organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4-Hy­droxy­pheneth­yl)acetamide

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing 100050, People's Republic of China
*Correspondence e-mail: lmllyx@yahoo.com.cn

(Received 22 June 2009; accepted 1 July 2009; online 8 July 2009)

In the title compound, C10H13NO2, the occurrence of inter­molecular N—H⋯O and O—H⋯O hydrogen bonds between the hydr­oxy and acetamido groups results in the formation of tetra­mers with an R44(25) graph-set motif. These tetra­mers are further assembled, building up a corrugated sheet parallel to (001).

Related literature

For the biological activity of N-(4-hydroxypheneth­yl)acetamide, see: Garcez et al. (2000[Garcez, W. S., Martins, D. & Garcez, F. R. (2000). J. Agric. Food Chem. 48, 3662-3665.]); Montedoro et al. (1993[Montedoro, G., Servili, M. & Baldioli, M. (1993). J. Agric. Food Chem. 41, 2228-2234.]). For related structures, see: Chai et al. (2009[Chai, Y., Wan, Z.-L., Guo, H.-Y. & Liu, M.-L. (2009). Acta Cryst. E65, o282.]); Song et al. (2008[Song, W.-L., Wang, D., Li, X.-H. & Wang, D.-C. (2008). Acta Cryst. E64, o785.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.])

[Scheme 1]

Experimental

Crystal data
  • C10H13NO2

  • Mr = 179.21

  • Monoclinic, P 21 /c

  • a = 9.9206 (13) Å

  • b = 8.7861 (11) Å

  • c = 11.4943 (16) Å

  • β = 102.9980 (10)°

  • V = 976.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.43 × 0.38 × 0.20 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.961, Tmax = 0.978

  • 4753 measured reflections

  • 1713 independent reflections

  • 1196 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.05

  • 1713 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.08 2.9048 (18) 161
O1—H1A⋯O2ii 0.82 1.83 2.6464 (17) 174
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Pearce et al., 2000[Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

N-(4-Hydroxyphenethyl)acetamide displays various biological activities (Garcez et al., 2000; Montedoro et al., 1993; Allen et al., 1987), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), all of the bond lengths and angles are within normal ranges. the occurrence of intermolecular N–H···O and O–H···O hydrogen bonds between the hydroxy and acetamido groups results in the formation of tetramers with a R44(25) graph set motif (Etter, 1990; Bernstein et al., 1995). These tetrameric motifs are further assemble to build up a corrugated sheet parallel to the (0 0 1) plane (Table 1, Fig. 2).

The bond lengths and bond angles agree with the values observed in related structures (Chai et al., 2009; Song et al., 2008).

Related literature top

For the biological activity of N-(4-yydroxyphenethyl)acetamide, see: Garcez et al. (2000); Montedoro et al. (1993). For related structures, see: Chai et al. (2009); Song et al. (2008). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter (1990)

Experimental top

The title compound was separated from fermentation liquor as a white solid. Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol/water solution(2:1 v/v). 1H NMR (DMSO-d6, δ): 9.14 (1H, s, OH), 7.84 (1H, br, NH), 6.96 (2H, d, PhH2), 6.66 (2H, d, PhH2), 3.14–3.19 (2H, m, CH2), 2.49–2.57 (2H, m, CH2), 1.77 (3H, s, CH3). MS(FAB, m/z): 180 (M+H)+.

Refinement top

All H atom were placed at calculated positions, with C—H = 0.96–0.97 Å and N—H = 0.86 Å, and were included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(methyl C). The H of the methyl group were statistically disordered over two positions.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atos labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are rpresented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the corrugated sheet and the R44(25) graph set motif.
N-(4-Hydroxyphenethyl)acetamide top
Crystal data top
C10H13NO2F(000) = 384
Mr = 179.21Dx = 1.219 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1622 reflections
a = 9.9206 (13) Åθ = 3.0–26.2°
b = 8.7861 (11) ŵ = 0.09 mm1
c = 11.4943 (16) ÅT = 298 K
β = 102.998 (1)°Block, colorless
V = 976.2 (2) Å30.43 × 0.38 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
1713 independent reflections
Radiation source: fine-focus sealed tube1196 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 711
Tmin = 0.961, Tmax = 0.978k = 910
4753 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0387P)2 + 0.1837P]
where P = (Fo2 + 2Fc2)/3
1713 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C10H13NO2V = 976.2 (2) Å3
Mr = 179.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9206 (13) ŵ = 0.09 mm1
b = 8.7861 (11) ÅT = 298 K
c = 11.4943 (16) Å0.43 × 0.38 × 0.20 mm
β = 102.998 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
1196 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.978Rint = 0.027
4753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
1713 reflectionsΔρmin = 0.14 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.15094 (14)0.38049 (16)0.35383 (14)0.0553 (4)
H10.19360.43030.30860.066*
O10.72697 (12)0.10975 (15)0.27285 (11)0.0598 (4)
H1A0.79570.15860.30490.090*
O20.04072 (13)0.25522 (17)0.36772 (12)0.0724 (4)
C10.40477 (16)0.18477 (19)0.44391 (14)0.0444 (4)
C20.39022 (17)0.09127 (19)0.34533 (15)0.0516 (5)
H20.30570.04350.31620.062*
C30.49703 (18)0.0664 (2)0.28865 (16)0.0516 (5)
H30.48430.00240.22260.062*
C40.62273 (16)0.13710 (18)0.33044 (14)0.0430 (4)
C50.64007 (17)0.23153 (18)0.42830 (14)0.0462 (4)
H50.72440.28000.45680.055*
C60.53229 (17)0.25403 (19)0.48397 (15)0.0493 (4)
H60.54550.31750.55030.059*
C70.28890 (18)0.2102 (2)0.50690 (16)0.0542 (5)
H7A0.32570.20340.59240.065*
H7B0.22100.12990.48450.065*
C80.21757 (18)0.3629 (2)0.47851 (17)0.0562 (5)
H8A0.14880.37450.52600.067*
H8B0.28540.44340.50120.067*
C90.02736 (18)0.3236 (2)0.30588 (17)0.0545 (5)
C100.0253 (2)0.3440 (3)0.17442 (18)0.0790 (6)
H10A0.04160.39940.14250.119*0.50
H10B0.11080.39950.15970.119*0.50
H10C0.04040.24610.13660.119*0.50
H10D0.11460.29730.15010.119*0.50
H10E0.03770.29720.13290.119*0.50
H10F0.03260.45060.15590.119*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0394 (8)0.0592 (9)0.0710 (10)0.0001 (7)0.0200 (7)0.0143 (8)
O10.0472 (7)0.0672 (9)0.0692 (9)0.0047 (6)0.0223 (6)0.0153 (6)
O20.0500 (8)0.0981 (11)0.0736 (9)0.0201 (7)0.0232 (7)0.0017 (8)
C10.0399 (9)0.0478 (9)0.0461 (10)0.0014 (8)0.0112 (7)0.0084 (8)
C20.0393 (10)0.0572 (11)0.0565 (11)0.0115 (8)0.0069 (8)0.0006 (9)
C30.0503 (10)0.0547 (11)0.0492 (10)0.0075 (9)0.0102 (8)0.0085 (8)
C40.0383 (9)0.0445 (9)0.0473 (10)0.0017 (7)0.0119 (7)0.0022 (7)
C50.0348 (9)0.0495 (10)0.0521 (10)0.0034 (7)0.0050 (7)0.0044 (8)
C60.0450 (10)0.0542 (11)0.0484 (10)0.0013 (8)0.0096 (8)0.0073 (8)
C70.0475 (10)0.0627 (12)0.0545 (11)0.0009 (9)0.0157 (8)0.0079 (9)
C80.0439 (10)0.0601 (12)0.0682 (12)0.0054 (9)0.0201 (9)0.0046 (9)
C90.0422 (10)0.0601 (11)0.0651 (12)0.0080 (9)0.0202 (9)0.0039 (9)
C100.0602 (13)0.1059 (18)0.0711 (14)0.0112 (12)0.0150 (11)0.0090 (13)
Geometric parameters (Å, º) top
N1—C91.324 (2)C5—H50.9300
N1—C81.445 (2)C6—H60.9300
N1—H10.8600C7—C81.518 (2)
O1—C41.3686 (19)C7—H7A0.9700
O1—H1A0.8200C7—H7B0.9700
O2—C91.240 (2)C8—H8A0.9700
C1—C21.381 (2)C8—H8B0.9700
C1—C61.386 (2)C9—C101.494 (3)
C1—C71.507 (2)C10—H10A0.9600
C2—C31.380 (2)C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.379 (2)C10—H10D0.9600
C3—H30.9300C10—H10E0.9600
C4—C51.377 (2)C10—H10F0.9600
C5—C61.378 (2)
C9—N1—C8123.14 (15)N1—C8—H8A108.9
C9—N1—H1118.4C7—C8—H8A108.9
C8—N1—H1118.4N1—C8—H8B108.9
C4—O1—H1A109.5C7—C8—H8B108.9
C2—C1—C6116.94 (15)H8A—C8—H8B107.7
C2—C1—C7122.18 (15)O2—C9—N1121.13 (17)
C6—C1—C7120.88 (15)O2—C9—C10121.75 (17)
C3—C2—C1122.12 (16)N1—C9—C10117.12 (17)
C3—C2—H2118.9C9—C10—H10A109.5
C1—C2—H2118.9C9—C10—H10B109.5
C4—C3—C2119.64 (16)H10A—C10—H10B109.5
C4—C3—H3120.2C9—C10—H10C109.5
C2—C3—H3120.2H10A—C10—H10C109.5
O1—C4—C5122.12 (14)H10B—C10—H10C109.5
O1—C4—C3118.36 (15)C9—C10—H10D109.5
C5—C4—C3119.52 (15)H10A—C10—H10D141.1
C4—C5—C6119.89 (15)H10B—C10—H10D56.3
C4—C5—H5120.1H10C—C10—H10D56.3
C6—C5—H5120.1C9—C10—H10E109.5
C5—C6—C1121.89 (16)H10A—C10—H10E56.3
C5—C6—H6119.1H10B—C10—H10E141.1
C1—C6—H6119.1H10C—C10—H10E56.3
C1—C7—C8113.41 (14)H10D—C10—H10E109.5
C1—C7—H7A108.9C9—C10—H10F109.5
C8—C7—H7A108.9H10A—C10—H10F56.3
C1—C7—H7B108.9H10B—C10—H10F56.3
C8—C7—H7B108.9H10C—C10—H10F141.1
H7A—C7—H7B107.7H10D—C10—H10F109.5
N1—C8—C7113.25 (15)H10E—C10—H10F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.9048 (18)161
O1—H1A···O2ii0.821.832.6464 (17)174
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC10H13NO2
Mr179.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.9206 (13), 8.7861 (11), 11.4943 (16)
β (°) 102.998 (1)
V3)976.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.43 × 0.38 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.961, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
4753, 1713, 1196
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.05
No. of reflections1713
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.9048 (18)161.2
O1—H1A···O2ii0.821.832.6464 (17)174.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the IMB Research Foundation. The authors thank Dr Daqi Wang for useful discussions.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationChai, Y., Wan, Z.-L., Guo, H.-Y. & Liu, M.-L. (2009). Acta Cryst. E65, o282.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarcez, W. S., Martins, D. & Garcez, F. R. (2000). J. Agric. Food Chem. 48, 3662–3665.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMontedoro, G., Servili, M. & Baldioli, M. (1993). J. Agric. Food Chem. 41, 2228–2234.  CrossRef CAS Web of Science Google Scholar
First citationPearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, W.-L., Wang, D., Li, X.-H. & Wang, D.-C. (2008). Acta Cryst. E64, o785.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds