organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1RS,6SR)-Ethyl 4,6-bis­­(4-fluoro­phen­yl)-2-oxo­cyclo­hex-3-ene-1-carboxyl­ate

aDepartment of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574199, India, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: mkubicki@amu.edu.pl

(Received 29 December 2010; accepted 4 January 2011; online 12 January 2011)

In the crystal structure of the title compound, C21H18F2O3, the cyclo­hexene ring has a slightly distorted sofa conformation; the two benzene rings are inclined by 76.27 (8)° and their planes make dihedral angles of 16.65 (10) and 67.53 (7)° with the approximately planar part of the cyclo­hexenone ring [maximum deviation 0.044 (2) Å, while the sixth atom is displaced by 0.648 (3) Å from this plane]. In the crystal, weak inter­molecular C—H⋯O, C—H⋯F and C—H⋯π inter­actions join mol­ecules into a three-dimensional structure.

Related literature

For some biological applications of cyclo­hexa­nones, see: Li & Strobel (2001[Li, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261-265.]). For general properties, see: Jung (1991[Jung, M. E. (1991). Comprehensive Organic Synthesis, Vol. 4, edited by B. M. Trost, I. Fleming & M. F. Semmelhack, pp. 1-68. Oxford: Pergamon Press: Oxford.]); Tabba et al. (1995[Tabba, H. D., Yousef, N. M. & Al-Arab, M. M. (1995). Coll. Czech. Chem. Commun. 60, 594-604.]). For asymmetry parameters, see: Duax & Norton (1975[Duax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16-22. New York: Plenum.]). For related structures, see: Anuradha et al. (2009[Anuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.]); Li et al. (2009[Li, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1186.]); Fun et al. (2008[Fun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.], 2009[Fun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, o1235.], 2010[Fun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864-o865.]); Badshah et al. (2009[Badshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, o467.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18F2O3

  • Mr = 356.35

  • Monoclinic, P 21 /n

  • a = 11.062 (2) Å

  • b = 11.675 (3) Å

  • c = 13.854 (3) Å

  • β = 92.89 (2)°

  • V = 1787.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.45 × 0.2 × 0.2 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.947, Tmax = 1.000

  • 14582 measured reflections

  • 3926 independent reflections

  • 2590 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.168

  • S = 1.11

  • 3926 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C46—H46⋯O12i 0.93 2.56 3.244 (3) 130
C5—H52⋯F64ii 0.97 2.49 3.278 (2) 138
C5—H51⋯F44iii 0.97 2.54 3.484 (2) 165
C1—H1⋯Cg1iv 0.98 2.76 3.653 (3) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+2, -y, -z+1; (iii) [-x+{\script{5\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) -x+2, -y+1, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

An important feature of chalcones and their heteroanalogs is the ability to act as activated unsaturated systems in conjugated addition reactions of carbanions in the presence of basic catalysts ( Jung, 1991). This type of reaction may be exploited with the view of obtaining highly functionalized cyclohexene derivatives (Tabba et al., 1995). Cyclohexenone derivatives possess a wide variety of biological activities, e.g. they were reported to have fungicidal and antitumor activities (Li & Strobel, 2001). Structures of some similar compounds have been reported earlier (for instance, ethyl 6-(4-chlorophenyl)-4-(4-methoxyphenyl)- 2-oxocyclohex-3-ene-1- carboxylate, Fun et al., 2009, ethyl 4-(4-methoxyphenyl)-2-oxo-6- phenylcyclohex-3-ene-1-carboxylate, Fun et al., 2008, ethyl 4-(4-bromophenyl)-6-(4-ethoxyphenyl)- 2-oxocyclohex-3-enecarboxylate, Badshah et al., 2009, ethyl 6 - r-(2-chlorophenyl)-2-oxo-4- phenylcyclohex-3-ene-1 - t-carboxylate (Anuradha et al., 2009). In the course of our studies on chalcone derivatives, we have synthesized some cyclohexene derivatives. here we report the crystal structure of (1RS,6SR) ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate (I, Scheme 1).

In I, the cyclohexene ring adopts slightly distorted sofa conformation (Fig. 1), the asymmetry parameter ΔCs3 (Duax & Norton, 1975) is 7.8°. This is also confirmed by least-squares calculations: five atoms C1 - C5 are almost coplanar, maximum deviation is 0.044 (2) Å, while the sixth atom, C6, is by 0.648 (3)Å out of this mean plane. The presence of two largest peaks at the difference Fourier map of ca 0.5 e.Å-3 (more than two times larger than the next peak) close to C1 and C6 atoms suggests the possibility of slight disorder of these two carbon atoms; this kind of disorder was observed previously in similar structures (e.g. Li et al., 2009; Fun et al., 2010)

The overall conformation of I (cf. Fig. 1) can be characterized by the dihedral angles between the phenyl rings, of 76.27 (8)°, and between these rings and the plane of cyclohexene ring which are equal to 16.65 (10)° for the ring at position 4 of the cyclohexene (i.e. next to the double bond) and 67.53 (7)° for fluorophenyl ring at position 6. In the crystal of the methyl analogue, methyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex- 3-ene-1-carboxylate (Fun et al., 2010) there are two symmetry independent molecules, but the overall conformation of both of them is similar to that of I. The dihedral angles between fluorophenyl rings are 79.7 (2)° and 73.7 (2)°, and the angles between the cyclohexene plane and the fluorophenyl rings at position 4 are 14.9° and 29.9°, while those at 6-postion: 73.7° and 84.0°. In the structure of ethyl 4-(4-bromophenyl)-6-(4-ethoxyphenyl)-2-oxo-4- phenylcyclohex-3-enecarboxylate (Badshah et al., 2009) appropriate angles are 81.73 (12)°. 13.8 (3)° and 88.44 (17)°.

In the crystal structure the molecules are joined by weak C—H···O, C—H···F and C—H···πl interactions (Fig. 2).

Related literature top

For some biological applications of cyclohexanones, see: Li & Strobel (2001). For general properties, see: Jung (1991); Tabba et al. (1995). For asymmetry parameters, see: Duax & Norton (1975). For related structures, see: Anuradha et al. (2009); Li et al. (2009); Fun et al. (2008, 2009, 2010); Badshah et al. (2009).

Experimental top

A mixture of (2E)-1,3-bis(4-fluorophenyl)prop-2-en-1-one (0.01 mol) and ethyl acetoacetate (0.01 mol) were refluxed for 2 hr in 10–15 ml of ethanol in the presence of 0.8 ml 10% NaOH. The crystals were obtained by a slow evaporation from toluene solution. C21H18F2O3, C: 70.71(70.78%); H: 5.07(5.09%); M.P-367 K.

Refinement top

Hydrogen atoms were located geometrically (C(methyl)-H 0.96 Å, C(CH2)—H 0.97 Å, C(CH)—H 0.98 Å, C(arom)-H 0.93 Å) and refined as a riding model; the Uiso values of H atoms were set at 1.2 (1.5 for CH3 group) times Ueq of their carrier atom.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic ellipsoid representation of the components of I together with atom labelling scheme. The ellipsoids are drawn at 50% probability level, hydrogen atoms are depicted as spheres with arbitrary radii.
[Figure 2] Fig. 2. The crystal packing as seen along x-direction. Weak interactions (cf. text) are shown as dashed lines.
(1RS,6SR)-Ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate top
Crystal data top
C21H18F2O3F(000) = 744
Mr = 356.35Dx = 1.325 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6918 reflections
a = 11.062 (2) Åθ = 2.9–28.1°
b = 11.675 (3) ŵ = 0.10 mm1
c = 13.854 (3) ÅT = 295 K
β = 92.89 (2)°Block, colourless
V = 1787.0 (7) Å30.45 × 0.2 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3926 independent reflections
Radiation source: Enhance (Mo) X-ray Source2590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.1929 pixels mm-1θmax = 28.2°, θmin = 2.9°
ω–scanh = 1413
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1514
Tmin = 0.947, Tmax = 1.000l = 1617
14582 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0925P)2 + 0.1094P]
where P = (Fo2 + 2Fc2)/3
3926 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H18F2O3V = 1787.0 (7) Å3
Mr = 356.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.062 (2) ŵ = 0.10 mm1
b = 11.675 (3) ÅT = 295 K
c = 13.854 (3) Å0.45 × 0.2 × 0.2 mm
β = 92.89 (2)°
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
3926 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2590 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 1.000Rint = 0.021
14582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.11Δρmax = 0.60 e Å3
3926 reflectionsΔρmin = 0.24 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.74323 (18)0.34723 (16)0.44006 (15)0.0454 (5)
H10.77160.34450.50820.054*
C110.61584 (18)0.29820 (17)0.43248 (16)0.0454 (5)
O120.55538 (16)0.28780 (15)0.35870 (12)0.0687 (5)
O130.58204 (14)0.26686 (13)0.51815 (11)0.0580 (4)
C140.4670 (2)0.2089 (2)0.5236 (2)0.0717 (7)
H1420.44850.16620.46470.086*
H1410.40290.26420.53200.086*
C150.4771 (4)0.1311 (4)0.6066 (3)0.1367 (17)
H1530.40180.09140.61250.205*
H1520.49560.17430.66450.205*
H1510.54040.07650.59740.205*
C20.74302 (18)0.47139 (15)0.40859 (14)0.0419 (5)
O20.65172 (14)0.52929 (12)0.41192 (11)0.0585 (4)
C30.85742 (17)0.51786 (15)0.37999 (14)0.0405 (5)
H30.86080.59560.36590.049*
C40.95848 (16)0.45610 (14)0.37261 (12)0.0338 (4)
C411.07396 (16)0.50657 (15)0.34287 (12)0.0360 (4)
C421.18418 (18)0.45216 (16)0.36282 (14)0.0431 (5)
H421.18560.38260.39560.052*
C431.2921 (2)0.49924 (19)0.33490 (16)0.0525 (5)
H431.36560.46290.34940.063*
C441.2873 (2)0.60004 (19)0.28573 (15)0.0533 (6)
F441.39211 (13)0.64622 (13)0.25678 (11)0.0824 (5)
C451.1821 (2)0.6560 (2)0.26431 (16)0.0609 (6)
H451.18200.72500.23090.073*
C461.0748 (2)0.60919 (17)0.29278 (15)0.0508 (5)
H461.00220.64710.27810.061*
C50.95652 (16)0.32986 (14)0.39434 (14)0.0381 (4)
H520.98850.31750.46000.046*
H511.00910.29060.35120.046*
C60.82998 (18)0.27777 (15)0.38320 (15)0.0440 (5)
H60.80350.28470.31490.053*
C610.83451 (16)0.15033 (15)0.40669 (15)0.0417 (5)
C620.8266 (2)0.10661 (18)0.49880 (16)0.0557 (6)
H620.81610.15620.55020.067*
C630.8341 (2)0.0113 (2)0.51561 (18)0.0629 (6)
H630.82840.04110.57750.075*
C640.8499 (2)0.08081 (17)0.4390 (2)0.0567 (6)
F640.85470 (16)0.19620 (11)0.45443 (14)0.0970 (6)
C650.8613 (2)0.04147 (17)0.34810 (19)0.0593 (6)
H650.87460.09140.29740.071*
C660.85233 (19)0.07498 (16)0.33294 (16)0.0491 (5)
H660.85860.10330.27070.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0443 (11)0.0402 (11)0.0518 (12)0.0010 (8)0.0040 (9)0.0007 (9)
C110.0393 (11)0.0390 (10)0.0576 (14)0.0033 (8)0.0016 (10)0.0015 (9)
O120.0698 (12)0.0782 (12)0.0573 (10)0.0158 (9)0.0052 (9)0.0040 (8)
O130.0470 (9)0.0678 (10)0.0592 (10)0.0111 (7)0.0014 (7)0.0059 (8)
C140.0485 (14)0.0813 (17)0.0861 (18)0.0126 (12)0.0113 (13)0.0076 (14)
C150.122 (3)0.164 (4)0.122 (3)0.078 (3)0.019 (2)0.057 (3)
C20.0448 (11)0.0346 (10)0.0462 (11)0.0060 (8)0.0004 (9)0.0021 (8)
O20.0509 (9)0.0459 (8)0.0795 (11)0.0148 (7)0.0093 (8)0.0028 (7)
C30.0488 (12)0.0242 (8)0.0483 (11)0.0018 (8)0.0000 (9)0.0004 (8)
C40.0424 (10)0.0291 (9)0.0297 (9)0.0012 (7)0.0005 (7)0.0009 (7)
C410.0451 (11)0.0296 (9)0.0334 (10)0.0040 (8)0.0028 (8)0.0023 (7)
C420.0467 (11)0.0351 (9)0.0478 (12)0.0016 (8)0.0057 (9)0.0003 (8)
C430.0462 (12)0.0543 (12)0.0578 (13)0.0023 (10)0.0113 (10)0.0058 (11)
C440.0573 (14)0.0563 (13)0.0480 (12)0.0163 (11)0.0189 (10)0.0014 (10)
F440.0719 (10)0.0901 (11)0.0885 (10)0.0272 (8)0.0355 (8)0.0064 (8)
C450.0766 (17)0.0492 (12)0.0581 (14)0.0137 (12)0.0132 (12)0.0146 (11)
C460.0587 (13)0.0440 (11)0.0499 (12)0.0008 (9)0.0046 (10)0.0142 (9)
C50.0398 (10)0.0301 (9)0.0450 (11)0.0022 (7)0.0073 (8)0.0018 (8)
C60.0482 (12)0.0328 (10)0.0512 (12)0.0010 (8)0.0048 (9)0.0011 (8)
C610.0360 (10)0.0313 (9)0.0581 (13)0.0032 (7)0.0061 (9)0.0024 (9)
C620.0621 (14)0.0476 (12)0.0579 (14)0.0016 (10)0.0069 (11)0.0028 (10)
C630.0655 (16)0.0566 (14)0.0661 (16)0.0028 (11)0.0015 (11)0.0240 (12)
C640.0511 (13)0.0287 (10)0.0884 (18)0.0007 (9)0.0142 (11)0.0060 (11)
F640.1057 (13)0.0316 (7)0.1500 (15)0.0013 (7)0.0293 (11)0.0191 (8)
C650.0605 (15)0.0387 (11)0.0777 (17)0.0028 (10)0.0064 (12)0.0118 (11)
C660.0511 (12)0.0362 (10)0.0597 (13)0.0016 (9)0.0014 (10)0.0003 (9)
Geometric parameters (Å, º) top
C1—C61.508 (3)C43—C441.359 (3)
C1—C21.514 (3)C43—H430.9300
C1—C111.520 (3)C44—C451.354 (3)
C1—H10.9800C44—F441.358 (2)
C11—O121.199 (2)C45—C461.382 (3)
C11—O131.314 (2)C45—H450.9300
O13—C141.446 (3)C46—H460.9300
C14—C151.466 (4)C5—C61.527 (3)
C14—H1420.9700C5—H520.9700
C14—H1410.9700C5—H510.9700
C15—H1530.9600C6—C611.523 (2)
C15—H1520.9600C6—H60.9800
C15—H1510.9600C61—C661.370 (3)
C2—O21.218 (2)C61—C621.381 (3)
C2—C31.450 (3)C62—C631.398 (3)
C3—C41.339 (3)C62—H620.9300
C3—H30.9300C63—C641.354 (3)
C4—C411.484 (2)C63—H630.9300
C4—C51.505 (2)C64—C651.352 (3)
C41—C461.385 (3)C64—F641.365 (2)
C41—C421.390 (3)C65—C661.379 (3)
C42—C431.387 (3)C65—H650.9300
C42—H420.9300C66—H660.9300
C6—C1—C2110.86 (16)C45—C44—F44118.8 (2)
C6—C1—C11111.93 (17)C45—C44—C43122.6 (2)
C2—C1—C11110.66 (16)F44—C44—C43118.6 (2)
C6—C1—H1107.7C44—C45—C46119.2 (2)
C2—C1—H1107.7C44—C45—H45120.4
C11—C1—H1107.7C46—C45—H45120.4
O12—C11—O13124.74 (19)C45—C46—C41120.8 (2)
O12—C11—C1124.9 (2)C45—C46—H46119.6
O13—C11—C1110.33 (18)C41—C46—H46119.6
C11—O13—C14117.95 (18)C4—C5—C6113.10 (15)
O13—C14—C15107.4 (2)C4—C5—H52109.0
O13—C14—H142110.2C6—C5—H52109.0
C15—C14—H142110.2C4—C5—H51109.0
O13—C14—H141110.2C6—C5—H51109.0
C15—C14—H141110.2H52—C5—H51107.8
H142—C14—H141108.5C1—C6—C61115.37 (16)
C14—C15—H153109.5C1—C6—C5109.70 (16)
C14—C15—H152109.5C61—C6—C5110.32 (15)
H153—C15—H152109.5C1—C6—H6107.0
C14—C15—H151109.5C61—C6—H6107.0
H153—C15—H151109.5C5—C6—H6107.0
H152—C15—H151109.5C66—C61—C62118.03 (18)
O2—C2—C3122.63 (17)C66—C61—C6118.18 (18)
O2—C2—C1120.65 (17)C62—C61—C6123.74 (18)
C3—C2—C1116.63 (16)C61—C62—C63120.8 (2)
C4—C3—C2124.26 (17)C61—C62—H62119.6
C4—C3—H3117.9C63—C62—H62119.6
C2—C3—H3117.9C64—C63—C62117.9 (2)
C3—C4—C41122.77 (16)C64—C63—H63121.0
C3—C4—C5119.46 (16)C62—C63—H63121.0
C41—C4—C5117.76 (15)C65—C64—C63123.24 (19)
C46—C41—C42117.85 (17)C65—C64—F64118.5 (2)
C46—C41—C4120.67 (17)C63—C64—F64118.3 (2)
C42—C41—C4121.47 (16)C64—C65—C66117.9 (2)
C43—C42—C41121.47 (19)C64—C65—H65121.1
C43—C42—H42119.3C66—C65—H65121.1
C41—C42—H42119.3C61—C66—C65122.1 (2)
C44—C43—C42118.0 (2)C61—C66—H66118.9
C44—C43—H43121.0C65—C66—H66118.9
C42—C43—H43121.0
C6—C1—C11—O1260.8 (3)C44—C45—C46—C410.2 (3)
C2—C1—C11—O1263.4 (3)C42—C41—C46—C450.4 (3)
C6—C1—C11—O13118.10 (19)C4—C41—C46—C45179.49 (18)
C2—C1—C11—O13117.69 (18)C3—C4—C5—C623.3 (2)
O12—C11—O13—C144.2 (3)C41—C4—C5—C6156.25 (16)
C1—C11—O13—C14174.69 (18)C2—C1—C6—C61178.09 (16)
C11—O13—C14—C15149.6 (3)C11—C1—C6—C6154.0 (2)
C6—C1—C2—O2148.72 (19)C2—C1—C6—C556.6 (2)
C11—C1—C2—O223.9 (3)C11—C1—C6—C5179.31 (16)
C6—C1—C2—C334.5 (2)C4—C5—C6—C151.6 (2)
C11—C1—C2—C3159.36 (17)C4—C5—C6—C61179.72 (15)
O2—C2—C3—C4177.82 (19)C1—C6—C61—C66144.90 (19)
C1—C2—C3—C45.5 (3)C5—C6—C61—C6690.1 (2)
C2—C3—C4—C41179.85 (16)C1—C6—C61—C6237.8 (3)
C2—C3—C4—C50.3 (3)C5—C6—C61—C6287.2 (2)
C3—C4—C41—C4620.5 (3)C66—C61—C62—C631.3 (3)
C5—C4—C41—C46159.02 (18)C6—C61—C62—C63178.6 (2)
C3—C4—C41—C42160.47 (18)C61—C62—C63—C640.3 (3)
C5—C4—C41—C4220.0 (2)C62—C63—C64—C651.4 (3)
C46—C41—C42—C430.9 (3)C62—C63—C64—F64178.6 (2)
C4—C41—C42—C43179.90 (17)C63—C64—C65—C662.1 (4)
C41—C42—C43—C441.0 (3)F64—C64—C65—C66177.94 (19)
C42—C43—C44—C450.8 (3)C62—C61—C66—C650.6 (3)
C42—C43—C44—F44179.08 (18)C6—C61—C66—C65178.04 (19)
F44—C44—C45—C46179.47 (18)C64—C65—C66—C611.0 (3)
C43—C44—C45—C460.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···O12i0.932.563.244 (3)130
C5—H52···F64ii0.972.493.278 (2)138
C5—H51···F44iii0.972.543.484 (2)165
C1—H1···Cg1iv0.982.763.653 (3)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+5/2, y1/2, z+1/2; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H18F2O3
Mr356.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)11.062 (2), 11.675 (3), 13.854 (3)
β (°) 92.89 (2)
V3)1787.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.45 × 0.2 × 0.2
Data collection
DiffractometerOxford Diffraction Xcalibur Sapphire2
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.947, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14582, 3926, 2590
Rint0.021
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.168, 1.11
No. of reflections3926
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C46—H46···O12i0.932.563.244 (3)130
C5—H52···F64ii0.972.493.278 (2)138
C5—H51···F44iii0.972.543.484 (2)165
C1—H1···Cg1iv0.982.763.653 (3)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+2, y, z+1; (iii) x+5/2, y1/2, z+1/2; (iv) x+2, y+1, z+1.
 

Acknowledgements

BN thanks the UGC and DST for financial assistance under the SAP and FIST programmes. HSY thanks the UOM for sabbatical leave.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAnuradha, N., Thiruvalluvar, A., Pandiarajan, K. & Yuvaraj, C. (2009). Acta Cryst. E65, o191.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBadshah, A., Hasan, A. & Barbarín, C. R. (2009). Acta Cryst. E65, o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDuax, W. L. & Norton, D. A. (1975). Atlas of Steroid Structures, pp. 16–22. New York: Plenum.  Google Scholar
First citationFun, H.-K., Hemamalini, M., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2010). Acta Cryst. E66, o864–o865.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Girish, K. S. & Kalluraya, B. (2009). Acta Cryst. E65, o1235.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Rao, J. N. & Kalluraya, B. (2008). Acta Cryst. E64, o2448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJung, M. E. (1991). Comprehensive Organic Synthesis, Vol. 4, edited by B. M. Trost, I. Fleming & M. F. Semmelhack, pp. 1–68. Oxford: Pergamon Press: Oxford.  Google Scholar
First citationLi, H., Mayekar, A. N., Narayana, B., Yathirajan, H. S. & Harrison, W. T. A. (2009). Acta Cryst. E65, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J. Y. & Strobel, G. A. (2001). Phytochemistry, 57, 261–265.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabba, H. D., Yousef, N. M. & Al-Arab, M. M. (1995). Coll. Czech. Chem. Commun. 60, 594–604.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds