metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1078-m1079

Poly[(μ2-4,4′-bi­pyridine)bis­­(μ4-5-tert-butyl­isophthalato)bis­­(μ3-5-tert-butyl­isophthalato)di-μ3-hydroxido-penta­zinc(II)]

aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China
*Correspondence e-mail: syyang@xmu.edu.cn

(Received 15 June 2009; accepted 8 August 2009; online 15 August 2009)

The asymmetric unit of the title compound, [Zn5(C12H12O4)4(OH)2(C10H8N2)]n, consists of three ZnII ions (one of which is located on a twofold rotation axis), two 5-tert-butyl­isophthalate ligands, one 4,4′-bipyridine ligand and one hydroxide group. The five ZnII ions form a penta­nuclear zinc cluster, which is further bridged by ten organic ligands, forming two-dimensional sheets. The central zinc ion of the cluster has site symmetry 2 and is octahedrally coordinated in a N2O4 donor set, whereas the other four zinc atoms are tetrahedrally coordinated by four O atoms. The coordination modes for the 5-tert-butyl­isophthalates are bis­(bidentate) or bidentate-monodentate. Hydrogen bonds are formed between adjacent sheets through the hydroxide groups and the O atoms of the monodentate carboxyl­ate groups. The two tert-butyl groups are disordered over two positions with ratios of 0.64 (2):0.36 (2) and 0.85 (3):0.15 (3).

Related literature

For general background to the structures and potential applications of isophthalic acid and its derivatives, see Li & Huang (2008[Li, X.-L. & Huang, M.-L. (2008). Acta Cryst. E64, m1501-m1502.]); Ma et al. (2007[Ma, S., Sun, D., Wang, X.-S. & Zhou, H.-C. (2007). Angew. Chem. Int. Ed. 46, 2458-2462.]); Pan et al. (2006[Pan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180-4181.]); Yang et al. (2002[Yang, S. Y., Long, L. S., Huang, R. B. & Zheng, L. S. (2002). Chem. Commun. pp. 472-473.], 2005[Yang, S. Y., Long, L. S., Huang, R. B., Zheng, L. S. & Ng, S. W. (2005). Inorg. Chim. Acta, 358, 1882-1886.]). For related structures, see Li et al. (2004[Li, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205-210.]); Wang et al. (2005[Wang, X.-L., Qin, C., Wang, E.-B., Su, Z.-M., Xu, L. & Batten, S. R. (2005). Chem. Commun. pp. 4789-4791.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn5(C12H12O4)4(OH)2(C10H8N2)]

  • Mr = 1397.91

  • Monoclinic, C 2/c

  • a = 26.1995 (5) Å

  • b = 11.2592 (2) Å

  • c = 19.6223 (4) Å

  • β = 102.0444 (18)°

  • V = 5660.87 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.16 mm−1

  • T = 173 K

  • 0.34 × 0.30 × 0.20 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.527, Tmax = 0.671

  • 13453 measured reflections

  • 5494 independent reflections

  • 4246 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 1.00

  • 5494 reflections

  • 401 parameters

  • 13 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.25 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O7i 0.838 (10) 2.04 (2) 2.783 (3) 148 (3)
Symmetry code: (i) x, y+1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Isophthalic acid and its derivatives have been used to construct coordination polymers. Some of these compounds display interesting structures and potential application properties (Li et al., 2008; Ma et al., 2007; Pan et al., 2006; Yang et al., 2002; Yang et al., 2005). In this paper we report a coordination polymer [Zn53-OH)2(tbip)4(bpy)]n, 1 (tbip = 5-tert-butylisophthalate, bpy = 4,4'-bipyridine) synthesized by hydrothermal reaction.

The structure of 1 contains pentanuclear zinc clusters, (Fig. 1) in which each µ3-OH links three crystallographically unique ZnII ions. The ZnII ions exhibit two different coordination geometries: Zn1 coordinates to two µ3-OH moieties and two carboxylate oxygen atoms from two different tbips in the plane and two nitrogen atoms from two bpy ligands at the apexes giving a slightly distorted octahedral geometry; Zn2 or Zn3 atom is coordinated by three oxygen atoms from three tbips and one µ3-OH atom to complete a distorted tetrahedral environment. Coordination polymers with similar but different pentanuclear zinc clusters have been recently reported (Li et al., 2004; Wang et al., 2005). Two coordination modes for the tbips have been found: one is bis(bidentate), and the other one adopts bidentate and monodentate for each of its carboxyl groups. As a result, each pentanuclear zinc cluster is surrounded by ten organic ligands, eight tbips and two bpys. Each pentanuclear zinc cluster is further linked to six nearest-neighbors, forming a two-dimensional sheet parallel to bc plane (Fig. 2). The two-dimensional sheets are further packed along a axis (Fig. 3). Hydrogen bonds are formed between adjacent sheets by the hydroxyl groups and the oxygen atoms of the monodentate carboxyl groups.

Related literature top

For general background to the structures and potential applications of isophthalic acid and its derivatives, see Li et al. (2008); Ma et al. (2007); Pan et al. (2006); Yang et al. (2002, 2005). For related structures, see Li et al. (2004); Wang et al. (2005).

Experimental top

The suspension of 5-tert-butylisophthalic acid (H2tbip, 0.045 g, 0.20 mmol) and 4,4'-bipyridine (bpy, 0.039 g, 0.20 mmol) in H2O (10 ml), and 25% tetramethylammonium hydroxide aqueous solution was slowly added until the pH of the solution was adjusted to 7, then Zn(NO3)2.6H2O (0.12 g, 0.40 mmol) was added. The mixture was placed in a 20 ml Teflon-lined vessel, heated to 170°C at the rate of 0.2°C/min, and kept at 170°C for 3 days, then slowly cooled down to room temperature at the rate of 0.1°C /min. Colorless platelet crystals (0.045 g, yield 64%) were separated by filtration, washed with deionized water and dried in air. Elemental Analysis: C58H58N2O18Zn5, found (calc.) C 49.82 (49.83), H 4.27 (4.18), N 1.99 (2.00). FTIR (KBr, cm-1): 3412(s), 2960 (s), 1610(s), 1552(m), 1369 (m), 1069 (w), 808 (w), 719 (w).

Refinement top

The position and Ueq of the hydroxyl H atom were refined with O—H distance restrained to 0.85 Å. The aromatic H atoms were generated geometrically (C—H 0.95 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.2 times those of the parent atoms. The two tert-butyls were treated with disordered models, the C—C distances are restrained to 1.54 Å and the temperature factors of the methyl carbon atoms were set to be equal. The methyl H atoms were generated geometrically (C—H 0.98 Å) and were allowed to ride on their parent atoms in the riding model approximations, with their temperature factors set to 1.5 times those of the parent atoms.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View showing the coordination environments of zinc ions in 1 with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. Hydrogen atoms on carbon atoms have been omitted for clarity. Symmetry codes: (i) x, y - 1, z; (ii) -x, y, -z + 1/2; (iii) x, -y + 1, z -1/2; (iv) -x, -y, -z; (v) x, -y + 1, z + 1/2.
[Figure 2] Fig. 2. A perspective view of the two-dimensional sheets of 1 along a axis. Hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. A perspective view of 1 along c axis. Hydrogen atoms have been omitted for clarity.
Poly[(µ2-4,4'-bipyridine)bis(µ4-5-tert- butylisophthalato)bis(µ3-5-tert-butylisophthalato)di-µ3- hydroxido-pentazinc(II)] top
Crystal data top
[Zn5(C12H12O4)4(OH)2(C10H8N2)]F(000) = 2856
Mr = 1397.91Dx = 1.640 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7045 reflections
a = 26.1995 (5) Åθ = 2.3–29.1°
b = 11.2592 (2) ŵ = 2.16 mm1
c = 19.6223 (4) ÅT = 173 K
β = 102.0444 (18)°Block, colorless
V = 5660.87 (19) Å30.34 × 0.30 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
5494 independent reflections
Radiation source: fine-focus sealed tube4246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 16.1903 pixels mm-1θmax = 26.0°, θmin = 2.3°
CrysAlis RED, Oxford Diffraction scansh = 3232
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.527, Tmax = 0.671l = 2424
13453 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0319P)2]
where P = (Fo2 + 2Fc2)/3
5494 reflections(Δ/σ)max = 0.001
401 parametersΔρmax = 1.25 e Å3
13 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Zn5(C12H12O4)4(OH)2(C10H8N2)]V = 5660.87 (19) Å3
Mr = 1397.91Z = 4
Monoclinic, C2/cMo Kα radiation
a = 26.1995 (5) ŵ = 2.16 mm1
b = 11.2592 (2) ÅT = 173 K
c = 19.6223 (4) Å0.34 × 0.30 × 0.20 mm
β = 102.0444 (18)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
5494 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
4246 reflections with I > 2σ(I)
Tmin = 0.527, Tmax = 0.671Rint = 0.031
13453 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02813 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 1.25 e Å3
5494 reflectionsΔρmin = 0.38 e Å3
401 parameters
Special details top

Experimental. (CrysAlis RED; Oxford Diffraction Ltd., Version 1.171.31.8 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.00000.39344 (4)0.25000.01133 (10)
Zn20.112667 (11)0.33542 (3)0.193919 (15)0.01162 (8)
Zn30.027868 (11)0.29870 (3)0.072954 (15)0.01269 (8)
O10.07251 (7)0.39814 (15)0.32346 (9)0.0160 (4)
O20.14721 (7)0.37581 (17)0.28684 (9)0.0204 (4)
O30.08674 (7)0.64886 (16)0.53303 (9)0.0179 (4)
O40.14678 (7)0.58893 (16)0.62566 (9)0.0175 (4)
O50.11765 (7)0.16380 (15)0.18948 (10)0.0209 (5)
O60.04856 (7)0.13238 (15)0.10268 (9)0.0190 (4)
O70.03696 (7)0.41560 (16)0.07271 (9)0.0212 (5)
O80.03202 (7)0.26648 (16)0.00443 (9)0.0191 (4)
O90.03909 (6)0.39068 (16)0.16139 (9)0.0117 (4)
H90.0417 (14)0.4619 (13)0.1502 (18)0.053 (12)*
N10.00000.5789 (3)0.25000.0137 (7)
N20.00001.2080 (3)0.25000.0133 (7)
C10.15186 (10)0.4375 (2)0.40284 (13)0.0146 (6)
C20.12650 (10)0.4891 (2)0.45008 (13)0.0143 (6)
H2A0.08960.49660.43940.017*
C30.15512 (10)0.5302 (2)0.51342 (13)0.0153 (6)
C40.20896 (10)0.5139 (2)0.52952 (14)0.0190 (6)
H4A0.22810.53940.57360.023*
C50.23537 (10)0.4616 (2)0.48317 (14)0.0192 (6)
C60.20612 (10)0.4258 (2)0.41891 (13)0.0179 (6)
H6A0.22340.39280.38530.022*
C70.12122 (10)0.3999 (2)0.33291 (13)0.0138 (6)
C80.12757 (10)0.5938 (2)0.56094 (13)0.0146 (6)
C90.29516 (11)0.4496 (3)0.50082 (15)0.0298 (8)
C130.09777 (10)0.0335 (2)0.15251 (13)0.0143 (6)
C140.06872 (10)0.1106 (2)0.10376 (13)0.0151 (6)
H14A0.04250.08020.06710.018*
C150.07813 (10)0.2310 (2)0.10888 (13)0.0138 (6)
C160.11761 (10)0.2758 (2)0.16168 (13)0.0142 (6)
H16A0.12340.35900.16520.017*
C170.14871 (10)0.2000 (2)0.20925 (13)0.0146 (6)
C180.13744 (10)0.0788 (2)0.20429 (13)0.0164 (6)
H18A0.15740.02590.23710.020*
C190.08700 (10)0.0960 (2)0.14760 (13)0.0142 (6)
C200.04689 (10)0.3146 (2)0.05614 (13)0.0148 (6)
C210.19303 (10)0.2492 (2)0.26583 (14)0.0187 (6)
C250.02271 (10)0.6417 (2)0.30652 (14)0.0175 (6)
H25A0.03920.59950.34710.021*
C260.02324 (10)0.7631 (2)0.30859 (14)0.0183 (6)
H26A0.03950.80320.35010.022*
C270.00000.8278 (3)0.25000.0154 (8)
C280.00000.9584 (3)0.25000.0139 (8)
C290.03577 (10)1.0240 (2)0.29771 (14)0.0212 (7)
H29A0.06150.98420.33130.025*
C300.03423 (10)1.1455 (2)0.29664 (14)0.0200 (6)
H30A0.05871.18760.33070.024*
C100.3204 (3)0.5629 (6)0.4881 (6)0.0346 (8)0.64 (2)
H10A0.30780.62680.51430.052*0.64 (2)
H10B0.31180.58150.43830.052*0.64 (2)
H10C0.35830.55530.50350.052*0.64 (2)
C110.3152 (4)0.3482 (11)0.4639 (7)0.0346 (8)0.64 (2)
H11A0.30030.27350.47650.052*0.64 (2)
H11B0.35330.34490.47780.052*0.64 (2)
H11C0.30500.36020.41350.052*0.64 (2)
C120.3125 (3)0.4137 (9)0.5797 (4)0.0346 (8)0.64 (2)
H12A0.29220.34480.58920.052*0.64 (2)
H12B0.30640.48040.60910.052*0.64 (2)
H12C0.34970.39350.59000.052*0.64 (2)
C220.2377 (5)0.1604 (13)0.2822 (5)0.0257 (16)0.85 (3)
H22A0.22600.08870.30270.039*0.85 (3)
H22B0.24900.13940.23920.039*0.85 (3)
H22C0.26700.19580.31530.039*0.85 (3)
C230.1707 (3)0.2688 (9)0.3319 (3)0.0387 (18)0.85 (3)
H23A0.15650.19390.34530.058*0.85 (3)
H23B0.19850.29660.36990.058*0.85 (3)
H23C0.14290.32840.32220.058*0.85 (3)
C240.2143 (3)0.3666 (6)0.2451 (5)0.039 (2)0.85 (3)
H24A0.18650.42640.23790.058*0.85 (3)
H24B0.24320.39300.28210.058*0.85 (3)
H24C0.22680.35590.20180.058*0.85 (3)
C10'0.3139 (5)0.5649 (11)0.4642 (9)0.0346 (8)0.36 (2)
H10D0.35210.56890.47490.052*0.36 (2)
H10E0.29970.63650.48170.052*0.36 (2)
H10F0.30130.55960.41360.052*0.36 (2)
C11'0.3096 (7)0.341 (2)0.4596 (13)0.0346 (8)0.36 (2)
H11D0.28620.27430.46370.052*0.36 (2)
H11E0.34570.31710.47870.052*0.36 (2)
H11F0.30590.36190.41040.052*0.36 (2)
C12'0.3191 (5)0.4493 (16)0.5762 (6)0.0346 (8)0.36 (2)
H12D0.30410.38470.59920.052*0.36 (2)
H12E0.31220.52540.59680.052*0.36 (2)
H12F0.35690.43760.58260.052*0.36 (2)
C22'0.238 (3)0.164 (8)0.296 (3)0.0257 (16)0.15 (3)
H22D0.22450.09780.31950.039*0.15 (3)
H22E0.25330.13300.25800.039*0.15 (3)
H22F0.26470.20660.32940.039*0.15 (3)
C23'0.173 (2)0.307 (5)0.326 (2)0.0387 (18)0.15 (3)
H23D0.13530.29250.31990.058*0.15 (3)
H23E0.19090.27150.37040.058*0.15 (3)
H23F0.17960.39220.32670.058*0.15 (3)
C24'0.2222 (15)0.338 (4)0.226 (2)0.039 (2)0.15 (3)
H24D0.23030.29900.18500.058*0.15 (3)
H24E0.19990.40730.21130.058*0.15 (3)
H24F0.25460.36410.25700.058*0.15 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0133 (2)0.0072 (2)0.0128 (2)0.0000.00121 (17)0.000
Zn20.01415 (15)0.01061 (16)0.00943 (15)0.00041 (12)0.00094 (12)0.00046 (12)
Zn30.01343 (15)0.01206 (17)0.01123 (15)0.00074 (12)0.00054 (12)0.00065 (12)
O10.0153 (10)0.0158 (10)0.0149 (9)0.0012 (8)0.0016 (8)0.0011 (8)
O20.0185 (10)0.0297 (12)0.0123 (9)0.0010 (9)0.0016 (8)0.0072 (8)
O30.0161 (10)0.0217 (11)0.0154 (9)0.0052 (8)0.0027 (8)0.0017 (8)
O40.0153 (9)0.0236 (11)0.0126 (9)0.0032 (8)0.0008 (8)0.0054 (8)
O50.0270 (11)0.0097 (10)0.0218 (10)0.0020 (8)0.0043 (9)0.0026 (8)
O60.0199 (10)0.0126 (10)0.0211 (10)0.0022 (8)0.0037 (8)0.0017 (8)
O70.0282 (11)0.0104 (10)0.0216 (10)0.0023 (8)0.0029 (9)0.0005 (8)
O80.0192 (10)0.0189 (11)0.0156 (9)0.0038 (8)0.0048 (8)0.0006 (8)
O90.0143 (9)0.0083 (10)0.0123 (9)0.0004 (8)0.0023 (7)0.0015 (8)
N10.0169 (16)0.0092 (16)0.0153 (16)0.0000.0042 (13)0.000
N20.0146 (15)0.0115 (16)0.0145 (15)0.0000.0047 (13)0.000
C10.0157 (13)0.0130 (14)0.0138 (13)0.0014 (11)0.0001 (11)0.0002 (11)
C20.0138 (13)0.0139 (14)0.0146 (13)0.0017 (11)0.0015 (11)0.0010 (11)
C30.0170 (14)0.0157 (15)0.0134 (13)0.0002 (11)0.0034 (11)0.0011 (11)
C40.0183 (14)0.0246 (16)0.0119 (13)0.0028 (12)0.0018 (11)0.0047 (12)
C50.0120 (13)0.0268 (17)0.0183 (14)0.0006 (12)0.0024 (11)0.0057 (12)
C60.0187 (14)0.0213 (16)0.0151 (14)0.0001 (12)0.0063 (11)0.0042 (12)
C70.0208 (14)0.0071 (13)0.0126 (13)0.0007 (11)0.0018 (11)0.0006 (11)
C80.0149 (13)0.0135 (14)0.0157 (13)0.0064 (11)0.0035 (11)0.0020 (11)
C90.0153 (15)0.048 (2)0.0260 (17)0.0003 (14)0.0031 (13)0.0138 (15)
C130.0174 (14)0.0112 (14)0.0145 (13)0.0013 (11)0.0036 (11)0.0020 (11)
C140.0147 (13)0.0149 (14)0.0145 (13)0.0018 (11)0.0004 (11)0.0033 (11)
C150.0139 (13)0.0140 (15)0.0134 (13)0.0012 (11)0.0023 (11)0.0006 (11)
C160.0175 (13)0.0094 (14)0.0152 (13)0.0014 (11)0.0023 (11)0.0006 (11)
C170.0135 (13)0.0132 (14)0.0157 (13)0.0000 (11)0.0003 (11)0.0010 (11)
C180.0162 (13)0.0130 (14)0.0177 (14)0.0015 (11)0.0015 (11)0.0028 (11)
C190.0172 (14)0.0109 (14)0.0153 (13)0.0015 (11)0.0051 (11)0.0014 (11)
C200.0117 (13)0.0162 (16)0.0152 (13)0.0007 (11)0.0002 (11)0.0006 (12)
C210.0160 (14)0.0148 (14)0.0205 (14)0.0009 (12)0.0072 (12)0.0000 (12)
C250.0197 (14)0.0133 (15)0.0179 (14)0.0001 (11)0.0006 (12)0.0012 (12)
C260.0207 (14)0.0139 (15)0.0196 (14)0.0019 (12)0.0026 (12)0.0039 (12)
C270.0147 (19)0.011 (2)0.023 (2)0.0000.0079 (16)0.000
C280.0143 (18)0.011 (2)0.0179 (19)0.0000.0076 (16)0.000
C290.0216 (15)0.0128 (15)0.0254 (16)0.0015 (12)0.0033 (13)0.0031 (12)
C300.0200 (15)0.0143 (15)0.0222 (15)0.0014 (12)0.0034 (12)0.0008 (12)
C100.0152 (15)0.0541 (19)0.0319 (15)0.0008 (13)0.0013 (13)0.0144 (15)
C110.0152 (15)0.0541 (19)0.0319 (15)0.0008 (13)0.0013 (13)0.0144 (15)
C120.0152 (15)0.0541 (19)0.0319 (15)0.0008 (13)0.0013 (13)0.0144 (15)
C220.0210 (16)0.0226 (18)0.028 (4)0.0050 (14)0.008 (3)0.004 (3)
C230.030 (2)0.047 (5)0.034 (2)0.000 (4)0.0062 (17)0.022 (3)
C240.036 (3)0.020 (3)0.047 (4)0.013 (2)0.023 (2)0.006 (3)
C10'0.0152 (15)0.0541 (19)0.0319 (15)0.0008 (13)0.0013 (13)0.0144 (15)
C11'0.0152 (15)0.0541 (19)0.0319 (15)0.0008 (13)0.0013 (13)0.0144 (15)
C12'0.0152 (15)0.0541 (19)0.0319 (15)0.0008 (13)0.0013 (13)0.0144 (15)
C22'0.0210 (16)0.0226 (18)0.028 (4)0.0050 (14)0.008 (3)0.004 (3)
C23'0.030 (2)0.047 (5)0.034 (2)0.000 (4)0.0062 (17)0.022 (3)
C24'0.036 (3)0.020 (3)0.047 (4)0.013 (2)0.023 (2)0.006 (3)
Geometric parameters (Å, º) top
Zn1—N2i2.088 (3)C16—H16A0.9500
Zn1—N12.088 (3)C17—C181.395 (4)
Zn1—O12.1323 (16)C17—C211.533 (3)
Zn1—O1ii2.1323 (16)C18—H18A0.9500
Zn1—O9ii2.1947 (18)C21—C241.523 (5)
Zn1—O92.1947 (18)C21—C221.523 (5)
Zn2—O21.9136 (17)C21—C23'1.54 (2)
Zn2—O51.9398 (18)C21—C22'1.54 (2)
Zn2—O4iii1.9539 (18)C21—C231.545 (6)
Zn2—O91.9992 (16)C21—C24'1.564 (19)
Zn2—Zn32.9223 (4)C25—C261.368 (4)
Zn3—O8iv1.8764 (17)C25—H25A0.9500
Zn3—O3iii1.9609 (19)C26—C271.390 (3)
Zn3—O91.9893 (17)C26—H26A0.9500
Zn3—O62.0022 (17)C27—C26ii1.390 (3)
O1—C71.251 (3)C27—C281.470 (5)
O2—C71.270 (3)C28—C291.391 (3)
O3—C81.258 (3)C28—C29ii1.391 (3)
O3—Zn3v1.9609 (19)C29—C301.369 (4)
O4—C81.266 (3)C29—H29A0.9500
O4—Zn2v1.9539 (18)C30—H30A0.9500
O5—C191.276 (3)C10—H10A0.9800
O6—C191.260 (3)C10—H10B0.9800
O7—C201.226 (3)C10—H10C0.9800
O8—C201.290 (3)C11—H11A0.9800
O8—Zn3iv1.8764 (17)C11—H11B0.9800
O9—H90.838 (10)C11—H11C0.9800
N1—C251.345 (3)C12—H12A0.9800
N1—C25ii1.345 (3)C12—H12B0.9800
N2—C30ii1.340 (3)C12—H12C0.9800
N2—C301.340 (3)C22—H22A0.9800
N2—Zn1vi2.088 (3)C22—H22B0.9800
C1—C21.377 (4)C22—H22C0.9800
C1—C61.397 (4)C23—H23A0.9800
C1—C71.499 (3)C23—H23B0.9800
C2—C31.390 (3)C23—H23C0.9800
C2—H2A0.9500C24—H24A0.9800
C3—C41.392 (4)C24—H24B0.9800
C3—C81.478 (4)C24—H24C0.9800
C4—C51.384 (4)C10'—H10D0.9800
C4—H4A0.9500C10'—H10E0.9800
C5—C61.391 (3)C10'—H10F0.9800
C5—C91.538 (4)C11'—H11D0.9800
C6—H6A0.9500C11'—H11E0.9800
C9—C101.482 (7)C11'—H11F0.9800
C9—C12'1.482 (12)C12'—H12D0.9800
C9—C111.503 (10)C12'—H12E0.9800
C9—C11'1.559 (16)C12'—H12F0.9800
C9—C121.573 (8)C22'—H22D0.9800
C9—C10'1.611 (12)C22'—H22E0.9800
C13—C181.390 (3)C22'—H22F0.9800
C13—C141.394 (3)C23'—H23D0.9800
C13—C191.485 (3)C23'—H23E0.9800
C14—C151.377 (4)C23'—H23F0.9800
C14—H14A0.9500C24'—H24D0.9800
C15—C161.396 (3)C24'—H24E0.9800
C15—C201.508 (3)C24'—H24F0.9800
C16—C171.395 (3)
N2i—Zn1—N1180.0C17—C16—C15121.0 (2)
N2i—Zn1—O191.42 (5)C17—C16—H16A119.5
N1—Zn1—O188.58 (5)C15—C16—H16A119.5
N2i—Zn1—O1ii91.42 (5)C16—C17—C18117.8 (2)
N1—Zn1—O1ii88.58 (5)C16—C17—C21120.8 (2)
O1—Zn1—O1ii177.16 (10)C18—C17—C21121.4 (2)
N2i—Zn1—O9ii89.19 (5)C13—C18—C17121.7 (2)
N1—Zn1—O9ii90.81 (5)C13—C18—H18A119.2
O1—Zn1—O9ii87.82 (6)C17—C18—H18A119.2
O1ii—Zn1—O9ii92.22 (6)O6—C19—O5124.0 (2)
N2i—Zn1—O989.19 (5)O6—C19—C13118.5 (2)
N1—Zn1—O990.81 (5)O5—C19—C13117.4 (2)
O1—Zn1—O992.22 (6)O7—C20—O8126.4 (2)
O1ii—Zn1—O987.82 (6)O7—C20—C15120.8 (2)
O9ii—Zn1—O9178.38 (10)O8—C20—C15112.8 (2)
O2—Zn2—O5104.87 (8)C24—C21—C22108.6 (8)
O2—Zn2—O4iii110.89 (8)C24—C21—C17112.6 (3)
O5—Zn2—O4iii111.02 (8)C22—C21—C17110.4 (6)
O2—Zn2—O9117.59 (8)C24—C21—C23'92.6 (19)
O5—Zn2—O9111.42 (8)C22—C21—C23'119 (2)
O4iii—Zn2—O9101.18 (7)C17—C21—C23'112 (2)
O2—Zn2—Zn3159.36 (6)C24—C21—C22'111 (4)
O5—Zn2—Zn382.50 (5)C17—C21—C22'117 (3)
O4iii—Zn2—Zn383.33 (5)C23'—C21—C22'109 (3)
O9—Zn2—Zn342.76 (5)C24—C21—C23108.9 (3)
O8iv—Zn3—O3iii112.44 (8)C22—C21—C23109.0 (5)
O8iv—Zn3—O9132.46 (8)C17—C21—C23107.3 (3)
O3iii—Zn3—O9101.90 (7)C22'—C21—C2399 (3)
O8iv—Zn3—O699.38 (7)C22—C21—C24'95.3 (18)
O3iii—Zn3—O6102.14 (8)C17—C21—C24'104.2 (15)
O9—Zn3—O6104.54 (7)C23'—C21—C24'113 (2)
O8iv—Zn3—Zn2171.76 (6)C22'—C21—C24'100 (4)
O3iii—Zn3—Zn275.75 (5)C23—C21—C24'129.5 (17)
O9—Zn3—Zn243.02 (5)N1—C25—C26123.4 (2)
O6—Zn3—Zn277.40 (5)N1—C25—H25A118.3
C7—O1—Zn1146.93 (18)C26—C25—H25A118.3
C7—O2—Zn2120.80 (16)C25—C26—C27120.0 (3)
C8—O3—Zn3v129.98 (17)C25—C26—H26A120.0
C8—O4—Zn2v121.73 (16)C27—C26—H26A120.0
C19—O5—Zn2125.86 (16)C26ii—C27—C26116.8 (3)
C19—O6—Zn3129.49 (16)C26ii—C27—C28121.62 (17)
C20—O8—Zn3iv128.72 (17)C26—C27—C28121.62 (17)
Zn3—O9—Zn294.23 (7)C29—C28—C29ii115.9 (3)
Zn3—O9—Zn1133.63 (9)C29—C28—C27122.07 (17)
Zn2—O9—Zn1109.25 (7)C29ii—C28—C27122.07 (17)
Zn3—O9—H9106 (2)C30—C29—C28120.5 (3)
Zn2—O9—H9105 (2)C30—C29—H29A119.8
Zn1—O9—H9106 (3)C28—C29—H29A119.8
C25—N1—C25ii116.6 (3)N2—C30—C29123.3 (2)
C25—N1—Zn1121.72 (16)N2—C30—H30A118.4
C25ii—N1—Zn1121.72 (16)C29—C30—H30A118.4
C30ii—N2—C30116.6 (3)C9—C10—H10A109.5
C30ii—N2—Zn1vi121.70 (16)C9—C10—H10B109.5
C30—N2—Zn1vi121.70 (16)C9—C10—H10C109.5
C2—C1—C6120.0 (2)C9—C11—H11A109.5
C2—C1—C7119.6 (2)C9—C11—H11B109.5
C6—C1—C7120.4 (2)C9—C11—H11C109.5
C1—C2—C3119.8 (2)C9—C12—H12A109.5
C1—C2—H2A120.1C9—C12—H12B109.5
C3—C2—H2A120.1C9—C12—H12C109.5
C4—C3—C2119.4 (2)C21—C22—H22A109.5
C4—C3—C8121.7 (2)C21—C22—H22B109.5
C2—C3—C8118.8 (2)C21—C22—H22C109.5
C5—C4—C3121.9 (2)C21—C23—H23A109.5
C5—C4—H4A119.0C21—C23—H23B109.5
C3—C4—H4A119.0C21—C23—H23C109.5
C4—C5—C6117.5 (2)C21—C24—H24A109.5
C4—C5—C9121.0 (2)C21—C24—H24B109.5
C6—C5—C9121.4 (3)C21—C24—H24C109.5
C5—C6—C1121.3 (3)C9—C10'—H10D109.5
C5—C6—H6A119.4C9—C10'—H10E109.5
C1—C6—H6A119.4H10D—C10'—H10E109.5
O1—C7—O2125.0 (2)C9—C10'—H10F109.5
O1—C7—C1118.4 (2)H10D—C10'—H10F109.5
O2—C7—C1116.6 (2)H10E—C10'—H10F109.5
O3—C8—O4125.6 (2)C9—C11'—H11D109.5
O3—C8—C3116.5 (2)C9—C11'—H11E109.5
O4—C8—C3117.9 (2)H11D—C11'—H11E109.5
C10—C9—C12'93.3 (5)C9—C11'—H11F109.5
C10—C9—C11111.1 (7)H11D—C11'—H11F109.5
C12'—C9—C11111.2 (8)H11E—C11'—H11F109.5
C10—C9—C5110.8 (4)C9—C12'—H12D109.5
C12'—C9—C5115.1 (6)C9—C12'—H12E109.5
C11—C9—C5113.5 (4)H12D—C12'—H12E109.5
C10—C9—C11'115.2 (11)C9—C12'—H12F109.5
C12'—C9—C11'114.7 (11)H12D—C12'—H12F109.5
C5—C9—C11'107.3 (7)H12E—C12'—H12F109.5
C10—C9—C12109.8 (3)C21—C22'—H22D109.5
C11—C9—C12102.8 (7)C21—C22'—H22E109.5
C5—C9—C12108.4 (4)H22D—C22'—H22E109.5
C11'—C9—C12104.9 (11)C21—C22'—H22F109.5
C12'—C9—C10'110.0 (5)H22D—C22'—H22F109.5
C11—C9—C10'103.2 (8)H22E—C22'—H22F109.5
C5—C9—C10'102.7 (5)C21—C23'—H23D109.5
C11'—C9—C10'105.9 (12)C21—C23'—H23E109.5
C12—C9—C10'126.5 (5)H23D—C23'—H23E109.5
C18—C13—C14119.4 (2)C21—C23'—H23F109.5
C18—C13—C19120.7 (2)H23D—C23'—H23F109.5
C14—C13—C19119.9 (2)H23E—C23'—H23F109.5
C15—C14—C13119.9 (2)C21—C24'—H24D109.5
C15—C14—H14A120.0C21—C24'—H24E109.5
C13—C14—H14A120.0H24D—C24'—H24E109.5
C14—C15—C16120.2 (2)C21—C24'—H24F109.5
C14—C15—C20120.0 (2)H24D—C24'—H24F109.5
C16—C15—C20119.7 (2)H24E—C24'—H24F109.5
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2; (iii) x, y+1, z1/2; (iv) x, y, z; (v) x, y+1, z+1/2; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O7vi0.84 (1)2.04 (2)2.783 (3)148 (3)
Symmetry code: (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn5(C12H12O4)4(OH)2(C10H8N2)]
Mr1397.91
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)26.1995 (5), 11.2592 (2), 19.6223 (4)
β (°) 102.0444 (18)
V3)5660.87 (19)
Z4
Radiation typeMo Kα
µ (mm1)2.16
Crystal size (mm)0.34 × 0.30 × 0.20
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.527, 0.671
No. of measured, independent and
observed [I > 2σ(I)] reflections
13453, 5494, 4246
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 1.00
No. of reflections5494
No. of parameters401
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.25, 0.38

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O7i0.838 (10)2.04 (2)2.783 (3)148 (3)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We are grateful for financial support by the National Natural Science Foundation of China (grant No. 20471049) and Xiamen University.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLi, X., Cao, R., Sun, D., Yuan, D., Bi, W., Li, X. & Wang, Y. (2004). J. Mol. Struct. 694, 205–210.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, X.-L. & Huang, M.-L. (2008). Acta Cryst. E64, m1501–m1502.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMa, S., Sun, D., Wang, X.-S. & Zhou, H.-C. (2007). Angew. Chem. Int. Ed. 46, 2458–2462.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2007). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPan, L., Parker, B., Huang, X. Y., Oison, D. H., Lee, J. Y. & Li, J. (2006). J. Am. Chem. Soc. 128, 4180–4181.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-L., Qin, C., Wang, E.-B., Su, Z.-M., Xu, L. & Batten, S. R. (2005). Chem. Commun. pp. 4789–4791.  Web of Science CSD CrossRef Google Scholar
First citationYang, S. Y., Long, L. S., Huang, R. B. & Zheng, L. S. (2002). Chem. Commun. pp. 472–473.  Web of Science CSD CrossRef Google Scholar
First citationYang, S. Y., Long, L. S., Huang, R. B., Zheng, L. S. & Ng, S. W. (2005). Inorg. Chim. Acta, 358, 1882–1886.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 9| September 2009| Pages m1078-m1079
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds