51'1.341 (10)
N12—C521.297 (9)N12'—C12'1.331 (9)
N12—C121.373 (9)N12'—C52'1.380 (10)
N13—C531.290 (9)N13'—C53'1.328 (11)
N13—C131.335 (9)N13'—C13'1.418 (11)
N14—C541.285 (8)N14'—C54'1.321 (9)
N14—C141.325 (9)N14'—C14'1.322 (9)
C11—C211.375 (12)C11'—C21'1.354 (11)
C11—H110.9300C11'—H11'0.9300
C12—C221.381 (9)C12'—C22'1.376 (10)
C12—H120.9300C12'—H12'0.9300
C13—C231.366 (10)C13'—C23'1.429 (12)
C13—H130.9300C13'—H13'0.9300
C14—C241.372 (10)C14'—C24'1.392 (12)
C14—H140.9300C14'—H14'0.9300
C21—C311.416 (15)C21'—C31'1.337 (11)
C21—H210.9300C21'—H21'0.9300
C22—C321.365 (11)C22'—C32'1.380 (11)
C22—H220.9300C22'—H22'0.9300
C23—C331.323 (12)C23'—C33'1.253 (13)
C23—H230.9300C23'—H23'0.9300
C24—C341.369 (11)C24'—C34'1.360 (11)
C24—H240.9300C24'—H24'0.9300
C31—C411.344 (15)C31'—C41'1.372 (12)
C31—H310.9300C31'—H31'0.9300
C32—C421.338 (11)C32'—C42'1.359 (11)
C32—H320.9300C32'—H32'0.9300
C33—C431.298 (12)C33'—C43'1.411 (13)
C33—H330.9300C33'—H33'0.9300
C34—C441.361 (11)C34'—C44'1.276 (11)
C34—H340.9300C34'—H34'0.9300
C41—C511.455 (12)C41'—C51'1.369 (12)
C41—H410.9300C41'—H41'0.9300
C42—C521.344 (10)C42'—C52'1.396 (11)
C42—H420.9300C42'—H42'0.9300
C43—C531.375 (11)C43'—C53'1.434 (12)
C43—H430.9300C43'—H43'0.9300
C44—C541.389 (10)C44'—C54'1.347 (11)
C44—H440.9300C44'—H44'0.9300
C51—H510.9300C51'—H51'0.9300
C52—H520.9300C52'—H52'0.9300
C53—H530.9300C53'—H53'0.9300
C54—H540.9300C54'—H54'0.9300
O1—Cu1—O11174.1 (2)O11'—Cu1'—O1'173.2 (2)
O1—Cu1—Cl186.48 (14)O11'—Cu1'—Cl5'86.82 (19)
O11—Cu1—Cl198.17 (16)O1'—Cu1'—Cl5'86.34 (14)
O1—Cu1—Cl484.58 (13)O11'—Cu1'—Cl4'100.42 (18)
O11—Cu1—Cl489.79 (17)O1'—Cu1'—Cl4'83.68 (14)
Cl1—Cu1—Cl4123.45 (9)Cl5'—Cu1'—Cl4'124.57 (10)
O1—Cu1—Cl583.81 (14)O11'—Cu1'—Cl1'100.24 (18)
O11—Cu1—Cl597.17 (19)O1'—Cu1'—Cl1'83.24 (13)
Cl1—Cu1—Cl5117.44 (9)Cl5'—Cu1'—Cl1'121.84 (10)
Cl4—Cu1—Cl5116.85 (9)Cl4'—Cu1'—Cl1'110.84 (8)
O1—Cu2—O12176.5 (2)O1'—Cu2'—O12'172.9 (2)
O1—Cu2—Cl486.69 (14)O1'—Cu2'—Cl6'87.64 (14)
O12—Cu2—Cl496.78 (16)O12'—Cu2'—Cl6'98.42 (18)
O1—Cu2—Cl283.16 (14)O1'—Cu2'—Cl4'85.97 (14)
O12—Cu2—Cl294.19 (17)O12'—Cu2'—Cl4'87.15 (16)
Cl4—Cu2—Cl2126.03 (10)Cl6'—Cu2'—Cl4'134.49 (9)
O1—Cu2—Cl682.68 (14)O1'—Cu2'—Cl2'81.62 (14)
O12—Cu2—Cl695.83 (17)O12'—Cu2'—Cl2'99.72 (18)
Cl4—Cu2—Cl6125.21 (9)Cl6'—Cu2'—Cl2'109.00 (8)
Cl2—Cu2—Cl6105.80 (9)Cl4'—Cu2'—Cl2'114.48 (8)
O13—Cu3—O1177.9 (2)O1'—Cu3'—O13'172.5 (2)
O13—Cu3—Cl696.39 (16)O1'—Cu3'—Cl3'89.26 (14)
O1—Cu3—Cl685.70 (13)O13'—Cu3'—Cl3'96.5 (2)
O13—Cu3—Cl591.75 (16)O1'—Cu3'—Cl5'86.69 (15)
O1—Cu3—Cl586.82 (14)O13'—Cu3'—Cl5'85.9 (2)
Cl6—Cu3—Cl5132.15 (9)Cl3'—Cu3'—Cl5'135.30 (11)
O13—Cu3—Cl398.35 (16)O1'—Cu3'—Cl6'79.74 (15)
O1—Cu3—Cl380.62 (14)O13'—Cu3'—Cl6'102.3 (2)
Cl6—Cu3—Cl3118.76 (8)Cl3'—Cu3'—Cl6'112.46 (9)
Cl5—Cu3—Cl3106.39 (8)Cl5'—Cu3'—Cl6'110.52 (10)
O1—Cu4—O14173.7 (2)O1'—Cu4'—O14'175.8 (2)
O1—Cu4—Cl286.27 (14)O1'—Cu4'—Cl2'87.45 (15)
O14—Cu4—Cl288.07 (16)O14'—Cu4'—Cl2'96.57 (17)
O1—Cu4—Cl387.77 (14)O1'—Cu4'—Cl1'86.09 (15)
O14—Cu4—Cl398.02 (17)O14'—Cu4'—Cl1'90.10 (17)
Cl2—Cu4—Cl3130.38 (9)Cl2'—Cu4'—Cl1'134.67 (8)
O1—Cu4—Cl182.24 (14)O1'—Cu4'—Cl3'81.79 (13)
O14—Cu4—Cl198.36 (17)O14'—Cu4'—Cl3'98.17 (17)
Cl2—Cu4—Cl1120.98 (9)Cl2'—Cu4'—Cl3'108.46 (8)
Cl3—Cu4—Cl1106.83 (8)Cl1'—Cu4'—Cl3'114.86 (8)
Cu1—Cl1—Cu479.20 (6)Cu4'—Cl1'—Cu1'80.46 (7)
Cu4—Cl2—Cu280.49 (7)Cu4'—Cl2'—Cu2'78.73 (7)
Cu4—Cl3—Cu378.35 (6)Cu3'—Cl3'—Cu4'78.22 (7)
Cu2—Cl4—Cu181.74 (7)Cu2'—Cl4'—Cu1'79.99 (7)
Cu3—Cl5—Cu181.03 (7)Cu1'—Cl5'—Cu3'80.80 (8)
Cu3—Cl6—Cu281.10 (7)Cu2'—Cl6'—Cu3'78.77 (7)
Cu4—O1—Cu2110.0 (2)Cu4'—O1'—Cu2'110.8 (2)
Cu4—O1—Cu3111.3 (2)Cu4'—O1'—Cu3'110.1 (2)
Cu2—O1—Cu3108.3 (2)Cu2'—O1'—Cu3'113.6 (2)
Cu4—O1—Cu1112.1 (2)Cu4'—O1'—Cu1'109.8 (2)
Cu2—O1—Cu1106.9 (2)Cu2'—O1'—Cu1'107.6 (2)
Cu3—O1—Cu1108.1 (2)Cu3'—O1'—Cu1'104.8 (2)
N11—O11—Cu1117.9 (5)N11'—O11'—Cu1'118.2 (4)
N12—O12—Cu2117.2 (4)N12'—O12'—Cu2'122.0 (4)
N13—O13—Cu3116.1 (4)N13'—O13'—Cu3'124.7 (6)
N14—O14—Cu4121.6 (4)N14'—O14'—Cu4'119.1 (4)
C11—N11—O11125.3 (9)C11'—N11'—C51'121.1 (9)
C11—N11—C51123.9 (9)C11'—N11'—O11'123.2 (8)
O11—N11—C51110.7 (8)C51'—N11'—O11'115.6 (8)
C52—N12—O12121.8 (7)C12'—N12'—O12'119.4 (7)
C52—N12—C12118.5 (7)C12'—N12'—C52'121.4 (7)
O12—N12—C12119.5 (7)O12'—N12'—C52'119.2 (7)
C53—N13—C13120.3 (8)O13'—N13'—C53'112.9 (9)
C53—N13—O13118.8 (7)O13'—N13'—C13'119.5 (9)
C13—N13—O13120.9 (7)C53'—N13'—C13'126.5 (9)
C54—N14—C14119.3 (7)C54'—N14'—C14'122.3 (8)
C54—N14—O14122.3 (7)C54'—N14'—O14'123.0 (7)
C14—N14—O14118.3 (7)C14'—N14'—O14'114.7 (7)
N11—C11—C21121.9 (11)N11'—C11'—C21'122.3 (9)
N11—C11—H11119.0N11'—C11'—H11'118.9
C21—C11—H11119.0C21'—C11'—H11'118.9
N12—C12—C22119.7 (8)N12'—C12'—C22'118.9 (7)
N12—C12—H12120.2N12'—C12'—H12'120.6
C22—C12—H12120.2C22'—C12'—H12'120.6
N13—C13—C23118.9 (8)N13'—C13'—C23'110.6 (9)
N13—C13—H13120.6N13'—C13'—H13'124.7
C23—C13—H13120.6C23'—C13'—H13'124.7
N14—C14—C24123.3 (8)N14'—C14'—C24'113.2 (8)
N14—C14—H14118.3N14'—C14'—H14'123.4
C24—C14—H14118.3C24'—C14'—H14'123.4
C11—C21—C31118.4 (11)C31'—C21'—C11'121.5 (10)
C11—C21—H21120.8C31'—C21'—H21'119.3
C31—C21—H21120.8C11'—C21'—H21'119.3
C32—C22—C12120.0 (8)C12'—C22'—C32'122.4 (9)
C32—C22—H22120.0C12'—C22'—H22'118.8
C12—C22—H22120.0C32'—C22'—H22'118.8
C33—C23—C13118.0 (9)C33'—C23'—C13'128.4 (11)
C33—C23—H23121.0C33'—C23'—H23'115.8
C13—C23—H23121.0C13'—C23'—H23'115.8
C34—C24—C14115.7 (8)C34'—C24'—C14'123.5 (9)
C34—C24—H24122.1C34'—C24'—H24'118.2
C14—C24—H24122.1C14'—C24'—H24'118.2
C41—C31—C21118.4 (11)C21'—C31'—C41'113.3 (9)
C41—C31—H31120.8C21'—C31'—H31'123.4
C21—C31—H31120.8C41'—C31'—H31'123.4
C42—C32—C22116.7 (9)C42'—C32'—C22'117.3 (9)
C42—C32—H32121.6C42'—C32'—H32'121.3
C22—C32—H32121.6C22'—C32'—H32'121.3
C43—C33—C23124.3 (11)C23'—C33'—C43'117.5 (13)
C43—C33—H33117.8C23'—C33'—H33'121.2
C23—C33—H33117.8C43'—C33'—H33'121.2
C44—C34—C24121.5 (9)C44'—C34'—C24'119.6 (10)
C44—C34—H34119.2C44'—C34'—H34'120.2
C24—C34—H34119.2C24'—C34'—H34'120.2
C31—C41—C51119.9 (12)C51'—C41'—C31'127.5 (10)
C31—C41—H41120.0C51'—C41'—H41'116.3
C51—C41—H41120.0C31'—C41'—H41'116.3
C32—C42—C52122.9 (9)C32'—C42'—C52'121.1 (8)
C32—C42—H42118.5C32'—C42'—H42'119.4
C52—C42—H42118.5C52'—C42'—H42'119.4
C33—C43—C53115.8 (9)C33'—C43'—C53'120.7 (12)
C33—C43—H43122.1C33'—C43'—H43'119.7
C53—C43—H43122.1C53'—C43'—H43'119.7
C34—C44—C54116.6 (8)C34'—C44'—C54'118.0 (9)
C34—C44—H44121.7C34'—C44'—H44'121.0
C54—C44—H44121.7C54'—C44'—H44'121.0
N11—C51—C41117.5 (10)N11'—C51'—C41'114.2 (10)
N11—C51—H51121.3N11'—C51'—H51'122.9
C41—C51—H51121.3C41'—C51'—H51'122.9
N12—C52—C42121.5 (8)N12'—C52'—C42'118.5 (8)
N12—C52—H52119.3N12'—C52'—H52'120.8
C42—C52—H52119.3C42'—C52'—H52'120.8
N13—C53—C43122.5 (8)N13'—C53'—C43'115.7 (11)
N13—C53—H53118.8N13'—C53'—H53'122.2
C43—C53—H53118.8C43'—C53'—H53'122.2
N14—C54—C44122.1 (8)N14'—C54'—C44'123.1 (8)
N14—C54—H54118.9N14'—C54'—H54'118.5
C44—C54—H54118.9C44'—C54'—H54'118.5
(III) hexa-µ2-chloro-chlorotetrakis(2-methyl-1H-imidazole- κN1)-µ4-oxo-tetracopper(II) methanol tetrasolvate, [Cu4Cl6O(C4H6N2)4]·3CH4O top
Crystal data top
[Cu4Cl6O(C4H6N2)4]·3CH4OF(000) = 1824
Mr = 907.42Dx = 1.694 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4230 reflections
a = 10.2454 (13) Åθ = 2.5–26.7°
b = 17.826 (2) ŵ = 2.85 mm1
c = 19.557 (2) ÅT = 297 K
β = 94.877 (2)°Block, blue
V = 3558.9 (7) Å30.23 × 0.19 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
7783 independent reflections
Radiation source: fine-focus sealed tube5314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1313
Tmin = 0.56, Tmax = 0.87k = 2323
17557 measured reflectionsl = 2425
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0443P)2 + 0.1035P]
where P = (Fo2 + 2Fc2)/3
6277 reflections(Δ/σ)max = 0.026
390 parametersΔρmax = 0.78 e Å3
30 restraintsΔρmin = 0.92 e Å3
Crystal data top
[Cu4Cl6O(C4H6N2)4]·3CH4OV = 3558.9 (7) Å3
Mr = 907.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.2454 (13) ŵ = 2.85 mm1
b = 17.826 (2) ÅT = 297 K
c = 19.557 (2) Å0.23 × 0.19 × 0.05 mm
β = 94.877 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
7783 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
5314 reflections with I > 2σ(I)
Tmin = 0.56, Tmax = 0.87Rint = 0.054
17557 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04730 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 1.08Δρmax = 0.78 e Å3
6277 reflectionsΔρmin = 0.92 e Å3
390 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.80123 (6)0.28053 (3)0.19659 (3)0.04329 (18)
Cu20.96175 (6)0.41386 (3)0.26350 (3)0.04332 (18)
Cu30.75126 (6)0.33541 (3)0.34455 (3)0.04207 (17)
Cu41.01405 (6)0.25310 (3)0.31893 (3)0.04303 (18)
Cl10.96798 (14)0.18571 (8)0.20874 (7)0.0563 (4)
Cl21.16410 (14)0.35293 (9)0.30633 (10)0.0787 (5)
Cl30.85745 (13)0.22571 (7)0.40202 (7)0.0527 (4)
Cl40.89523 (16)0.39304 (8)0.14668 (7)0.0618 (4)
Cl50.59902 (12)0.29892 (8)0.25119 (7)0.0518 (3)
Cl60.85849 (16)0.45132 (8)0.36794 (8)0.0696 (5)
O10.8811 (3)0.32015 (16)0.28096 (15)0.0356 (7)
N110.7087 (4)0.2400 (2)0.1144 (2)0.0481 (11)
N121.0334 (4)0.5131 (2)0.2502 (2)0.0458 (11)
N130.6177 (4)0.3505 (2)0.4085 (2)0.0490 (11)
N141.1462 (4)0.1871 (2)0.3654 (2)0.0508 (11)
N210.5701 (5)0.2249 (3)0.0245 (2)0.0677 (14)
H210.51080.23490.00800.081*
N221.0450 (5)0.6338 (3)0.2396 (2)0.0667 (14)
H221.02190.67990.23340.080*
N230.4530 (5)0.3943 (3)0.4584 (3)0.0730 (15)
H230.38750.42200.46680.088*
N241.2449 (6)0.0929 (3)0.4165 (3)0.0821 (18)
H241.26070.04790.43070.099*
C110.6213 (6)0.2749 (3)0.0711 (3)0.0549 (15)
C120.9642 (6)0.5749 (3)0.2382 (3)0.0539 (14)
C130.5248 (6)0.4020 (3)0.4057 (3)0.0565 (15)
C141.1394 (6)0.1146 (3)0.3775 (3)0.0602 (16)
C210.6255 (6)0.1569 (4)0.0364 (3)0.0704 (18)
H21A0.60910.11310.01120.084*
C221.1686 (7)0.6090 (4)0.2525 (3)0.0730 (19)
H22A1.24430.63800.25600.088*
C230.4999 (7)0.3355 (4)0.4970 (3)0.0739 (19)
H23A0.46750.31760.53690.089*
C241.3235 (7)0.1530 (4)0.4303 (4)0.085 (2)
H24A1.40380.15360.45640.102*
C310.7105 (6)0.1661 (3)0.0934 (3)0.0599 (16)
H310.76190.12850.11470.072*
C321.1619 (6)0.5343 (3)0.2592 (3)0.0599 (16)
H321.23280.50220.26850.072*
C330.6014 (6)0.3084 (3)0.4667 (3)0.0612 (16)
H330.65300.26780.48210.073*
C341.2623 (6)0.2112 (3)0.3991 (3)0.0633 (17)
H341.29310.26030.39980.076*
C410.5822 (6)0.3541 (4)0.0717 (3)0.079 (2)
H41A0.54330.36490.11350.119*
H41B0.51990.36390.03320.119*
H41C0.65790.38520.06860.119*
C420.8196 (6)0.5787 (3)0.2239 (3)0.0773 (19)
H42A0.79780.61540.18880.116*
H42B0.78070.59280.26500.116*
H42C0.78680.53060.20880.116*
C430.5028 (7)0.4594 (4)0.3511 (4)0.088 (2)
H43A0.58200.48740.34760.132*
H43B0.43430.49280.36230.132*
H43C0.47780.43520.30810.132*
C441.0318 (6)0.0622 (3)0.3529 (4)0.080 (2)
H44A0.95630.07160.37750.120*
H44B1.06020.01140.36060.120*
H44C1.00960.06990.30470.120*
O1B1.2786 (8)0.0511 (3)0.4615 (3)0.149 (3)
H1B1.23220.08710.44960.223*
O1C0.6708 (8)0.1777 (4)0.6027 (4)0.168 (3)
H1C0.61920.16540.63050.252*
C1B1.3277 (10)0.0603 (5)0.5287 (4)0.143 (4)
H1B11.40880.03340.53650.215*
H1B21.34260.11260.53790.215*
H1B31.26600.04120.55860.215*
C1C0.7647 (9)0.2258 (6)0.6340 (5)0.146 (4)
H1C10.72240.26370.65900.219*
H1C20.81270.24900.59960.219*
H1C30.82380.19770.66500.219*
C1A0.1699 (17)0.5334 (8)0.4479 (9)0.090 (4)0.50
H1E10.09190.50340.44720.134*0.50
H1E20.19910.53540.40260.134*0.50
H1E30.15140.58320.46290.134*0.50
O1A0.2678 (9)0.5014 (6)0.4930 (5)0.0829 (19)0.50
H1A0.24130.49750.53120.124*0.50
C2A0.1990 (18)0.5588 (6)0.4426 (11)0.090 (4)0.50
H2F10.23270.57340.48800.134*0.50
H2F20.10850.57290.43530.134*0.50
H2F30.24800.58340.40940.134*0.50
O2A0.2103 (9)0.4815 (5)0.4356 (5)0.0829 (19)0.50
H2A0.17070.46820.39940.124*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0435 (4)0.0486 (4)0.0366 (3)0.0009 (3)0.0040 (3)0.0038 (3)
Cu20.0401 (4)0.0428 (4)0.0465 (4)0.0033 (3)0.0007 (3)0.0015 (3)
Cu30.0384 (4)0.0487 (4)0.0394 (3)0.0017 (3)0.0044 (3)0.0024 (3)
Cu40.0389 (4)0.0450 (4)0.0441 (4)0.0064 (3)0.0030 (3)0.0013 (3)
Cl10.0518 (8)0.0600 (8)0.0557 (8)0.0139 (7)0.0039 (7)0.0147 (7)
Cl20.0398 (8)0.0644 (10)0.1277 (15)0.0067 (7)0.0170 (9)0.0274 (10)
Cl30.0490 (8)0.0613 (8)0.0474 (8)0.0082 (7)0.0023 (7)0.0136 (7)
Cl40.0806 (11)0.0608 (9)0.0425 (8)0.0173 (8)0.0033 (8)0.0081 (7)
Cl50.0379 (7)0.0677 (9)0.0485 (8)0.0001 (6)0.0028 (6)0.0084 (7)
Cl60.0832 (11)0.0622 (9)0.0671 (10)0.0253 (8)0.0289 (9)0.0250 (8)
O10.0319 (18)0.0428 (18)0.0320 (17)0.0009 (14)0.0020 (14)0.0005 (14)
N110.047 (3)0.056 (3)0.040 (2)0.001 (2)0.005 (2)0.010 (2)
N120.047 (3)0.038 (2)0.053 (3)0.002 (2)0.004 (2)0.000 (2)
N130.046 (3)0.057 (3)0.046 (3)0.000 (2)0.013 (2)0.008 (2)
N140.043 (3)0.047 (3)0.061 (3)0.012 (2)0.002 (2)0.001 (2)
N210.060 (3)0.097 (4)0.045 (3)0.016 (3)0.007 (3)0.013 (3)
N220.081 (4)0.042 (3)0.078 (4)0.002 (3)0.011 (3)0.014 (3)
N230.058 (3)0.082 (4)0.082 (4)0.012 (3)0.029 (3)0.014 (3)
N240.083 (4)0.066 (4)0.094 (4)0.030 (3)0.007 (4)0.026 (3)
C110.051 (4)0.073 (4)0.039 (3)0.012 (3)0.000 (3)0.000 (3)
C120.058 (4)0.052 (3)0.052 (3)0.001 (3)0.007 (3)0.000 (3)
C130.052 (4)0.056 (4)0.062 (4)0.004 (3)0.012 (3)0.005 (3)
C140.058 (4)0.058 (4)0.064 (4)0.019 (3)0.001 (3)0.005 (3)
C210.068 (4)0.085 (5)0.058 (4)0.015 (4)0.003 (4)0.028 (4)
C220.065 (5)0.076 (5)0.080 (5)0.021 (4)0.014 (4)0.001 (4)
C230.073 (5)0.090 (5)0.063 (4)0.002 (4)0.032 (4)0.002 (4)
C240.057 (4)0.090 (5)0.101 (6)0.017 (4)0.029 (4)0.000 (5)
C310.056 (4)0.065 (4)0.059 (4)0.005 (3)0.007 (3)0.013 (3)
C320.053 (4)0.054 (4)0.073 (4)0.012 (3)0.008 (3)0.003 (3)
C330.061 (4)0.065 (4)0.059 (4)0.003 (3)0.012 (3)0.003 (3)
C340.051 (4)0.068 (4)0.068 (4)0.009 (3)0.014 (3)0.007 (3)
C410.080 (5)0.079 (5)0.074 (5)0.004 (4)0.026 (4)0.015 (4)
C420.075 (5)0.068 (4)0.089 (5)0.022 (4)0.004 (4)0.002 (4)
C430.065 (5)0.091 (5)0.108 (6)0.027 (4)0.015 (4)0.014 (5)
C440.078 (5)0.054 (4)0.105 (5)0.003 (3)0.007 (4)0.016 (4)
O1B0.227 (8)0.072 (4)0.140 (5)0.033 (4)0.023 (6)0.013 (4)
O1C0.191 (8)0.159 (6)0.168 (7)0.047 (5)0.106 (6)0.034 (5)
C1B0.201 (12)0.104 (7)0.118 (8)0.002 (7)0.023 (8)0.013 (6)
C1C0.133 (9)0.166 (10)0.140 (9)0.023 (8)0.022 (7)0.043 (7)
C1A0.111 (7)0.069 (7)0.092 (5)0.013 (6)0.026 (5)0.022 (6)
O1A0.073 (5)0.090 (5)0.085 (5)0.011 (4)0.006 (4)0.012 (4)
C2A0.111 (7)0.069 (7)0.092 (5)0.013 (6)0.026 (5)0.022 (6)
O2A0.073 (5)0.090 (5)0.085 (5)0.011 (4)0.006 (4)0.012 (4)
Geometric parameters (Å, º) top
Cu1—O11.913 (3)C12—C421.486 (8)
Cu2—O11.907 (3)C13—C431.483 (8)
Cu3—O11.916 (3)C14—C441.493 (8)
Cu4—O11.914 (3)C21—C311.365 (7)
Cu1—Cu23.1144 (9)C21—H21A0.9300
Cu1—Cu33.1375 (9)C22—C321.340 (7)
Cu1—Cu43.1354 (9)C22—H22A0.9300
Cu2—Cu33.1146 (9)C23—C331.331 (8)
Cu2—Cu43.0945 (9)C23—H23A0.9300
Cu3—Cu43.1436 (9)C24—C341.334 (8)
Cu1—N111.935 (4)C24—H24A0.9300
Cu1—Cl12.4005 (14)C31—H310.9300
Cu1—Cl52.4322 (15)C32—H320.9300
Cu1—Cl42.4624 (15)C33—H330.9300
Cu2—N121.942 (4)C34—H340.9300
Cu2—Cl42.3573 (15)C41—H41A0.9600
Cu2—Cl22.4257 (16)C41—H41B0.9600
Cu2—Cl62.4708 (16)C41—H41C0.9600
Cu3—N131.949 (4)C42—H42A0.9600
Cu3—Cl62.3665 (15)C42—H42B0.9600
Cu3—Cl52.3887 (14)C42—H42C0.9600
Cu3—Cl32.4623 (14)C43—H43A0.9600
Cu4—N141.958 (4)C43—H43B0.9600
Cu4—Cl22.3781 (16)C43—H43C0.9600
Cu4—Cl32.4283 (15)C44—H44A0.9600
Cu4—Cl12.4773 (14)C44—H44B0.9600
N11—C111.334 (6)C44—H44C0.9600
N11—C311.380 (6)O1B—C1B1.377 (9)
N12—C121.320 (6)O1B—H1B0.8200
N12—C321.366 (7)O1C—C1C1.390 (9)
N13—C131.320 (7)O1C—H1C0.8219
N13—C331.385 (7)C1B—H1B10.9600
N14—C141.318 (7)C1B—H1B20.9600
N14—C341.378 (7)C1B—H1B30.9600
N21—C111.348 (6)C1C—H1C10.9600
N21—C211.351 (7)C1C—H1C20.9600
N21—H210.8600C1C—H1C30.9600
N22—C121.337 (7)C1A—O1A1.400 (9)
N22—C221.345 (7)C1A—H1E10.9600
N22—H220.8600C1A—H1E20.9600
N23—C131.323 (7)C1A—H1E30.9600
N23—C231.356 (7)O1A—H1A0.8200
N23—H230.8600C2A—O2A1.389 (8)
N24—C141.326 (7)C2A—H2F10.9600
N24—C241.354 (8)C2A—H2F20.9600
N24—H240.8600C2A—H2F30.9600
C11—C411.467 (8)O2A—H2A0.8200
O1—Cu1—N11175.85 (16)Cu2—Cl4—Cu180.48 (5)
O1—Cu1—Cl185.75 (9)Cu3—Cl5—Cu181.20 (4)
N11—Cu1—Cl196.52 (13)Cu3—Cl6—Cu280.13 (5)
O1—Cu1—Cl583.67 (10)Cu2—O1—Cu1109.21 (14)
N11—Cu1—Cl592.25 (13)Cu2—O1—Cu4108.16 (14)
Cl1—Cu1—Cl5132.62 (6)Cu1—O1—Cu4110.01 (14)
O1—Cu1—Cl483.57 (10)Cu2—O1—Cu3109.09 (14)
N11—Cu1—Cl498.96 (14)Cu1—O1—Cu3110.01 (15)
Cl1—Cu1—Cl4108.28 (6)Cu4—O1—Cu3110.32 (14)
Cl5—Cu1—Cl4116.15 (6)C11—N11—C31106.4 (5)
O1—Cu1—Cu235.33 (9)C11—N11—Cu1127.5 (4)
N11—Cu1—Cu2146.92 (13)C31—N11—Cu1125.9 (4)
Cl1—Cu1—Cu298.61 (4)C12—N12—C32106.9 (4)
Cl5—Cu1—Cu298.73 (4)C12—N12—Cu2125.5 (4)
Cl4—Cu1—Cu248.28 (4)C32—N12—Cu2127.3 (4)
O1—Cu1—Cu435.00 (9)C13—N13—C33105.9 (5)
N11—Cu1—Cu4146.65 (13)C13—N13—Cu3127.8 (4)
Cl1—Cu1—Cu451.08 (3)C33—N13—Cu3126.3 (4)
Cl5—Cu1—Cu4104.43 (4)C14—N14—C34106.1 (5)
Cl4—Cu1—Cu499.18 (4)C14—N14—Cu4128.9 (4)
Cu2—Cu1—Cu459.355 (19)C34—N14—Cu4124.7 (4)
O1—Cu1—Cu335.02 (9)C11—N21—C21110.1 (5)
N11—Cu1—Cu3140.84 (13)C11—N21—H21125.0
Cl1—Cu1—Cu3107.39 (4)C21—N21—H21125.0
Cl5—Cu1—Cu348.80 (3)C12—N22—C22108.5 (5)
Cl4—Cu1—Cu3102.22 (4)C12—N22—H22125.8
Cu2—Cu1—Cu359.76 (2)C22—N22—H22125.8
Cu4—Cu1—Cu360.15 (2)C13—N23—C23108.6 (5)
O1—Cu2—N12175.27 (16)C13—N23—H23125.7
O1—Cu2—Cl486.66 (9)C23—N23—H23125.7
N12—Cu2—Cl495.48 (13)C14—N24—C24109.1 (5)
O1—Cu2—Cl285.21 (10)C14—N24—H24125.5
N12—Cu2—Cl297.61 (13)C24—N24—H24125.4
Cl4—Cu2—Cl2115.62 (7)N11—C11—N21108.8 (5)
O1—Cu2—Cl682.32 (10)N11—C11—C41127.8 (5)
N12—Cu2—Cl693.28 (13)N21—C11—C41123.4 (5)
Cl4—Cu2—Cl6137.30 (6)N12—C12—N22109.2 (5)
Cl2—Cu2—Cl6104.42 (7)N12—C12—C42125.8 (5)
O1—Cu2—Cu435.99 (9)N22—C12—C42125.0 (5)
N12—Cu2—Cu4146.57 (13)N13—C13—N23110.1 (5)
Cl4—Cu2—Cu4102.77 (4)N13—C13—C43125.1 (6)
Cl2—Cu2—Cu449.23 (4)N23—C13—C43124.9 (6)
Cl6—Cu2—Cu491.96 (4)N14—C14—N24109.6 (6)
O1—Cu2—Cu335.55 (9)N14—C14—C44127.3 (5)
N12—Cu2—Cu3139.74 (13)N24—C14—C44123.1 (6)
Cl4—Cu2—Cu3105.48 (4)N21—C21—C31105.2 (5)
Cl2—Cu2—Cu3103.39 (5)N21—C21—H21A127.4
Cl6—Cu2—Cu348.47 (4)C31—C21—H21A127.4
Cu4—Cu2—Cu360.83 (2)C32—C22—N22106.9 (6)
O1—Cu2—Cu135.46 (9)C32—C22—H22A126.6
N12—Cu2—Cu1146.26 (13)N22—C22—H22A126.6
Cl4—Cu2—Cu151.24 (4)C33—C23—N23106.7 (6)
Cl2—Cu2—Cu1102.05 (4)C33—C23—H23A126.7
Cl6—Cu2—Cu1107.80 (4)N23—C23—H23A126.7
Cu4—Cu2—Cu160.66 (2)C34—C24—N24106.0 (5)
Cu3—Cu2—Cu160.49 (2)C34—C24—H24A127.0
O1—Cu3—N13179.36 (16)N24—C24—H24A127.0
O1—Cu3—Cl685.00 (10)C21—C31—N11109.6 (6)
N13—Cu3—Cl695.48 (13)C21—C31—H31125.2
O1—Cu3—Cl584.81 (9)N11—C31—H31125.2
N13—Cu3—Cl594.55 (13)C22—C32—N12108.6 (6)
Cl6—Cu3—Cl5130.37 (6)C22—C32—H32125.7
O1—Cu3—Cl383.07 (9)N12—C32—H32125.7
N13—Cu3—Cl397.10 (14)C23—C33—N13108.8 (6)
Cl6—Cu3—Cl3115.17 (6)C23—C33—H33125.6
Cl5—Cu3—Cl3111.54 (5)N13—C33—H33125.6
O1—Cu3—Cu235.35 (9)C24—C34—N14109.2 (6)
N13—Cu3—Cu2144.99 (13)C24—C34—H34125.4
Cl6—Cu3—Cu251.40 (4)N14—C34—H34125.4
Cl5—Cu3—Cu299.71 (4)C11—C41—H41A109.5
Cl3—Cu3—Cu2106.90 (4)C11—C41—H41B109.5
O1—Cu3—Cu134.96 (9)H41A—C41—H41B109.5
N13—Cu3—Cu1144.39 (12)C11—C41—H41C109.5
Cl6—Cu3—Cu1109.94 (4)H41A—C41—H41C109.5
Cl5—Cu3—Cu150.00 (4)H41B—C41—H41C109.5
Cl3—Cu3—Cu194.18 (4)C12—C42—H42A109.5
Cu2—Cu3—Cu159.75 (2)C12—C42—H42B109.5
O1—Cu3—Cu434.82 (9)H42A—C42—H42B109.5
N13—Cu3—Cu4145.49 (13)C12—C42—H42C109.5
Cl6—Cu3—Cu492.78 (5)H42A—C42—H42C109.5
Cl5—Cu3—Cu4105.28 (4)H42B—C42—H42C109.5
Cl3—Cu3—Cu449.53 (4)C13—C43—H43A109.5
Cu2—Cu3—Cu459.27 (2)C13—C43—H43B109.5
Cu1—Cu3—Cu459.891 (19)H43A—C43—H43B109.5
O1—Cu4—N14175.20 (16)C13—C43—H43C109.5
O1—Cu4—Cl286.41 (10)H43A—C43—H43C109.5
N14—Cu4—Cl294.01 (14)H43B—C43—H43C109.5
O1—Cu4—Cl384.05 (10)C14—C44—H44A109.5
N14—Cu4—Cl392.23 (14)C14—C44—H44B109.5
Cl2—Cu4—Cl3133.59 (6)H44A—C44—H44B109.5
O1—Cu4—Cl183.60 (9)C14—C44—H44C109.5
N14—Cu4—Cl1100.70 (13)H44A—C44—H44C109.5
Cl2—Cu4—Cl1110.47 (7)H44B—C44—H44C109.5
Cl3—Cu4—Cl1113.38 (5)C1B—O1B—H1B109.5
O1—Cu4—Cu235.84 (9)C1C—O1C—H1C109.7
N14—Cu4—Cu2144.21 (13)O1B—C1B—H1B1109.4
Cl2—Cu4—Cu250.57 (4)O1B—C1B—H1B2109.5
Cl3—Cu4—Cu2108.43 (4)H1B1—C1B—H1B2109.5
Cl1—Cu4—Cu297.46 (4)O1B—C1B—H1B3109.5
O1—Cu4—Cu134.99 (9)H1B1—C1B—H1B3109.5
N14—Cu4—Cu1148.93 (13)H1B2—C1B—H1B3109.5
Cl2—Cu4—Cu1102.59 (4)O1C—C1C—H1C1109.8
Cl3—Cu4—Cu194.92 (4)O1C—C1C—H1C2109.5
Cl1—Cu4—Cu148.93 (3)H1C1—C1C—H1C2109.5
Cu2—Cu4—Cu159.986 (19)O1C—C1C—H1C3109.2
O1—Cu4—Cu334.87 (9)H1C1—C1C—H1C3109.5
N14—Cu4—Cu3140.74 (13)H1C2—C1C—H1C3109.5
Cl2—Cu4—Cu3103.72 (5)O2A—C2A—H2F1109.5
Cl3—Cu4—Cu350.48 (3)O2A—C2A—H2F2109.5
Cl1—Cu4—Cu3105.22 (4)H2F1—C2A—H2F2109.5
Cu2—Cu4—Cu359.90 (2)O2A—C2A—H2F3109.5
Cu1—Cu4—Cu359.96 (2)H2F1—C2A—H2F3109.5
Cu1—Cl1—Cu479.98 (4)H2F2—C2A—H2F3109.5
Cu4—Cl2—Cu280.20 (5)C2A—O2A—H2A109.5
Cu4—Cl3—Cu380.00 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···Cl3i0.862.363.220 (5)174
N22—H22···Cl5ii0.862.493.304 (5)159
N23—H23···O1A0.861.972.813 (10)167
N23—H23···O2A0.862.152.935 (10)152
N24—H24···O1B0.861.872.727 (7)175
O1B—H1B···O1Ciii0.822.192.655 (9)116
O1C—H1C···Cl4iv0.822.563.274 (7)146
O1A—H1A···Cl6v0.822.473.223 (9)153
O2A—H2A···Cl2vi0.822.743.416 (9)141
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x1, y, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula(C9H9N2)[Cu4Cl7O(C9H8N2)3]·H2O[Cu4Cl6O(C5H5NO)4]·0.2H2O[Cu4Cl6O(C4H6N2)4]·3CH4O
Mr1114.03863.30907.42
Crystal system, space groupTriclinic, P1Triclinic, P1Monoclinic, P21/n
Temperature (K)297297297
a, b, c (Å)12.394 (3), 14.823 (3), 14.924 (3)11.638 (3), 16.237 (4), 17.139 (4)10.2454 (13), 17.826 (2), 19.557 (2)
α, β, γ (°)97.707 (6), 113.562 (5), 112.860 (5)106.249 (5), 102.401 (6), 94.255 (5)90, 94.877 (2), 90
V3)2175.6 (8)3005.7 (13)3558.9 (7)
Z244
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.403.362.85
Crystal size (mm)0.25 × 0.19 × 0.170.15 × 0.05 × 0.030.23 × 0.19 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Multi-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.57, 0.660.64, 0.910.56, 0.87
No. of measured, independent and
observed [I > 2σ(I)] reflections
22917, 9092, 5466 24860, 10510, 5765 17557, 7783, 5314
Rint0.0570.0760.054
(sin θ/λ)max1)0.6610.5950.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.067, 0.98 0.068, 0.095, 1.04 0.047, 0.107, 1.08
No. of reflections7542105106277
No. of parameters517703390
No. of restraints061930
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.440.85, 0.610.78, 0.92

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker 2000), SAINT-NT (Bruker, 2000), SAINT-NT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 2000), SHELXL97.

Selected bond lengths (Å) for (I) top
Cu1—O11.921 (3)Cu1—Cu33.0923 (9)
Cu2—O11.899 (3)Cu1—Cu43.1272 (10)
Cu3—O11.903 (3)Cu2—Cu33.1563 (10)
Cu4—O11.913 (3)Cu2—Cu43.1179 (11)
Cu1—Cu23.0658 (10)Cu3—Cu43.1394 (9)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N21—H21···Cl6i0.862.443.213 (4)150.0
N22—H22···Cl7ii0.862.543.373 (4)163.6
N23—H23···Cl7iii0.862.503.351 (4)169.3
N14—H14···O1WA0.861.992.782 (10)153.6
N14—H14···O1WB0.861.972.734 (13)147.2
N14—H14···O1WC0.862.062.82 (3)146.3
N24—H24···Cl30.862.523.351 (5)162.1
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x+1, y+1, z+1.
Selected bond lengths (Å) for (II) top
Cu1—O11.923 (4)Cu1'—O1'1.926 (5)
Cu2—O11.909 (4)Cu2'—O1'1.879 (5)
Cu3—O11.917 (4)Cu3'—O1'1.907 (4)
Cu4—O11.853 (4)Cu4'—O1'1.871 (4)
Cu1—Cu23.0778 (15)Cu1'—Cu2'3.0697 (15)
Cu1—Cu33.1085 (15)Cu1'—Cu3'3.0358 (16)
Cu1—Cu43.1316 (14)Cu1'—Cu4'3.1067 (15)
Cu2—Cu33.1014 (14)Cu2'—Cu3'3.1673 (17)
Cu2—Cu43.0820 (14)Cu2'—Cu4'3.0873 (14)
Cu3—Cu43.1117 (15)Cu3'—Cu4'3.0962 (15)
Selected bond lengths (Å) for (III) top
Cu1—O11.913 (3)Cu1—Cu33.1375 (9)
Cu2—O11.907 (3)Cu1—Cu43.1354 (9)
Cu3—O11.916 (3)Cu2—Cu33.1146 (9)
Cu4—O11.914 (3)Cu2—Cu43.0945 (9)
Cu1—Cu23.1144 (9)Cu3—Cu43.1436 (9)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N21—H21···Cl3i0.862.363.220 (5)174.3
N22—H22···Cl5ii0.862.493.304 (5)158.6
N23—H23···O1A0.861.972.813 (10)167.4
N23—H23···O2A0.862.152.935 (10)152.2
N24—H24···O1B0.861.872.727 (7)174.7
O1B—H1B···O1Ciii0.822.192.655 (9)115.7
O1C—H1C···Cl4iv0.822.563.274 (7)145.8
O1A—H1A···Cl6v0.822.473.223 (9)152.7
O2A—H2A···Cl2vi0.822.743.416 (9)140.6
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x+1, y+1, z+1; (vi) x1, y, z.
Comparison of mean bond distances in the (Cu4OCl6) cores (Å) top
<Cu-O><Cu-Cl>
Literature*1.909 (17)2.41 (5)
(I)1.909 (17)2.41 (5)
(IIa)1.90 (3)2.41 (8)
(IIb)1.90 (2)2.42 (11)
(III)1.913 (5)2.42 (4)
* Average of 52 structures in the 2005 version of the CSD.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds