organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4,5,5-Tetra­methyl-2-(3,4,5-tri­meth­oxy­phen­yl)imidazolidine-1-oxyl 3-oxide

aDepartment of Chemistry, School of Pharmacy, Fourth Military Medical University, Changle West Road 17, 710032 Xi-An, People's Republic of China
*Correspondence e-mail: lisydcn@yahoo.com.cn

(Received 26 June 2009; accepted 23 July 2009; online 8 August 2009)

In the title nitronyl nitroxide radical compound, C16C23N2O5, the imidazole and benzene rings are twisted with respect to each other, making a dihedral angle of 26.2 (4)°. The imidazole ring adopts a half-chair conformation. Weak C—H⋯π inter­actions are also found.

Related literature

For the preparation of the title compound see: Ullman et al. (1974[Ullman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049-7053.]). For related structures, see: Feher et al. (2008[Feher, R., Wurst, K., Amabilino, D. B. & Veciana, J. (2008). Inorg. Chim. Acta, 361, 4094-4099.]); Gao et al. (2009[Gao, Z.-Y., Chang, J.-L., Xian, D. & Jiang, K. (2009). Acta Cryst. E65, o1062.]); Qin et al. (2009[Qin, X.-Y., Wang, P.-A. & Sun, X.-L. (2009). Acta Cryst. E65, o1031.]); Cirujeda et al. (1995[Cirujeda, J., Mas, M., Molins, E., Panthou de, F. L., Laugier, J., Park, J. G., Paulsen, C., Rey, P., Rovira, C. & Veciana, J. (1995). Chem. Commun. pp. 709-710.]); Matsushita et al. (1997[Matsushita, M. M., Izuoka, A., Sugawara, T., Kobayashi, T., Wada, N., Takeda, N. & Ishikawa, M. (1997). J. Am. Chem. Soc. 119, 4369-4379.]). For the coordination properties of the title compound and its use in the formation of mol­ecule-based magnetic materials, see: Takui et al. (2009[Takui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670-4673.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H23N2O5

  • Mr = 323.36

  • Orthorhombic, P b c a

  • a = 20.623 (3) Å

  • b = 7.2168 (12) Å

  • c = 22.831 (4) Å

  • V = 3398.0 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.32 × 0.25 × 0.17 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: none

  • 15858 measured reflections

  • 3027 independent reflections

  • 1519 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.06

  • 3027 reflections

  • 216 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14ACg2i 0.96 2.80 3.644 (2) 147
Symmetry code: (i) -x, -y, -z+1. Cg2 is the centroid of the phenyl ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The title radical compound was obtained from the oxidation of 4,4,5,5- tetramethyl-2-(3,4,5-trimethoxybenzenyl)-imidazolidine-1,3-diol, which was prepared by the condensation of 3,4,5-trimethoxybenzaldehyde with 2,3-Dimethyl-2,3-bis(hydroxyl-amino)butane. The title compound was used for coordination with many metal cations, such as Mn2+, Cu2+, and Ni2+, in order to form some molecule-based magnetic materials (Takui et al., 2009).

The molecular structure of the title compound is shown in Fig 1. Examination of bond length within the five membered rings shows an average structure as observed with related compounds (Cirujeda et al., 1995; Feher et al., 2008; Gao et al., 2009; Matsushita et al., 1997; Qin et al., 2009).

The imidazole and the phenyl rings are twisted with respect to each other making a dihedral angle of 26.2 (4)°. The imidazole ring has an half-chair conformation with puckering parameters O(2)=. 0.0275 (2)Å and ϕ= 233.0 (5)°(Cremer & Pople, 1975). The crystal structure is stabilized by weak C—H···π (Table 1, Cg2 is the centroid of the phenyl ring) and van der Waals interactions.

Related literature top

For the preparation of the title compound see: Ullman et al. (1974). For related structures, see: Feher et al. (2008); Gao et al. (2009); Qin et al. (2009); Cirujeda et al. (1995); Matsushita et al. (1997). For coordination properties of the the title compound and its use in the formation of molecule-based magnetic materials, see: Takui et al. (2009). For puckering parameters, see: Cremer & Pople (1975). Cg2 is the centroid of the phenyl ring

Experimental top

The compound 4,4,5,5-tetramethyl-2-(3,4,5-trimethoxybenzenyl)-imidazolidine -1-oxyl-3-oxide was prepared according to the method reported by Ullman et al. (1974). 2,3-Dimethyl-2,3-bis(hydroxylamino) butane (1.48 g, 10.0 mmol) and 3,4,5-trimethoxybenzaldehyde (1.96 g, 10.0 mmol) were dissolved in a methanol-water mixture (2:1), which was stirred for 5 h at reflux temperature, then cooled to room temperature and filtered. The white powder was washed by methanol. This product was dried under vaccum, then, it was suspended in dichloromethane (50.0 ml) and the water solution (30.0 ml) of NaIO4 (1.7 g) was added and stirred at ice bath for 20 min. The reaction mixture was extracted by dichloromethane (30.0 ml) for twice and the organic layer was combined and dried over Na2SO4. Then the solvent was removed to give a dark blue residue which was purified by a flash column chromatography (eluent, ether and petroleum ether, the ratio of volume is 2 to 1) to yield the title compound (I) as a dark blue powder. Single crystals of compound (I) were obtained from the mixed solution of n-heptane and dichloromethane (the ratio of volume is 1 to 1).

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Caromatic) or Uiso(H) = 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound (I), showing the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
4,4,5,5-Tetramethyl-2-(3,4,5-trimethoxyphenyl)imidazolidine-1-oxyl 3-oxide top
Crystal data top
C16H23N2O5F(000) = 1384
Mr = 323.36Dx = 1.264 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1322 reflections
a = 20.623 (3) Åθ = 3.1–18.2°
b = 7.2168 (12) ŵ = 0.09 mm1
c = 22.831 (4) ÅT = 296 K
V = 3398.0 (10) Å3Block, blue
Z = 80.32 × 0.25 × 0.17 mm
Data collection top
Bruker SMART APEX2
diffractometer
1519 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.1°, θmin = 1.8°
Detector resolution: 0 pixels mm-1h = 1224
ϕ and ω scansk = 88
15858 measured reflectionsl = 2726
3027 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.05P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
3027 reflectionsΔρmax = 0.17 e Å3
216 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (5)
Crystal data top
C16H23N2O5V = 3398.0 (10) Å3
Mr = 323.36Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 20.623 (3) ŵ = 0.09 mm1
b = 7.2168 (12) ÅT = 296 K
c = 22.831 (4) Å0.32 × 0.25 × 0.17 mm
Data collection top
Bruker SMART APEX2
diffractometer
1519 reflections with I > 2σ(I)
15858 measured reflectionsRint = 0.062
3027 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.06Δρmax = 0.17 e Å3
3027 reflectionsΔρmin = 0.23 e Å3
216 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.06793 (9)0.2073 (3)0.49665 (8)0.0570 (5)
N20.15280 (9)0.0432 (3)0.47376 (8)0.0576 (5)
O10.01712 (9)0.2652 (3)0.52296 (7)0.0913 (6)
O20.20243 (8)0.0630 (3)0.47707 (7)0.0903 (6)
O30.07153 (8)0.1394 (2)0.72841 (6)0.0717 (5)
O40.12645 (7)0.1894 (2)0.74689 (6)0.0720 (5)
O50.17240 (8)0.3947 (2)0.65885 (7)0.0743 (5)
C10.08745 (10)0.2830 (3)0.43780 (9)0.0511 (6)
C20.13132 (10)0.1227 (3)0.41649 (9)0.0548 (6)
C30.11082 (10)0.0839 (3)0.51744 (9)0.0506 (6)
C40.11306 (10)0.0103 (3)0.57690 (9)0.0505 (6)
C50.14140 (10)0.1615 (3)0.58697 (10)0.0533 (6)
H50.15740.23130.55590.064*
C60.14551 (10)0.2276 (3)0.64375 (10)0.0550 (6)
C70.12210 (10)0.1231 (3)0.69035 (10)0.0542 (6)
C80.09320 (11)0.0479 (3)0.67984 (9)0.0543 (6)
C90.08840 (10)0.1132 (3)0.62324 (9)0.0539 (6)
H90.06860.22660.61610.065*
C100.03918 (13)0.3130 (4)0.71996 (10)0.0823 (8)
H10A0.06930.40220.70470.123*
H10B0.02240.35620.75670.123*
H10C0.00410.29710.69280.123*
C110.18747 (13)0.1598 (5)0.77318 (11)0.1017 (10)
H11A0.22030.22340.75110.153*
H11B0.18680.20640.81260.153*
H11C0.19680.02950.77370.153*
C120.19952 (13)0.5035 (4)0.61337 (12)0.0869 (8)
H12A0.16630.53540.58570.130*
H12B0.21770.61460.62960.130*
H12C0.23290.43430.59400.130*
C130.12386 (12)0.4629 (3)0.45043 (11)0.0726 (7)
H13A0.09650.54490.47240.109*
H13B0.13580.52090.41410.109*
H13C0.16220.43600.47270.109*
C140.02814 (11)0.3224 (3)0.40075 (10)0.0722 (7)
H14A0.00190.21290.39840.108*
H14B0.04140.35860.36210.108*
H14C0.00350.42070.41830.108*
C150.18983 (12)0.1816 (4)0.38065 (10)0.0783 (8)
H15A0.21680.26190.40370.117*
H15B0.17560.24620.34620.117*
H15C0.21410.07390.36940.117*
C160.09402 (13)0.0316 (3)0.38572 (10)0.0765 (8)
H16A0.12140.13850.38180.115*
H16B0.08080.00990.34760.115*
H16C0.05640.06330.40840.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0488 (12)0.0639 (13)0.0583 (12)0.0123 (10)0.0125 (10)0.0033 (10)
N20.0509 (11)0.0636 (13)0.0583 (13)0.0127 (11)0.0095 (10)0.0047 (10)
O10.0890 (14)0.1057 (15)0.0792 (11)0.0366 (11)0.0233 (11)0.0175 (10)
O20.0745 (12)0.1091 (15)0.0872 (12)0.0401 (11)0.0215 (10)0.0192 (10)
O30.0827 (13)0.0798 (12)0.0526 (10)0.0157 (10)0.0074 (8)0.0006 (9)
O40.0655 (12)0.0913 (13)0.0591 (11)0.0002 (9)0.0019 (9)0.0204 (9)
O50.0798 (12)0.0648 (12)0.0783 (11)0.0196 (10)0.0001 (10)0.0135 (10)
C10.0527 (14)0.0518 (15)0.0487 (13)0.0028 (12)0.0001 (11)0.0055 (11)
C20.0590 (15)0.0580 (15)0.0474 (13)0.0022 (12)0.0058 (11)0.0036 (12)
C30.0454 (13)0.0516 (14)0.0548 (14)0.0060 (12)0.0035 (12)0.0021 (11)
C40.0450 (13)0.0560 (15)0.0504 (14)0.0007 (12)0.0011 (11)0.0049 (12)
C50.0475 (14)0.0561 (16)0.0561 (15)0.0046 (11)0.0013 (11)0.0007 (12)
C60.0453 (14)0.0575 (16)0.0623 (16)0.0001 (12)0.0007 (12)0.0082 (13)
C70.0478 (14)0.0651 (17)0.0496 (14)0.0037 (13)0.0000 (11)0.0112 (13)
C80.0517 (14)0.0636 (16)0.0474 (15)0.0029 (13)0.0051 (11)0.0016 (12)
C90.0533 (14)0.0544 (14)0.0539 (15)0.0038 (12)0.0032 (11)0.0032 (12)
C100.096 (2)0.081 (2)0.0701 (16)0.0165 (17)0.0143 (15)0.0100 (15)
C110.089 (2)0.144 (3)0.0727 (17)0.012 (2)0.0241 (17)0.0182 (18)
C120.087 (2)0.0655 (18)0.108 (2)0.0200 (15)0.0072 (18)0.0042 (16)
C130.0812 (19)0.0569 (16)0.0797 (17)0.0028 (14)0.0029 (14)0.0004 (13)
C140.0669 (17)0.0819 (19)0.0679 (15)0.0090 (14)0.0072 (13)0.0070 (14)
C150.0740 (19)0.087 (2)0.0736 (16)0.0027 (15)0.0289 (14)0.0119 (14)
C160.097 (2)0.0662 (17)0.0662 (16)0.0037 (15)0.0008 (15)0.0077 (13)
Geometric parameters (Å, º) top
N1—O11.278 (2)C8—C91.379 (3)
N1—C31.342 (2)C9—H90.9300
N1—C11.506 (3)C10—H10A0.9600
N2—O21.281 (2)C10—H10B0.9600
N2—C31.353 (2)C10—H10C0.9600
N2—C21.495 (3)C11—H11A0.9600
O3—C81.366 (2)C11—H11B0.9600
O3—C101.433 (3)C11—H11C0.9600
O4—C71.380 (2)C12—H12A0.9600
O4—C111.410 (3)C12—H12B0.9600
O5—C61.372 (3)C12—H12C0.9600
O5—C121.417 (3)C13—H13A0.9600
C1—C141.514 (3)C13—H13B0.9600
C1—C131.527 (3)C13—H13C0.9600
C1—C21.547 (3)C14—H14A0.9600
C2—C151.519 (3)C14—H14B0.9600
C2—C161.525 (3)C14—H14C0.9600
C3—C41.459 (3)C15—H15A0.9600
C4—C91.389 (3)C15—H15B0.9600
C4—C51.390 (3)C15—H15C0.9600
C5—C61.384 (3)C16—H16A0.9600
C5—H50.9300C16—H16B0.9600
C6—C71.391 (3)C16—H16C0.9600
C7—C81.391 (3)
O1—N1—C3126.26 (18)O3—C10—H10A109.5
O1—N1—C1121.31 (18)O3—C10—H10B109.5
C3—N1—C1112.36 (17)H10A—C10—H10B109.5
O2—N2—C3126.70 (19)O3—C10—H10C109.5
O2—N2—C2121.20 (17)H10A—C10—H10C109.5
C3—N2—C2111.83 (17)H10B—C10—H10C109.5
C8—O3—C10117.76 (17)O4—C11—H11A109.5
C7—O4—C11113.82 (18)O4—C11—H11B109.5
C6—O5—C12117.56 (18)H11A—C11—H11B109.5
N1—C1—C14110.53 (17)O4—C11—H11C109.5
N1—C1—C13105.77 (17)H11A—C11—H11C109.5
C14—C1—C13110.08 (19)H11B—C11—H11C109.5
N1—C1—C299.52 (16)O5—C12—H12A109.5
C14—C1—C2115.92 (18)O5—C12—H12B109.5
C13—C1—C2114.05 (18)H12A—C12—H12B109.5
N2—C2—C15110.07 (18)O5—C12—H12C109.5
N2—C2—C16105.78 (18)H12A—C12—H12C109.5
C15—C2—C16110.91 (19)H12B—C12—H12C109.5
N2—C2—C1100.67 (16)C1—C13—H13A109.5
C15—C2—C1115.15 (19)C1—C13—H13B109.5
C16—C2—C1113.33 (18)H13A—C13—H13B109.5
N1—C3—N2107.77 (18)C1—C13—H13C109.5
N1—C3—C4126.3 (2)H13A—C13—H13C109.5
N2—C3—C4125.9 (2)H13B—C13—H13C109.5
C9—C4—C5120.32 (19)C1—C14—H14A109.5
C9—C4—C3120.2 (2)C1—C14—H14B109.5
C5—C4—C3119.5 (2)H14A—C14—H14B109.5
C6—C5—C4119.2 (2)C1—C14—H14C109.5
C6—C5—H5120.4H14A—C14—H14C109.5
C4—C5—H5120.4H14B—C14—H14C109.5
O5—C6—C5124.3 (2)C2—C15—H15A109.5
O5—C6—C7115.1 (2)C2—C15—H15B109.5
C5—C6—C7120.6 (2)H15A—C15—H15B109.5
O4—C7—C6120.4 (2)C2—C15—H15C109.5
O4—C7—C8119.8 (2)H15A—C15—H15C109.5
C6—C7—C8119.9 (2)H15B—C15—H15C109.5
O3—C8—C9124.9 (2)C2—C16—H16A109.5
O3—C8—C7115.40 (19)C2—C16—H16B109.5
C9—C8—C7119.7 (2)H16A—C16—H16B109.5
C8—C9—C4120.3 (2)C2—C16—H16C109.5
C8—C9—H9119.8H16A—C16—H16C109.5
C4—C9—H9119.8H16B—C16—H16C109.5
O1—N1—C1—C1436.5 (3)C2—N2—C3—C4172.4 (2)
C3—N1—C1—C14146.39 (19)N1—C3—C4—C926.4 (3)
O1—N1—C1—C1382.7 (2)N2—C3—C4—C9151.8 (2)
C3—N1—C1—C1394.5 (2)N1—C3—C4—C5155.1 (2)
O1—N1—C1—C2158.87 (19)N2—C3—C4—C526.7 (3)
C3—N1—C1—C224.0 (2)C9—C4—C5—C60.9 (3)
O2—N2—C2—C1540.2 (3)C3—C4—C5—C6177.65 (19)
C3—N2—C2—C15145.36 (19)C12—O5—C6—C52.1 (3)
O2—N2—C2—C1679.7 (2)C12—O5—C6—C7177.4 (2)
C3—N2—C2—C1694.8 (2)C4—C5—C6—O5179.98 (19)
O2—N2—C2—C1162.2 (2)C4—C5—C6—C70.5 (3)
C3—N2—C2—C123.4 (2)C11—O4—C7—C682.3 (3)
N1—C1—C2—N225.95 (19)C11—O4—C7—C898.7 (3)
C14—C1—C2—N2144.43 (19)O5—C6—C7—O40.3 (3)
C13—C1—C2—N286.2 (2)C5—C6—C7—O4179.84 (19)
N1—C1—C2—C15144.27 (19)O5—C6—C7—C8179.30 (19)
C14—C1—C2—C1597.3 (2)C5—C6—C7—C81.2 (3)
C13—C1—C2—C1532.1 (3)C10—O3—C8—C92.5 (3)
N1—C1—C2—C1686.5 (2)C10—O3—C8—C7177.7 (2)
C14—C1—C2—C1631.9 (3)O4—C7—C8—O30.7 (3)
C13—C1—C2—C16161.33 (18)C6—C7—C8—O3179.72 (19)
O1—N1—C3—N2172.6 (2)O4—C7—C8—C9179.5 (2)
C1—N1—C3—N210.4 (2)C6—C7—C8—C90.5 (3)
O1—N1—C3—C48.9 (4)O3—C8—C9—C4178.9 (2)
C1—N1—C3—C4168.07 (19)C7—C8—C9—C40.9 (3)
O2—N2—C3—N1176.8 (2)C5—C4—C9—C81.6 (3)
C2—N2—C3—N19.1 (2)C3—C4—C9—C8176.9 (2)
O2—N2—C3—C41.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg2i0.962.803.644 (2)147
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC16H23N2O5
Mr323.36
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)20.623 (3), 7.2168 (12), 22.831 (4)
V3)3398.0 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.32 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART APEX2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15858, 3027, 1519
Rint0.062
(sin θ/λ)max1)0.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.06
No. of reflections3027
No. of parameters216
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14A···Cg2i0.962.803.644 (2)147
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

We thank the Natural Science Foundation of China (grant No. 20802092) for financial support.

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCirujeda, J., Mas, M., Molins, E., Panthou de, F. L., Laugier, J., Park, J. G., Paulsen, C., Rey, P., Rovira, C. & Veciana, J. (1995). Chem. Commun. pp. 709–710.  CrossRef Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeher, R., Wurst, K., Amabilino, D. B. & Veciana, J. (2008). Inorg. Chim. Acta, 361, 4094–4099.  Web of Science CSD CrossRef CAS Google Scholar
First citationGao, Z.-Y., Chang, J.-L., Xian, D. & Jiang, K. (2009). Acta Cryst. E65, o1062.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMatsushita, M. M., Izuoka, A., Sugawara, T., Kobayashi, T., Wada, N., Takeda, N. & Ishikawa, M. (1997). J. Am. Chem. Soc. 119, 4369–4379.  CSD CrossRef CAS Web of Science Google Scholar
First citationQin, X.-Y., Wang, P.-A. & Sun, X.-L. (2009). Acta Cryst. E65, o1031.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakui, T., Hosokoshi, Y., Lan, X., Miyazaki, Y., Inada, A. & Okada, K. (2009). J. Am. Chem. Soc. 131, 4670–4673.  Web of Science PubMed Google Scholar
First citationUllman, E. F., Osiecki, J. H., Boocock, D. G. B. & Darcy, R. (1974). J. Am. Chem. Soc. 96, 7049–7053.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds