organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Dihydr­­oxy-2-(hy­droxy­meth­yl)propan-2-aminium 2,2-di­chloro­acetate

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China, and bAcademic Administration of JiangXi University of Traditional Chinese Medicine, Nanchang 330047, People's Republic of China
*Correspondence e-mail: yuyanhong001@yahoo.com.cn

(Received 1 April 2009; accepted 4 May 2009; online 14 May 2009)

The title compound, C4H12NO3+·C2HCl2O2, was obtained from dichloro­acetic acid and 2-amino-2-(hydroxy­meth­yl)propane-1,3-diol. In the crystal structure, the cations and anions are connected by inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, forming a two-dimensional array parallel to (001). The crystal used for analysis was a merohedral twin, as indicated by the Flack parameter of 0.67 (6).

Related literature

For the engineering of organic crystals for quadratic non-linear optics, see: Etter & Frankenbach (1989[Etter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10-12.]); Yaghi et al. (1997[Yaghi, O. M., Davis, C. E., Li, G.-M. & Li, H.-L. (1997). J. Am. Chem. Soc. 119, 2861-2868.]). For hydrogen-bond networks, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H12NO3+·C2HCl2O2

  • Mr = 250.07

  • Monoclinic, P 21

  • a = 8.6231 (17) Å

  • b = 6.1376 (12) Å

  • c = 9.898 (2) Å

  • β = 97.03 (3)°

  • V = 519.92 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.12 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.875, Tmax = 0.929

  • 4914 measured reflections

  • 2044 independent reflections

  • 1951 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.10

  • 2044 reflections

  • 130 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 920 Friedel pairs

  • Flack parameter: 0.67 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O3i 0.89 2.00 2.881 (2) 169
N1—H1B⋯O2ii 0.89 1.97 2.858 (2) 172
N1—H1C⋯O5iii 0.89 2.03 2.909 (2) 169
O3—H3⋯O4iv 0.81 1.85 2.654 (2) 169
O4—H4⋯O1 0.82 1.84 2.655 (2) 173
O5—H5⋯O2v 0.82 1.88 2.691 (2) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+1]; (iii) [-x, y+{\script{1\over 2}}, -z+1]; (iv) x, y-1, z; (v) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During the past 15 years, organic crystals for quadratic nonlinear optics have been intensely engineered (Etter & Frankenbach, 1989; Yaghi et al., 1997). Arising from the complexation of organic and inorganic molecules based on acid–base interactions, highly polarisable cations, responsible for NLO properties, are linked to inorganic anions through hydrogen bond networks which generate a noncentrosymmetric structural organization (Etter, 1990). In this paper, a novel nonlinear hybrid molecular crystal, NH2C(CH2OH)3, has been prepared by complexation between dichloroacetic and tris(hydroxymethyl)amino methane.

The structure is built up from cations and anions (Fig. 1) connected through strong intermolecular hydrogen bonds (Table 1, Fig. 2) to form a two-dimensional layer developing parallel to the (001) plane. As suggested by the value of the Flack parameter (Flack, 1983), 0.67 (6), based on 920 Friedel's pairs, the particular crystal is twinned by inversion.

Related literature top

For the engineering of organic crystals for quadratic non-linear optics, see: Etter & Frankenbach (1989); Yaghi et al. (1997). For hydrogen-bond networks, see: Etter (1990).

Experimental top

The crystals were grown by slow evaporation at ambient temperature of the solution prepared by adding dichloroacetic acid to the aqueous solution of tris(hydroxymethyl)aminomethane in a stoichiometric ratio. For the X-ray diffraction analysis, suitable single crystals of compound (I) were obtained after one night by slow evaporation from an filtration water solution.

Refinement top

All H atoms were found from a difference Fourier map but they were treated as riding on their parent atoms with C—H = 0.97 Å (methylene) or 0.98 Å (methine), N—H = 0.89 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N,O).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. H bond is drawn as dashed line.
[Figure 2] Fig. 2. Partial packing view showing the intricated hydrogen bond framework. H atoms not involved in hydrogen bondings were omitted. [Symmetry code: (i) -x + 1, y + 1/2, -z + 1.]
1,3-Dihydroxy-2-(hydroxymethyl)propan-2-aminium 2,2-dichloroacetate top
Crystal data top
C4H12NO3+·C2HCl2O2F(000) = 260
Mr = 250.07Dx = 1.597 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 735 reflections
a = 8.6231 (17) Åθ = 2.8–27.5°
b = 6.1376 (12) ŵ = 0.62 mm1
c = 9.898 (2) ÅT = 293 K
β = 97.03 (3)°Prism, colourless
V = 519.92 (18) Å30.22 × 0.18 × 0.12 mm
Z = 2
Data collection top
Rigaku SCXmini
diffractometer
2044 independent reflections
Radiation source: fine-focus sealed tube1951 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 13.6612 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 77
Tmin = 0.875, Tmax = 0.929l = 1212
4914 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.166P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
2044 reflectionsΔρmax = 0.23 e Å3
130 parametersΔρmin = 0.25 e Å3
3 restraintsAbsolute structure: Flack (1983), 920 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.67 (6)
Crystal data top
C4H12NO3+·C2HCl2O2V = 519.92 (18) Å3
Mr = 250.07Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6231 (17) ŵ = 0.62 mm1
b = 6.1376 (12) ÅT = 293 K
c = 9.898 (2) Å0.22 × 0.18 × 0.12 mm
β = 97.03 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2044 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1951 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.929Rint = 0.025
4914 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.23 e Å3
S = 1.10Δρmin = 0.25 e Å3
2044 reflectionsAbsolute structure: Flack (1983), 920 Friedel pairs
130 parametersAbsolute structure parameter: 0.67 (6)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.86491 (9)0.39154 (15)0.00483 (7)0.0630 (2)
Cl20.70850 (10)0.03942 (11)0.13016 (8)0.0598 (2)
C10.6938 (3)0.3135 (4)0.0737 (2)0.0342 (5)
H10.60460.32630.00260.041*
C20.6675 (2)0.4656 (4)0.1919 (2)0.0282 (5)
C30.2265 (2)0.2569 (3)0.3756 (2)0.0215 (4)
C40.3748 (2)0.1471 (3)0.3394 (2)0.0248 (4)
H4A0.35400.08270.24960.030*
H4B0.45580.25620.33650.030*
C50.0883 (2)0.0986 (3)0.3577 (2)0.0249 (4)
H5A0.05430.08010.26130.030*
H5B0.12260.04230.39440.030*
C60.1911 (2)0.4607 (3)0.2892 (2)0.0270 (4)
H6A0.18410.42150.19370.032*
H6B0.09050.51880.30580.032*
N10.25465 (19)0.3243 (3)0.52217 (16)0.0221 (3)
H1A0.34700.39030.53820.033*
H1B0.25400.20700.57500.033*
H1C0.17970.41560.54030.033*
O10.54454 (19)0.5709 (3)0.17435 (18)0.0444 (4)
O20.76863 (19)0.4708 (3)0.29336 (16)0.0403 (4)
O30.42905 (16)0.0160 (2)0.43407 (15)0.0306 (4)
H30.38570.12810.40710.046*
O40.30642 (17)0.6233 (2)0.31776 (17)0.0336 (4)
H40.38050.59590.27590.050*
O50.04042 (15)0.1704 (3)0.42311 (15)0.0274 (3)
H50.09310.25640.37350.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0535 (4)0.0984 (7)0.0405 (4)0.0075 (4)0.0196 (3)0.0042 (4)
Cl20.0872 (5)0.0321 (3)0.0549 (4)0.0001 (4)0.0123 (4)0.0081 (3)
C10.0339 (12)0.0377 (13)0.0292 (11)0.0008 (10)0.0040 (9)0.0007 (10)
C20.0274 (11)0.0271 (10)0.0304 (11)0.0002 (10)0.0048 (9)0.0064 (9)
C30.0185 (9)0.0225 (10)0.0233 (10)0.0014 (8)0.0018 (8)0.0011 (8)
C40.0213 (10)0.0248 (11)0.0288 (11)0.0005 (9)0.0052 (9)0.0000 (9)
C50.0191 (9)0.0233 (11)0.0324 (11)0.0007 (8)0.0029 (8)0.0030 (9)
C60.0247 (10)0.0227 (10)0.0332 (11)0.0007 (9)0.0017 (9)0.0044 (9)
N10.0180 (7)0.0224 (8)0.0259 (9)0.0000 (7)0.0031 (7)0.0006 (7)
O10.0347 (9)0.0503 (11)0.0494 (10)0.0142 (8)0.0097 (8)0.0129 (9)
O20.0424 (9)0.0425 (10)0.0337 (9)0.0120 (8)0.0048 (7)0.0105 (7)
O30.0238 (7)0.0236 (8)0.0433 (9)0.0036 (6)0.0002 (7)0.0001 (7)
O40.0293 (8)0.0219 (7)0.0510 (10)0.0038 (6)0.0105 (7)0.0024 (7)
O50.0179 (7)0.0308 (8)0.0337 (8)0.0002 (6)0.0043 (6)0.0027 (6)
Geometric parameters (Å, º) top
Cl1—C11.765 (2)C5—O51.421 (2)
Cl2—C11.773 (3)C5—H5A0.9700
C1—C21.536 (3)C5—H5B0.9700
C1—H10.9800C6—O41.413 (3)
C2—O11.236 (3)C6—H6A0.9700
C2—O21.247 (3)C6—H6B0.9700
C3—N11.499 (3)N1—H1A0.8900
C3—C61.525 (3)N1—H1B0.8900
C3—C41.527 (3)N1—H1C0.8900
C3—C51.531 (3)O3—H30.8119
C4—O31.411 (2)O4—H40.8205
C4—H4A0.9700O5—H50.8200
C4—H4B0.9700
C2—C1—Cl1109.75 (16)O5—C5—C3112.99 (16)
C2—C1—Cl2110.36 (16)O5—C5—H5A109.0
Cl1—C1—Cl2110.39 (14)C3—C5—H5A109.0
C2—C1—H1108.8O5—C5—H5B109.0
Cl1—C1—H1108.8C3—C5—H5B109.0
Cl2—C1—H1108.8H5A—C5—H5B107.8
O1—C2—O2127.1 (2)O4—C6—C3112.27 (17)
O1—C2—C1114.5 (2)O4—C6—H6A109.2
O2—C2—C1118.38 (19)C3—C6—H6A109.2
N1—C3—C6108.33 (17)O4—C6—H6B109.2
N1—C3—C4107.93 (16)C3—C6—H6B109.2
C6—C3—C4110.28 (16)H6A—C6—H6B107.9
N1—C3—C5108.57 (16)C3—N1—H1A109.5
C6—C3—C5110.83 (16)C3—N1—H1B109.5
C4—C3—C5110.81 (17)H1A—N1—H1B109.5
O3—C4—C3112.12 (16)C3—N1—H1C109.5
O3—C4—H4A109.2H1A—N1—H1C109.5
C3—C4—H4A109.2H1B—N1—H1C109.5
O3—C4—H4B109.2C4—O3—H3106.3
C3—C4—H4B109.2C6—O4—H4109.1
H4A—C4—H4B107.9C5—O5—H5109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.002.881 (2)169
N1—H1B···O2ii0.891.972.858 (2)172
N1—H1C···O5iii0.892.032.909 (2)169
O3—H3···O4iv0.811.852.654 (2)169
O4—H4···O10.821.842.655 (2)173
O5—H5···O2v0.821.882.691 (2)168
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z+1; (iv) x, y1, z; (v) x1, y, z.

Experimental details

Crystal data
Chemical formulaC4H12NO3+·C2HCl2O2
Mr250.07
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)8.6231 (17), 6.1376 (12), 9.898 (2)
β (°) 97.03 (3)
V3)519.92 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.22 × 0.18 × 0.12
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.875, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
4914, 2044, 1951
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.069, 1.10
No. of reflections2044
No. of parameters130
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.25
Absolute structureFlack (1983), 920 Friedel pairs
Absolute structure parameter0.67 (6)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O3i0.892.002.881 (2)169.2
N1—H1B···O2ii0.891.972.858 (2)171.7
N1—H1C···O5iii0.892.032.909 (2)168.6
O3—H3···O4iv0.811.852.654 (2)169.3
O4—H4···O10.821.842.655 (2)172.6
O5—H5···O2v0.821.882.691 (2)167.9
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y1/2, z+1; (iii) x, y+1/2, z+1; (iv) x, y1, z; (v) x1, y, z.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. & Frankenbach, G. M. (1989). Chem. Mater. 1, 10–12.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Davis, C. E., Li, G.-M. & Li, H.-L. (1997). J. Am. Chem. Soc. 119, 2861–2868.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds