organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2R,3R)-3-(2-Chloro­phen­yl)-N-phenyl­oxirane-2-carboxamide

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: kangtairan@yahoo.com.cn

(Received 11 November 2009; accepted 14 November 2009; online 21 November 2009)

In the title compound, C15H12ClNO2, the two benzene rings adopt a syn configuration with respect to the ep­oxy ring; the dihedral angles between the ep­oxy ring and the two benzene rings are 59.71 (16) and 67.58 (15)°. There is a weak intra­molecular N—H⋯O bond, which may help to establish the conformation. In the crystal, the mol­ecules are linked into a chain parallel to the b axis through inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Flisak et al. (1993[Flisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247-6254.]); Porter & Skidmore (2000[Porter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215-1225.]); Shing et al. (2006[Shing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621-6629.]); Watanabe et al. (1998[Watanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090-8091.]); Zhu & Espenson (1995[Zhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090-7091.]). For the isostructuralbromo compound, 3-(2-bromo­phen­yl)-N-phenyl­oxirane-2-carboxamide, see: He et al. (2009[He, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999.]). For related structures, see: He (2009[He, L. (2009). Acta Cryst. E65, o2052.]); He & Chen (2009[He, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12ClNO2

  • Mr = 273.71

  • Orthorhombic, P 21 21 21

  • a = 6.6610 (1) Å

  • b = 10.0343 (2) Å

  • c = 20.2433 (3) Å

  • V = 1353.03 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.48 mm−1

  • T = 295 K

  • 0.36 × 0.32 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.469, Tmax = 0.524

  • 9086 measured reflections

  • 2373 independent reflections

  • 2100 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.109

  • S = 1.20

  • 2373 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 864 Friedel pairs

  • Flack parameter: 0.01 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.86 2.38 2.801 (3) 111
N1—H1⋯O2i 0.86 2.16 2.973 (2) 158
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis Pro (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Optically active epoxides are highly useful intermediates as building blocks for the synthesis of biologically active compounds. They can be further transformed to key intermediates of several pharmaceutical products (Flisak et al. 1993; Porter & Skidmore, 2000; Watanabe et al. 1998; Shing et al., 2006). Various effective systems have been developed over the years for the preparation of chiral epoxides. The Darzens reaction, has proven to be one of the most powerful approaches (Zhu & Espenson,1995). We report herein the crystal structure of the title compound.

The title compound is isostructural of the related bromo compound, 3-(2-Bromophenyl)-N-phenyloxirane-2-carboxamide (He et al., 2009). The two phenyl rings adopt a syn configuration with respect to the epoxy ring (Fig. 1). The dihedral angle between the C1—C6 and C10—C15 is 76.27 (7)° and the O1/C7/C8 epoxide ring makes dihedral angles of 59.71 (16)° and 67.58 (15)° with C6 and C15 phenyl ring, respectively, These values are very similar to those observed in related structures (He, 2009; He & Chen, 2009; He et al., 2009).

There is a weak intramolecular N-H···O bond which might induce the observed conformation. The molecules are linked into a chain parallel to the b axis through intermolecular N-H···O hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the use of epoxide-containing compounds as building blocks in the synthesis of biologically active compounds, see: Flisak et al. (1993); Porter & Skidmore (2000); Shing et al. (2006); Watanabe et al. (1998); Zhu & Espenson (1995).For the isostructuralbromo compound, 3-(2-bromophenyl)-N-phenyloxirane-2-carboxamide, see: He et al. (2009). For a related structure, see: He (2009); He & Chen (2009).

Experimental top

2-chloro-N-phenylacetamide (0.17 g, 1.0 mmol) and potassium hydroxide (0.112 g, 2.0 mmol) were dissolved in acetonitrile (4 ml). To the solution was added 2-chlorophenylaldehyde (0.14 g, 1.0 mmol) at 298 K, the solution was stirred for 2 h and removal of solvent under reduced pressure, the residue was purified through column chromatography. Colourless single crystals of (I) were obtained by recrystallization from an ethanol solution.

Refinement top

All H atoms attached to C atoms and N atom were fixed geometrically and treated as riding with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N)

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Intramolecular hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the formation of infinite chain parallel to the b axis through N-H···O hydrogen bonds. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines. [Symmetry code: (i) -x+1, y-1/2, -z+1/2 ]
(2R,3R)-3-(2-Chlorophenyl)-N-phenyloxirane-2-carboxamide top
Crystal data top
C15H12ClNO2F(000) = 568
Mr = 273.71Dx = 1.344 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ac 2abCell parameters from 9390 reflections
a = 6.6610 (1) Åθ = 4.4–72.1°
b = 10.0343 (2) ŵ = 2.48 mm1
c = 20.2433 (3) ÅT = 295 K
V = 1353.03 (4) Å3Block, colourless
Z = 40.36 × 0.32 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2373 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source2100 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 15.9149 pixels mm-1θmax = 70.0°, θmin = 4.4°
ω scansh = 48
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1212
Tmin = 0.469, Tmax = 0.524l = 2424
9086 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2775P]
where P = (Fo2 + 2Fc2)/3
S = 1.20(Δ/σ)max < 0.001
2373 reflectionsΔρmax = 0.15 e Å3
172 parametersΔρmin = 0.26 e Å3
0 restraintsAbsolute structure: Flack (1983), 864 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
C15H12ClNO2V = 1353.03 (4) Å3
Mr = 273.71Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.6610 (1) ŵ = 2.48 mm1
b = 10.0343 (2) ÅT = 295 K
c = 20.2433 (3) Å0.36 × 0.32 × 0.30 mm
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2373 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2100 reflections with I > 2σ(I)
Tmin = 0.469, Tmax = 0.524Rint = 0.026
9086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.15 e Å3
S = 1.20Δρmin = 0.26 e Å3
2373 reflectionsAbsolute structure: Flack (1983), 864 Friedel pairs
172 parametersAbsolute structure parameter: 0.01 (2)
0 restraints
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlisPro (Oxford Diffraction, 2009)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4506 (5)1.0038 (3)0.44438 (13)0.0628 (7)
C20.2775 (5)1.0218 (3)0.48079 (15)0.0783 (9)
H20.25681.10090.50380.094*
C30.1355 (6)0.9220 (4)0.48286 (16)0.0815 (9)
H30.02000.93340.50800.098*
C40.1626 (5)0.8067 (3)0.44834 (16)0.0785 (8)
H40.06560.74010.44950.094*
C50.3367 (5)0.7894 (3)0.41138 (14)0.0673 (7)
H50.35470.71090.38770.081*
C60.4835 (4)0.8867 (2)0.40921 (12)0.0559 (6)
C70.6754 (4)0.8661 (3)0.37349 (13)0.0602 (6)
H70.79570.89310.39790.072*
C80.6969 (4)0.8680 (2)0.30113 (13)0.0571 (6)
H80.82810.89690.28450.069*
C90.5200 (4)0.9026 (2)0.25827 (12)0.0519 (5)
C100.2091 (4)0.8095 (2)0.20952 (11)0.0485 (5)
C110.0848 (4)0.7002 (2)0.21366 (14)0.0591 (6)
H110.12030.62880.24050.071*
C120.0942 (5)0.6958 (3)0.17779 (15)0.0719 (8)
H120.17690.62130.18030.086*
C130.1475 (5)0.8020 (3)0.13874 (14)0.0737 (8)
H130.26550.79930.11420.088*
C140.0262 (5)0.9114 (3)0.13617 (14)0.0734 (8)
H140.06520.98400.11060.088*
C150.1546 (5)0.9176 (3)0.17082 (13)0.0618 (6)
H150.23660.99240.16800.074*
Cl10.63034 (15)1.12873 (8)0.44179 (4)0.0905 (3)
N10.3914 (3)0.80345 (18)0.24575 (10)0.0524 (5)
H10.42290.72670.26160.063*
O10.6959 (3)0.74497 (17)0.33669 (10)0.0666 (5)
O20.5063 (3)1.01692 (16)0.23815 (11)0.0732 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0775 (18)0.0568 (13)0.0540 (12)0.0057 (14)0.0038 (13)0.0006 (12)
C20.100 (2)0.0729 (19)0.0619 (15)0.0152 (19)0.0041 (16)0.0041 (14)
C30.074 (2)0.098 (2)0.0730 (17)0.004 (2)0.0099 (16)0.0101 (17)
C40.076 (2)0.082 (2)0.0773 (18)0.0094 (18)0.0062 (17)0.0141 (17)
C50.0738 (19)0.0615 (15)0.0667 (15)0.0019 (15)0.0138 (15)0.0035 (13)
C60.0609 (15)0.0507 (12)0.0561 (12)0.0041 (13)0.0142 (11)0.0003 (11)
C70.0592 (16)0.0489 (12)0.0725 (14)0.0062 (13)0.0135 (12)0.0100 (12)
C80.0577 (15)0.0389 (11)0.0748 (15)0.0054 (12)0.0031 (12)0.0085 (11)
C90.0551 (14)0.0364 (10)0.0640 (13)0.0004 (11)0.0007 (11)0.0090 (10)
C100.0525 (14)0.0422 (11)0.0508 (11)0.0012 (11)0.0024 (10)0.0061 (10)
C110.0620 (16)0.0448 (12)0.0704 (14)0.0027 (12)0.0007 (12)0.0039 (11)
C120.0711 (19)0.0627 (16)0.0817 (18)0.0081 (15)0.0004 (15)0.0113 (14)
C130.0618 (17)0.089 (2)0.0700 (16)0.0041 (18)0.0101 (14)0.0109 (15)
C140.0758 (19)0.0778 (18)0.0666 (15)0.0019 (17)0.0127 (14)0.0110 (14)
C150.0706 (17)0.0517 (13)0.0630 (13)0.0048 (13)0.0055 (13)0.0068 (12)
Cl10.1070 (7)0.0629 (4)0.1016 (5)0.0142 (5)0.0117 (5)0.0220 (4)
N10.0576 (12)0.0362 (8)0.0632 (11)0.0002 (9)0.0047 (9)0.0007 (8)
O10.0723 (12)0.0446 (9)0.0830 (12)0.0140 (9)0.0153 (10)0.0070 (9)
O20.0799 (13)0.0359 (8)0.1039 (14)0.0044 (9)0.0200 (11)0.0020 (9)
Geometric parameters (Å, º) top
C1—C21.381 (4)C8—H80.9800
C1—C61.391 (3)C9—O21.221 (3)
C1—Cl11.734 (3)C9—N11.337 (3)
C2—C31.378 (5)C10—C111.377 (3)
C2—H20.9300C10—C151.387 (4)
C3—C41.364 (5)C10—N11.420 (3)
C3—H30.9300C11—C121.397 (4)
C4—C51.391 (5)C11—H110.9300
C4—H40.9300C12—C131.374 (4)
C5—C61.383 (4)C12—H120.9300
C5—H50.9300C13—C141.364 (4)
C6—C71.483 (4)C13—H130.9300
C7—O11.432 (3)C14—C151.395 (4)
C7—C81.472 (4)C14—H140.9300
C7—H70.9800C15—H150.9300
C8—O11.429 (3)N1—H10.8600
C8—C91.504 (4)
C2—C1—C6121.0 (3)C7—C8—H8115.6
C2—C1—Cl1119.9 (2)C9—C8—H8115.6
C6—C1—Cl1119.1 (2)O2—C9—N1126.0 (2)
C3—C2—C1119.6 (3)O2—C9—C8117.9 (2)
C3—C2—H2120.2N1—C9—C8116.1 (2)
C1—C2—H2120.2C11—C10—C15120.0 (2)
C4—C3—C2120.7 (3)C11—C10—N1116.7 (2)
C4—C3—H3119.7C15—C10—N1123.3 (2)
C2—C3—H3119.7C10—C11—C12120.5 (3)
C3—C4—C5119.5 (3)C10—C11—H11119.8
C3—C4—H4120.3C12—C11—H11119.8
C5—C4—H4120.3C13—C12—C11119.7 (3)
C6—C5—C4121.2 (3)C13—C12—H12120.1
C6—C5—H5119.4C11—C12—H12120.1
C4—C5—H5119.4C14—C13—C12119.6 (3)
C5—C6—C1118.0 (3)C14—C13—H13120.2
C5—C6—C7121.7 (2)C12—C13—H13120.2
C1—C6—C7120.2 (2)C13—C14—C15121.9 (3)
O1—C7—C858.96 (16)C13—C14—H14119.1
O1—C7—C6117.0 (2)C15—C14—H14119.1
C8—C7—C6124.5 (2)C10—C15—C14118.4 (3)
O1—C7—H7114.8C10—C15—H15120.8
C8—C7—H7114.8C14—C15—H15120.8
C6—C7—H7114.8C9—N1—C10127.89 (19)
O1—C8—C759.12 (16)C9—N1—H1116.1
O1—C8—C9119.1 (2)C10—N1—H1116.1
C7—C8—C9120.1 (2)C8—O1—C761.92 (15)
O1—C8—H8115.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.382.801 (3)111
N1—H1···O2i0.862.162.973 (2)158
Symmetry code: (i) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H12ClNO2
Mr273.71
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.6610 (1), 10.0343 (2), 20.2433 (3)
V3)1353.03 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.48
Crystal size (mm)0.36 × 0.32 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.469, 0.524
No. of measured, independent and
observed [I > 2σ(I)] reflections
9086, 2373, 2100
Rint0.026
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.109, 1.20
No. of reflections2373
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.26
Absolute structureFlack (1983), 864 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.862.382.801 (3)110.8
N1—H1···O2i0.862.162.973 (2)158.1
Symmetry code: (i) x+1, y1/2, z+1/2.
 

Acknowledgements

The authors thank the Testing Centre of Sichuan University for the diffraction measurements. We are grateful for financial support from China West Normal University (No. 412374).

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlisak, J. R., Gombatz, K. J., Holmes, M. M., Jarmas, A. A., Lantos, I., Mendelson, W. L., Novack, V. J., Remich, J. J. & Snyder, L. (1993). J. Org. Chem. 58, 6247–6254.  CrossRef CAS Web of Science Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2052.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L. & Chen, L.-M. (2009). Acta Cryst. E65, o2976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L., Qin, H.-M. & Chen, L.-M. (2009). Acta Cryst. E65, o2999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2009). CrysAlis Pro. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPorter, M. J. & Skidmore, J. (2000). Chem. Commun. pp. 1215–1225.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShing, T. K. M., Luk, T. & Lee, C. M. (2006). Tetrahedron, 62, 6621–6629.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatanabe, S., Arai, T., Sasai, H., Bougauchi, M. & Shibasaki, M. (1998). J. Org. Chem. 63, 8090–8091.  Web of Science CrossRef CAS Google Scholar
First citationZhu, Z. L. & Espenson, J. H. (1995). J. Org. Chem. 60, 7090–7091.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds