organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(S)-2-(1-Hy­droxy­ethyl)benzimid­azolium di­hydrogen phosphate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: xiarong_103@yahoo.cn

(Received 22 June 2009; accepted 18 July 2009; online 29 July 2009)

The asymmetric unit of the title compound, C9H11N2O+·H2PO4, is built up from a 2-(1-hydroxy­ethyl)benz­imid­a­zol­ium cation and a dihydrogen phosphate anion which are connected by an N—H⋯O hydrogen bond. The cation is roughly planar, the dihedral angle between the rings being only 1.4 (2)°. The S configuration is deduced from the synthetic pathway and supported by the refinement of the Flack parameter. Inter­molecular O—H⋯O and N—H⋯O hydrogen bonds build up a three-dimensionnal network.

Related literature

For the biological and pharmaceutical activity of imidazole and benzimidazole derivatives, see: Rodembusch et al. (2004[Rodembusch, F. S., Buckup, T., Segala, M., Tavares, L., Correia, R. R. B. & Stefani, V. (2004). Chem. Phys. 305, 115-121.]); Gong et al. (2005[Gong, J. R., Wan, L.-J., Lei, S.-B., Bai, C.-L., Zhang, X.-H. & Lee, S.-T. (2005). J. Phys. Chem. B, 109, 1675-1682.]); Chen (2005[Chen, T.-R. (2005). J. Mol. Struct. 737, 35-41.]); Belmar et al. (1999[Belmar, J., Para, M., Zuniga, C., Perez, C. & Munoz, C. (1999). Liq. Cryst. 26, 389-396.]). For the synthesis and crystal structure of (±)-1-(1H-benzimidazol-2-yl)ethanol, see: Xia & Xu (2008[Xia, R. & Xu, H.-J. (2008). Acta Cryst. E64, o1223.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N2O+·H2PO4

  • Mr = 260.18

  • Orthorhombic, P 21 21 21

  • a = 4.5869 (13) Å

  • b = 15.749 (5) Å

  • c = 15.876 (5) Å

  • V = 1146.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.951, Tmax = 0.953

  • 11500 measured reflections

  • 2565 independent reflections

  • 1749 reflections with I > 2σ(I)

  • Rint = 0.125

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.118

  • S = 0.82

  • 2565 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1030 Friedel pairs

  • Flack parameter: 0.16 (17)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4i 0.82 1.76 2.532 (4) 156
O2—H2⋯O5ii 0.82 1.76 2.539 (3) 157
N2—H2A⋯O4 0.86 1.88 2.729 (4) 167
N1—H1⋯O5iii 0.86 1.81 2.659 (4) 167
O1—H1A⋯O2iv 0.82 2.23 2.971 (4) 150
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The benzimidazoles, benzothiazoles, and benzoxazoles can be utilized as not only a wide variety of biologically active and medicinally significant compounds but also as advanced materials including non-linear optics (NLO), organic light-emitting diodes (OLED), and liquid crystals (Rodembusch et al., 2004; Gong et al., 2005; Chen, 2005; Belmar et al., 1999).

The title compound is built up from a dihydrogen phosphate anion and a (1H-benzimidazol-2-yl)ethanolium cation which are connected by a N-H···O hydrogen bond (Fig. 1).The S absolute configuration is deduced from the synthetic pathway and supported by the refinement of the Flack parameter (Flack, 1983). The phenyl ring and imidazole ring are roughly planar, making a dihedral angle of only1.4°. All bond lengths and angels are normal.

The molecules are connected via O—H···O and N—H···O hydrogen bonds making a three dimensionnal network (Table 1, Fig. 2).

Related literature top

For the biological and pharmaceutical activity of imidazole and benzimidazole derivatives, see: Rodembusch et al. (2004); Gong et al. (2005); Chen (2005); Belmar et al. (1999). For the synthesis and crystal structure of (±)-1-(1H-benzimidazol-2-yl)ethanol, see: Xia & Xu (2008).

Experimental top

A solution of phosphoric acid (1 mmol) in water was added to a methanol solution of L-(-)-1-(1H-Benzimidazol-2-yl)ethanol (1 mmol), and then the mixture was stirred for half an hour at room temperature. The mixture was then filtered and the filtrate was evaporated at room temperature for a period of one month.Crystals suitable for X-ray diffraction analysis were obtained then. L-(-)-1-(1H-Benzimidazol-2-yl)ethanol was synthesized by the reaction of Benzene-1, 2-diamine and Ethyl L-(-)-lactate(R. Xia, et al., 2008).

Refinement top

All H atoms attached to C and O atom were fixed geometrically and treated as riding with C—H = 0.93–0.98 Å, O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C, O) for methyl and hydroxyl.

The su on the Flack parameter is rather high, however the value of the parameter agrees with the S configuration. Moreover, inverting the configuration leads to the value 0.88 close to 1.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bond is shown as dashed line.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis. Intermolecular O—H···O hydrogen bonds and N—H···O hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
(S)-2-(1-Hydroxyethyl)benzimidazolium dihydrogen phosphate top
Crystal data top
C9H11N2O+·H2PO4F(000) = 544
Mr = 260.18Dx = 1.507 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3144 reflections
a = 4.5869 (13) Åθ = 2.6–27.4°
b = 15.749 (5) ŵ = 0.25 mm1
c = 15.876 (5) ÅT = 293 K
V = 1146.8 (6) Å3Block, pale yellow
Z = 40.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2565 independent reflections
Radiation source: fine-focus sealed tube1749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
Detector resolution: 13.6612 pixels mm-1θmax = 27.3°, θmin = 2.6°
ω scansh = 55
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2020
Tmin = 0.951, Tmax = 0.953l = 2020
11500 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0314P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max < 0.001
2565 reflectionsΔρmax = 0.39 e Å3
159 parametersΔρmin = 0.37 e Å3
0 restraintsAbsolute structure: Flack (1983), 1030 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (17)
Crystal data top
C9H11N2O+·H2PO4V = 1146.8 (6) Å3
Mr = 260.18Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.5869 (13) ŵ = 0.25 mm1
b = 15.749 (5) ÅT = 293 K
c = 15.876 (5) Å0.20 × 0.20 × 0.20 mm
Data collection top
Rigaku SCXmini
diffractometer
2565 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1749 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.953Rint = 0.125
11500 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.118Δρmax = 0.39 e Å3
S = 0.82Δρmin = 0.37 e Å3
2565 reflectionsAbsolute structure: Flack (1983), 1030 Friedel pairs
159 parametersAbsolute structure parameter: 0.16 (17)
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.8027 (2)0.34270 (6)0.42082 (6)0.0274 (2)
O50.8944 (6)0.34283 (14)0.51179 (14)0.0379 (7)
O41.0419 (5)0.36640 (16)0.35969 (15)0.0389 (7)
O30.5477 (6)0.40686 (15)0.4094 (2)0.0470 (8)
H30.39680.38090.39920.070*
O20.6959 (7)0.25204 (15)0.39269 (13)0.0415 (7)
H20.57760.23390.42700.062*
N20.8351 (7)0.44478 (17)0.21853 (17)0.0336 (7)
H2A0.91800.42660.26360.040*
N10.7140 (7)0.52823 (18)0.11523 (16)0.0369 (8)
H10.70600.57220.08320.044*
C81.0565 (9)0.5932 (2)0.2193 (2)0.0385 (9)
H81.22330.60300.18200.046*
O10.8750 (6)0.66679 (16)0.21909 (17)0.0514 (8)
H1A0.93670.70100.18440.077*
C10.5597 (9)0.4529 (2)0.1022 (2)0.0336 (9)
C50.5154 (9)0.3179 (2)0.1774 (2)0.0421 (10)
H50.56430.28220.22190.051*
C20.3599 (10)0.4283 (3)0.0413 (2)0.0449 (11)
H2B0.30660.46400.00270.054*
C60.6383 (9)0.3991 (2)0.1692 (2)0.0322 (9)
C70.8737 (8)0.5219 (2)0.1839 (2)0.0329 (9)
C40.3198 (10)0.2939 (2)0.1167 (2)0.0478 (11)
H40.23450.24040.12000.057*
C91.1665 (13)0.5756 (2)0.3069 (3)0.0635 (14)
H9A1.27560.62370.32670.095*
H9B1.29000.52640.30600.095*
H9C1.00430.56560.34370.095*
C30.2448 (10)0.3478 (3)0.0497 (2)0.0523 (12)
H3A0.11270.32850.00960.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0291 (5)0.0195 (4)0.0336 (4)0.0002 (4)0.0001 (4)0.0016 (4)
O50.0578 (18)0.0220 (12)0.0341 (13)0.0091 (14)0.0013 (13)0.0032 (10)
O40.0261 (14)0.0505 (17)0.0400 (15)0.0040 (13)0.0005 (12)0.0139 (12)
O30.0274 (15)0.0281 (14)0.085 (2)0.0010 (13)0.0108 (17)0.0035 (14)
O20.065 (2)0.0229 (13)0.0362 (14)0.0107 (15)0.0061 (14)0.0083 (10)
N20.043 (2)0.0280 (16)0.0300 (15)0.0026 (15)0.0003 (16)0.0105 (12)
N10.053 (2)0.0261 (16)0.0315 (15)0.0063 (17)0.0011 (16)0.0088 (12)
C80.038 (2)0.0279 (19)0.050 (2)0.0014 (19)0.004 (2)0.0047 (17)
O10.067 (2)0.0256 (15)0.0619 (19)0.0066 (16)0.0083 (17)0.0083 (12)
C10.040 (2)0.030 (2)0.030 (2)0.0079 (19)0.0019 (18)0.0006 (14)
C50.054 (3)0.027 (2)0.045 (2)0.003 (2)0.003 (2)0.0048 (16)
C20.057 (3)0.048 (2)0.030 (2)0.012 (2)0.003 (2)0.0021 (17)
C60.036 (2)0.0259 (18)0.035 (2)0.0062 (17)0.0018 (17)0.0025 (14)
C70.039 (2)0.0258 (18)0.0341 (19)0.0044 (17)0.0068 (17)0.0041 (14)
C40.059 (3)0.032 (2)0.053 (3)0.008 (2)0.001 (2)0.0043 (17)
C90.082 (4)0.037 (2)0.071 (3)0.010 (3)0.033 (3)0.007 (2)
C30.057 (3)0.050 (3)0.050 (2)0.004 (3)0.012 (2)0.012 (2)
Geometric parameters (Å, º) top
P1—O51.504 (2)C8—H80.9800
P1—O41.512 (3)O1—H1A0.8200
P1—O31.556 (3)C1—C21.388 (5)
P1—O21.574 (2)C1—C61.406 (4)
O3—H30.8200C5—C41.370 (5)
O2—H20.8200C5—C61.404 (5)
N2—C71.345 (4)C5—H50.9300
N2—C61.395 (4)C2—C31.380 (5)
N2—H2A0.8600C2—H2B0.9300
N1—C71.317 (4)C4—C31.403 (5)
N1—C11.397 (4)C4—H40.9300
N1—H10.8600C9—H9A0.9600
C8—O11.427 (4)C9—H9B0.9600
C8—C91.505 (5)C9—H9C0.9600
C8—C71.510 (5)C3—H3A0.9300
O5—P1—O4114.40 (15)C4—C5—C6116.7 (4)
O5—P1—O3108.76 (16)C4—C5—H5121.7
O4—P1—O3108.07 (15)C6—C5—H5121.7
O5—P1—O2111.14 (13)C3—C2—C1116.2 (3)
O4—P1—O2105.53 (15)C3—C2—H2B121.9
O3—P1—O2108.77 (16)C1—C2—H2B121.9
P1—O3—H3109.5N2—C6—C5132.6 (3)
P1—O2—H2109.5N2—C6—C1106.3 (3)
C7—N2—C6108.7 (3)C5—C6—C1121.1 (4)
C7—N2—H2A125.6N1—C7—N2109.5 (3)
C6—N2—H2A125.6N1—C7—C8124.1 (3)
C7—N1—C1109.9 (3)N2—C7—C8126.3 (3)
C7—N1—H1125.1C5—C4—C3121.8 (4)
C1—N1—H1125.1C5—C4—H4119.1
O1—C8—C9110.3 (3)C3—C4—H4119.1
O1—C8—C7106.2 (3)C8—C9—H9A109.5
C9—C8—C7113.2 (3)C8—C9—H9B109.5
O1—C8—H8109.0H9A—C9—H9B109.5
C9—C8—H8109.0C8—C9—H9C109.5
C7—C8—H8109.0H9A—C9—H9C109.5
C8—O1—H1A109.5H9B—C9—H9C109.5
C2—C1—N1132.5 (3)C2—C3—C4122.3 (4)
C2—C1—C6121.8 (4)C2—C3—H3A118.8
N1—C1—C6105.7 (3)C4—C3—H3A118.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.762.532 (4)156
O2—H2···O5ii0.821.762.539 (3)157
N2—H2A···O40.861.882.729 (4)167
N1—H1···O5iii0.861.812.659 (4)167
O1—H1A···O2iv0.822.232.971 (4)150
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1, z1/2; (iv) x+2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H11N2O+·H2PO4
Mr260.18
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)4.5869 (13), 15.749 (5), 15.876 (5)
V3)1146.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.951, 0.953
No. of measured, independent and
observed [I > 2σ(I)] reflections
11500, 2565, 1749
Rint0.125
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.118, 0.82
No. of reflections2565
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.37
Absolute structureFlack (1983), 1030 Friedel pairs
Absolute structure parameter0.16 (17)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O4i0.821.762.532 (4)156.3
O2—H2···O5ii0.821.762.539 (3)156.9
N2—H2A···O40.861.882.729 (4)167.2
N1—H1···O5iii0.861.812.659 (4)167.1
O1—H1A···O2iv0.822.232.971 (4)149.9
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y+1, z1/2; (iv) x+2, y+1/2, z+1/2.
 

Acknowledgements

The author gratefully acknowledges financial support by the start-up fund of Southeast University.

References

First citationBelmar, J., Para, M., Zuniga, C., Perez, C. & Munoz, C. (1999). Liq. Cryst. 26, 389–396.  CrossRef CAS Google Scholar
First citationChen, T.-R. (2005). J. Mol. Struct. 737, 35–41.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGong, J. R., Wan, L.-J., Lei, S.-B., Bai, C.-L., Zhang, X.-H. & Lee, S.-T. (2005). J. Phys. Chem. B, 109, 1675–1682.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRodembusch, F. S., Buckup, T., Segala, M., Tavares, L., Correia, R. R. B. & Stefani, V. (2004). Chem. Phys. 305, 115–121.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, R. & Xu, H.-J. (2008). Acta Cryst. E64, o1223.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds