organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyano-N-(2-hy­dr­oxy­benz­yl)anilinium nitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 23 December 2010; accepted 25 December 2010; online 8 January 2011)

In the crystal structure of the title compound, C14H13N2O+·NO3, N—H⋯O and O—H⋯O hydrogen bonds link cations and anions into a two-dimensional network parallel to (100). The dihedral angle between the rings is 9.48 (2)°.

Related literature

For the properties and structures of related compounds, see: Fu et al. (2007[Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346-5347.], 2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.], 2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Fu & Xiong (2008[Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946-3948.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13N2O+·NO3

  • Mr = 287.27

  • Monoclinic, P 21 /c

  • a = 12.060 (2) Å

  • b = 13.632 (3) Å

  • c = 8.8679 (18) Å

  • β = 93.71 (3)°

  • V = 1454.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.10 × 0.03 × 0.03 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 14660 measured reflections

  • 2857 independent reflections

  • 1931 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.187

  • S = 1.06

  • 2857 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.93 2.753 (3) 177
N1—H1A⋯O4 0.90 2.10 2.936 (3) 155
N1—H1A⋯O3 0.90 2.49 3.209 (3) 137
N1—H1B⋯O2ii 0.90 1.97 2.824 (3) 158
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salts of amine attracted more attention as phase transition dielectric materials for its application in memory storage (Fu et al. 2007; Fu & Xiong 2008; Fu et al. 2008; Fu et al. 2009). With the purpose of obtaining phase transition crystals of 3-(2-hydroxybenzylamino)benzonitrile salts, its interaction with various acids has been studied and we have elaborated a series of new materials with this organic molecule. In this study, we describe the crystal structure of the title compound, 3-cyano-N-(2-hydroxybenzyl)anilinium nitrate.

The dielectric constant of title compound as a function of temperature indicates that the permittivity is basically temperature-independent, suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range. Similarly, below the melting point (438 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant ranging from 6.1 to 7.3).

The asymmetric unit is composed of one NO3- anion and one C14H13ON2+ cation (Fig.1). The amine N atom was protonated, thus indicating a positive charge. And the NO3- anion was showing a negative charge to make the charge balance. The geometric parameters of the title compound are in the normal range.

In the crystal structure, all the H atoms of N atom and the hydroxyl are involved in hydrogen bonds. One of the H atom of the NH2 group is giving a bifurcated N—H···O hydrogen bonds with O3 and O4 atoms of NO3-, respectively. The another H atom of the NH2 group and the H atoms of hydroxyl are involved in N—H···O and O—H···O hydrogen bonds with the O2 atom of the NO3-. These hydrogen bonds link the ionic units into a two-dimentional network parallel to the (1 0 0) plane. (Table 1 and Fig.2).

Related literature top

For the properties and structures of related compounds, see: Fu et al. (2007, 2008, 2009); Fu & Xiong (2008).

Experimental top

The commercial 3-(2-hydroxybenzylamino)benzonitrile (3 mmol) was dissolved in water/HNO3 (50:1 v/v) solution. The solvent was slowly evaporated in air affording colourless block-shaped crystals of the title compound suitable for X-ray analysis.

Refinement top

All H atoms attached to C, N and O atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (Caromatic) or 0.97 Å (Cmethylene), N–H = 0.90 Å and O–H = 0.82 Å with Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Bifurcated hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, showing the two-dimensional network. H atoms not involved in hydrogen bonding (dashed line) have been omitted for clarity.
3-Cyano-N-(2-hydroxybenzyl)anilinium nitrate top
Crystal data top
C14H13N2O+·NO3F(000) = 600
Mr = 287.27Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3326 reflections
a = 12.060 (2) Åθ = 3.0–27.5°
b = 13.632 (3) ŵ = 0.10 mm1
c = 8.8679 (18) ÅT = 298 K
β = 93.71 (3)°Block, colorless
V = 1454.9 (5) Å30.10 × 0.03 × 0.03 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2857 independent reflections
Radiation source: fine-focus sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.0°
CCD profile fitting scansh = 1414
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 016
Tmin = 0.910, Tmax = 1.000l = 010
14660 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0773P)2 + 0.7478P]
where P = (Fo2 + 2Fc2)/3
2857 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H13N2O+·NO3V = 1454.9 (5) Å3
Mr = 287.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.060 (2) ŵ = 0.10 mm1
b = 13.632 (3) ÅT = 298 K
c = 8.8679 (18) Å0.10 × 0.03 × 0.03 mm
β = 93.71 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2857 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1931 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.053
14660 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.06Δρmax = 0.44 e Å3
2857 reflectionsΔρmin = 0.17 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.01326 (17)0.48563 (16)0.7983 (2)0.0641 (6)
H10.03220.45980.85060.096*
N10.21801 (17)0.60209 (15)0.7364 (2)0.0441 (5)
H1A0.23170.66690.73120.053*
H1B0.18040.59140.81920.053*
N20.4445 (3)0.2610 (2)1.0265 (5)0.1039 (12)
C10.4388 (3)0.3282 (3)0.9493 (5)0.0740 (10)
C20.4304 (2)0.4142 (2)0.8546 (3)0.0561 (7)
C30.3305 (2)0.46590 (19)0.8403 (3)0.0490 (7)
H3A0.26910.44430.88930.059*
C40.3240 (2)0.54951 (19)0.7526 (3)0.0433 (6)
C50.4133 (2)0.5825 (2)0.6785 (4)0.0625 (8)
H5A0.40770.63900.61970.075*
C60.5124 (3)0.5300 (3)0.6929 (4)0.0796 (10)
H6A0.57360.55200.64390.096*
C70.5207 (3)0.4464 (3)0.7782 (4)0.0717 (9)
H7A0.58680.41100.78500.086*
C80.1457 (2)0.5717 (2)0.5977 (3)0.0502 (7)
H8A0.17490.60020.50830.060*
H8B0.14740.50090.58740.060*
C90.0277 (2)0.6051 (2)0.6099 (3)0.0533 (7)
C100.0376 (2)0.5602 (2)0.7136 (3)0.0544 (7)
C110.1472 (3)0.5889 (2)0.7271 (4)0.0681 (9)
H11A0.19070.55860.79640.082*
C120.1896 (3)0.6633 (3)0.6353 (5)0.0850 (11)
H12A0.26290.68290.64350.102*
C130.1275 (3)0.7091 (3)0.5326 (5)0.0876 (12)
H13A0.15780.75980.47310.105*
C140.0188 (3)0.6792 (2)0.5179 (4)0.0724 (9)
H14A0.02330.70880.44640.087*
O20.14630 (18)0.90283 (15)0.5332 (2)0.0654 (6)
O30.2686 (2)0.78798 (16)0.5296 (3)0.0731 (7)
O40.1883 (2)0.81584 (17)0.7324 (3)0.0849 (8)
N30.20210 (19)0.83479 (17)0.5999 (3)0.0507 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0621 (13)0.0672 (13)0.0624 (13)0.0158 (11)0.0006 (10)0.0150 (10)
N10.0452 (12)0.0400 (11)0.0470 (12)0.0023 (9)0.0019 (9)0.0014 (9)
N20.103 (3)0.068 (2)0.137 (3)0.0141 (18)0.023 (2)0.021 (2)
C10.064 (2)0.0563 (19)0.099 (3)0.0114 (16)0.0158 (18)0.0036 (19)
C20.0498 (16)0.0494 (16)0.0671 (19)0.0044 (13)0.0115 (14)0.0084 (14)
C30.0471 (15)0.0449 (15)0.0549 (16)0.0032 (12)0.0026 (12)0.0032 (12)
C40.0387 (14)0.0440 (14)0.0467 (14)0.0022 (11)0.0011 (11)0.0079 (11)
C50.0516 (17)0.066 (2)0.071 (2)0.0077 (15)0.0078 (14)0.0057 (15)
C60.0445 (18)0.099 (3)0.097 (3)0.0055 (18)0.0136 (17)0.001 (2)
C70.0461 (18)0.077 (2)0.090 (2)0.0110 (16)0.0057 (16)0.012 (2)
C80.0500 (16)0.0561 (16)0.0441 (15)0.0054 (13)0.0000 (12)0.0036 (12)
C90.0527 (16)0.0524 (16)0.0541 (16)0.0072 (13)0.0036 (13)0.0028 (13)
C100.0521 (16)0.0531 (16)0.0571 (17)0.0073 (13)0.0033 (13)0.0035 (14)
C110.0539 (19)0.068 (2)0.083 (2)0.0026 (16)0.0103 (16)0.0027 (17)
C120.062 (2)0.075 (2)0.118 (3)0.0126 (19)0.002 (2)0.006 (2)
C130.073 (2)0.067 (2)0.120 (3)0.0169 (19)0.020 (2)0.014 (2)
C140.071 (2)0.067 (2)0.078 (2)0.0063 (17)0.0055 (17)0.0138 (17)
O20.0761 (14)0.0616 (13)0.0597 (12)0.0242 (11)0.0124 (10)0.0147 (10)
O30.0754 (15)0.0667 (14)0.0767 (15)0.0236 (12)0.0015 (12)0.0026 (12)
O40.129 (2)0.0768 (16)0.0495 (13)0.0135 (15)0.0104 (13)0.0155 (11)
N30.0569 (14)0.0443 (13)0.0501 (14)0.0026 (11)0.0032 (11)0.0023 (11)
Geometric parameters (Å, º) top
O1—C101.383 (3)C7—H7A0.9300
O1—H10.8200C8—C91.504 (4)
N1—C41.465 (3)C8—H8A0.9700
N1—C81.518 (3)C8—H8B0.9700
N1—H1A0.9000C9—C101.391 (4)
N1—H1B0.9000C9—C141.393 (4)
N2—C11.143 (5)C10—C111.391 (4)
C1—C21.442 (5)C11—C121.378 (5)
C2—C71.390 (5)C11—H11A0.9300
C2—C31.395 (4)C12—C131.368 (6)
C3—C41.379 (4)C12—H12A0.9300
C3—H3A0.9300C13—C141.387 (5)
C4—C51.373 (4)C13—H13A0.9300
C5—C61.391 (5)C14—H14A0.9300
C5—H5A0.9300O2—N31.269 (3)
C6—C71.369 (5)O3—N31.226 (3)
C6—H6A0.9300O4—N31.225 (3)
C10—O1—H1109.5C9—C8—H8A109.5
C4—N1—C8113.48 (19)N1—C8—H8A109.5
C4—N1—H1A108.9C9—C8—H8B109.5
C8—N1—H1A108.9N1—C8—H8B109.5
C4—N1—H1B108.9H8A—C8—H8B108.1
C8—N1—H1B108.9C10—C9—C14118.8 (3)
H1A—N1—H1B107.7C10—C9—C8119.5 (3)
N2—C1—C2178.7 (4)C14—C9—C8121.6 (3)
C7—C2—C3119.7 (3)O1—C10—C11123.4 (3)
C7—C2—C1120.9 (3)O1—C10—C9115.6 (3)
C3—C2—C1119.4 (3)C11—C10—C9121.0 (3)
C4—C3—C2119.1 (3)C12—C11—C10118.3 (3)
C4—C3—H3A120.5C12—C11—H11A120.8
C2—C3—H3A120.5C10—C11—H11A120.8
C5—C4—C3121.5 (3)C13—C12—C11122.1 (3)
C5—C4—N1120.0 (2)C13—C12—H12A119.0
C3—C4—N1118.5 (2)C11—C12—H12A119.0
C4—C5—C6118.9 (3)C12—C13—C14119.3 (3)
C4—C5—H5A120.6C12—C13—H13A120.3
C6—C5—H5A120.6C14—C13—H13A120.3
C7—C6—C5120.7 (3)C13—C14—C9120.4 (3)
C7—C6—H6A119.6C13—C14—H14A119.8
C5—C6—H6A119.6C9—C14—H14A119.8
C6—C7—C2120.1 (3)O4—N3—O3120.8 (2)
C6—C7—H7A120.0O4—N3—O2120.0 (2)
C2—C7—H7A120.0O3—N3—O2119.2 (2)
C9—C8—N1110.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.753 (3)177
N1—H1A···O40.902.102.936 (3)155
N1—H1A···O30.902.493.209 (3)137
N1—H1B···O2ii0.901.972.824 (3)158
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13N2O+·NO3
Mr287.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.060 (2), 13.632 (3), 8.8679 (18)
β (°) 93.71 (3)
V3)1454.9 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.10 × 0.03 × 0.03
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14660, 2857, 1931
Rint0.053
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.187, 1.06
No. of reflections2857
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.17

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.932.753 (3)177
N1—H1A···O40.902.102.936 (3)155
N1—H1A···O30.902.493.209 (3)137
N1—H1B···O2ii0.901.972.824 (3)158
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University, China.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationFu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S. P. D. (2007). J. Am. Chem. Soc. 129, 5346–5347.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948.  Web of Science CSD CrossRef Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds