metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­(2,5-di-4-pyridyl-1,3,4-thia­diazole-κN2)bis­­(thio­cyanato-κN)nickel(II) dihydrate

aDepartment of Chemistry, Lishui University, Lishui 323000, People's Republic of China
*Correspondence e-mail: zjlsxyhx@126.com

(Received 19 September 2008; accepted 22 September 2008; online 27 September 2008)

In the title mononuclear complex, [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O, the NiII atom is located on an inversion center and is octa­hedrally coordinated by four N atoms from two 2,5-di-4-pyridyl-1,3,4-thia­diazole (bpt) ligands and two thio­cyanate mol­ecules forming the equatorial plane; the axial positions are occupied by two O atoms of coordinated water mol­ecules. O—H⋯O, O—H⋯N and O—H⋯S hydrogen bonds, involving the uncoordinated water molecules, result in the formation of a sheet structure developing parallel to (021).

Related literature

For related structures, see: Ma & Yang (2008[Ma, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630.]); Du et al. (2002[Du, M., Bu, X.-H., Guo, Y.-M., Liu, H., Batten, S. R., Ribas, J. & Mak, T. C. W. (2002). Inorg. Chem. 41, 4904-4908.]); Dong et al. (2003[Dong, Y.-B., Cheng, J.-Y., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5699-5706.]); Gudbjarlson et al. (1991[Gudbjartson, H., Biradha, K., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc. 121, 2599-2600.]). For related literature, see: Su et al. (2005[Su, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150-4159.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O

  • Mr = 727.50

  • Triclinic, [P \overline 1]

  • a = 7.0555 (11) Å

  • b = 8.3034 (13) Å

  • c = 14.849 (2) Å

  • α = 104.629 (2)°

  • β = 93.067 (2)°

  • γ = 112.228 (2)°

  • V = 768.3 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.95 mm−1

  • T = 298 (2) K

  • 0.26 × 0.21 × 0.17 mm

Data collection
  • Bruker SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.789, Tmax = 0.855

  • 3967 measured reflections

  • 2747 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.143

  • S = 1.06

  • 2747 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2W 0.85 1.91 2.762 (5) 175
O2W—H2WB⋯N4i 0.85 2.00 2.833 (5) 170
O1W—H1WA⋯S2ii 0.85 2.47 3.303 (3) 166
O2W—H2WA⋯S2iii 0.85 2.92 3.540 (4) 132
Symmetry codes: (i) x+1, y, z-1; (ii) x-1, y, z; (iii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Pearce et al., 2000[Pearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the last decades, different kinds of metal-organic frameworks (MOFs) have been synthesized by using linear 4,4'-bipyridine, and other bipyridine-like N,N'-donor ligands (Gudbjarlson et al., 1991; Su et al. 2005; Dong et al., 2003). However, the angular N,N'-ligands were less exploited in building the MOFs in the supramolecular chemistry (Du et al., 2002). In this paper, we report the synthesis and characterization of the title compound (I).

the nickel(II) atom located on an inversion center is octahedrally coordinated by four N atoms from two bpt ligands and two thiocyanate molecules forming the equatorial plane, whereas axial positions are occupied by two O atoms of coordinated water molecules (Fig.1). The Ni—N distances are similar with related complexes (Du et al., 2002; Ma & Yang, 2008).

The occurence of O-H···O, O-H···N and O-H···S results in the formation of a two-dimensional sheet structure developping parallel to the (0 2 1) plane (Table 1, Fig.2). The guest water molecule acts as acceptor and donor.

Related literature top

For related structures, see: Ma & Yang (2008); Du et al.(2002); Dong et al. (2003); Gudbjarlson et al. (1991). For related literature, see: Su et al. (2005).

Experimental top

Bpt (21 mg,0.6 mmol), NiCl2 (28 mg, 0.9 mmol) and NH4SCN (23 mg,0.8 mmol) were added in methanol. The mixture was heated for one hour under refluxing and stirring. The resulting solution was then cooled to room temperature, and some single crystals were obtained five weeks later.

Refinement top

The hydrgen atoms of water molecule were located from difference Fourier maps and their coordinates were initially refined using restraints (O-H= 0.85 (1)Å and H···H = 1.39 (2)Å with Uiso(H) = 1.5Ueq(O) then their coordinates were fixed in the last stage of refinement. H atoms attached to C atoms were treated as riding with C-H = 0.93Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP plot of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small sphere of arbitrary radii. H bond is shown as dashed line. [Symmetry code: (i) 1-x, 1-y, 1-z].
[Figure 2] Fig. 2. A partial packing view showing the formation of the two dimensional sheet through O-H···O, O-H···N and O-H···S hydrogren bonds. H bonds are represented as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
Diaqua(2,5-di-4-pyridyl-1,3,4-thiadiazole-κN2)bis(thiocyanato-κN)nickel(II) dihydrate top
Crystal data top
[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2OZ = 1
Mr = 727.50F(000) = 374
Triclinic, P1Dx = 1.572 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.0555 (11) ÅCell parameters from 2721 reflections
b = 8.3034 (13) Åθ = 1.4–25.2°
c = 14.849 (2) ŵ = 0.96 mm1
α = 104.629 (2)°T = 298 K
β = 93.067 (2)°Block, green
γ = 112.228 (2)°0.26 × 0.21 × 0.17 mm
V = 768.3 (2) Å3
Data collection top
Bruker SMART
diffractometer
2747 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 85
Tmin = 0.789, Tmax = 0.855k = 99
3967 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0643P)2 + 0.1149P]
where P = (Fo2 + 2Fc2)/3
2747 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2Oγ = 112.228 (2)°
Mr = 727.50V = 768.3 (2) Å3
Triclinic, P1Z = 1
a = 7.0555 (11) ÅMo Kα radiation
b = 8.3034 (13) ŵ = 0.96 mm1
c = 14.849 (2) ÅT = 298 K
α = 104.629 (2)°0.26 × 0.21 × 0.17 mm
β = 93.067 (2)°
Data collection top
Bruker SMART
diffractometer
2747 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1810 reflections with I > 2σ(I)
Tmin = 0.789, Tmax = 0.855Rint = 0.028
3967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.06Δρmax = 0.39 e Å3
2747 reflectionsΔρmin = 0.51 e Å3
205 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.0397 (3)
S10.0367 (2)0.2796 (2)0.90422 (9)0.0507 (4)
S20.7893 (2)0.05582 (18)0.46356 (10)0.0499 (4)
N10.4008 (5)0.4385 (5)0.6282 (3)0.0370 (9)
N20.3264 (6)0.2926 (6)0.9413 (3)0.0507 (11)
N30.2307 (7)0.2566 (6)1.0167 (3)0.0512 (11)
N40.3536 (7)0.1274 (6)1.2103 (3)0.0530 (11)
N50.6832 (6)0.3540 (6)0.4939 (3)0.0439 (10)
O1W0.2492 (4)0.2685 (4)0.4104 (2)0.0456 (8)
H1WA0.13000.23240.42680.068*
H1WB0.26550.17510.37920.068*
C10.2114 (7)0.4119 (6)0.6465 (3)0.0448 (12)
H10.12170.42670.60420.054*
C20.1394 (7)0.3639 (7)0.7239 (3)0.0479 (13)
H20.00260.34090.73170.058*
C30.2717 (7)0.3502 (6)0.7897 (3)0.0392 (11)
C40.4712 (8)0.3790 (7)0.7725 (3)0.0490 (13)
H40.56560.36970.81490.059*
C50.5267 (7)0.4217 (7)0.6915 (3)0.0454 (12)
H50.66060.43990.68030.054*
C60.2059 (7)0.3069 (6)0.8769 (3)0.0408 (12)
C70.0422 (8)0.2485 (7)1.0080 (3)0.0435 (12)
C80.0933 (7)0.2144 (6)1.0799 (3)0.0395 (11)
C90.0247 (8)0.1812 (7)1.1595 (3)0.0514 (13)
H90.10900.18671.17040.062*
C100.1584 (8)0.1398 (8)1.2222 (4)0.0573 (15)
H100.11080.11911.27600.069*
C110.4142 (8)0.1632 (7)1.1355 (4)0.0516 (13)
H110.54770.15931.12730.062*
C120.2923 (7)0.2065 (7)1.0682 (3)0.0459 (12)
H120.34330.22981.01600.055*
C130.7270 (6)0.2306 (7)0.4811 (3)0.0366 (11)
O2W0.3283 (5)0.0225 (5)0.3113 (2)0.0604 (10)
H2WA0.36410.05090.35830.091*
H2WB0.43420.02420.28710.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0396 (5)0.0406 (5)0.0449 (6)0.0187 (4)0.0124 (4)0.0176 (4)
S10.0513 (8)0.0705 (10)0.0435 (8)0.0301 (7)0.0153 (6)0.0290 (7)
S20.0508 (8)0.0442 (8)0.0686 (9)0.0269 (6)0.0198 (7)0.0260 (7)
N10.034 (2)0.039 (2)0.041 (2)0.0152 (17)0.0086 (17)0.0156 (18)
N20.046 (3)0.065 (3)0.045 (3)0.022 (2)0.013 (2)0.024 (2)
N30.051 (3)0.066 (3)0.042 (2)0.023 (2)0.015 (2)0.027 (2)
N40.051 (3)0.065 (3)0.046 (3)0.023 (2)0.017 (2)0.023 (2)
N50.045 (2)0.045 (2)0.055 (3)0.027 (2)0.0162 (19)0.022 (2)
O1W0.0367 (18)0.045 (2)0.053 (2)0.0146 (15)0.0120 (15)0.0130 (16)
C10.041 (3)0.054 (3)0.044 (3)0.018 (2)0.008 (2)0.024 (3)
C20.037 (3)0.058 (3)0.048 (3)0.014 (2)0.010 (2)0.024 (3)
C30.041 (3)0.036 (3)0.038 (3)0.011 (2)0.012 (2)0.010 (2)
C40.045 (3)0.066 (4)0.046 (3)0.027 (3)0.010 (2)0.026 (3)
C50.042 (3)0.057 (3)0.045 (3)0.024 (2)0.018 (2)0.021 (3)
C60.044 (3)0.039 (3)0.037 (3)0.014 (2)0.009 (2)0.012 (2)
C70.047 (3)0.046 (3)0.039 (3)0.018 (2)0.007 (2)0.015 (2)
C80.044 (3)0.038 (3)0.037 (3)0.016 (2)0.008 (2)0.013 (2)
C90.045 (3)0.067 (4)0.046 (3)0.022 (3)0.008 (2)0.024 (3)
C100.056 (3)0.076 (4)0.043 (3)0.024 (3)0.013 (3)0.026 (3)
C110.043 (3)0.055 (3)0.059 (4)0.021 (3)0.011 (3)0.019 (3)
C120.047 (3)0.053 (3)0.049 (3)0.026 (2)0.009 (2)0.025 (3)
C130.033 (3)0.046 (3)0.035 (3)0.016 (2)0.012 (2)0.018 (2)
O2W0.057 (2)0.061 (2)0.054 (2)0.0141 (18)0.0183 (17)0.0132 (19)
Geometric parameters (Å, º) top
Ni1—N52.072 (4)C1—H10.9300
Ni1—N5i2.072 (4)C2—C31.371 (6)
Ni1—O1Wi2.116 (3)C2—H20.9300
Ni1—O1W2.116 (3)C3—C41.385 (6)
Ni1—N12.176 (4)C3—C61.481 (6)
Ni1—N1i2.176 (4)C4—C51.374 (6)
S1—C71.723 (5)C4—H40.9300
S1—C61.724 (5)C5—H50.9300
S2—C131.635 (5)C7—C81.480 (6)
N1—C11.325 (6)C8—C121.380 (6)
N1—C51.328 (6)C8—C91.383 (6)
N2—C61.304 (6)C9—C101.373 (7)
N2—N31.376 (5)C9—H90.9300
N3—C71.303 (6)C10—H100.9300
N4—C111.310 (6)C11—C121.382 (7)
N4—C101.340 (6)C11—H110.9300
N5—C131.153 (6)C12—H120.9300
O1W—H1WA0.8510O2W—H2WA0.8456
O1W—H1WB0.8497O2W—H2WB0.8472
C1—C21.371 (6)
N5—Ni1—N5i180.000 (2)C2—C3—C4117.8 (4)
N5—Ni1—O1Wi88.99 (14)C2—C3—C6121.6 (4)
N5i—Ni1—O1Wi91.01 (14)C4—C3—C6120.5 (4)
N5—Ni1—O1W91.01 (14)C5—C4—C3118.6 (4)
N5i—Ni1—O1W88.99 (14)C5—C4—H4120.7
O1Wi—Ni1—O1W180.0C3—C4—H4120.7
N5—Ni1—N191.17 (14)N1—C5—C4124.0 (4)
N5i—Ni1—N188.83 (14)N1—C5—H5118.0
O1Wi—Ni1—N186.52 (12)C4—C5—H5118.0
O1W—Ni1—N193.48 (13)N2—C6—C3123.7 (4)
N5—Ni1—N1i88.83 (14)N2—C6—S1113.8 (3)
N5i—Ni1—N1i91.17 (14)C3—C6—S1122.4 (4)
O1Wi—Ni1—N1i93.48 (13)N3—C7—C8123.5 (4)
O1W—Ni1—N1i86.52 (12)N3—C7—S1113.8 (3)
N1—Ni1—N1i180.000 (1)C8—C7—S1122.7 (4)
C7—S1—C687.2 (2)C12—C8—C9118.1 (4)
C1—N1—C5116.3 (4)C12—C8—C7121.8 (4)
C1—N1—Ni1122.2 (3)C9—C8—C7119.9 (4)
C5—N1—Ni1121.4 (3)C10—C9—C8118.5 (5)
C6—N2—N3112.5 (4)C10—C9—H9120.7
C7—N3—N2112.7 (4)C8—C9—H9120.7
C11—N4—C10116.8 (4)N4—C10—C9123.8 (5)
C13—N5—Ni1159.3 (4)N4—C10—H10118.1
Ni1—O1W—H1WA120.3C9—C10—H10118.1
Ni1—O1W—H1WB121.7N4—C11—C12124.1 (5)
H1WA—O1W—H1WB107.7N4—C11—H11117.9
N1—C1—C2124.1 (4)C12—C11—H11117.9
N1—C1—H1118.0C8—C12—C11118.6 (4)
C2—C1—H1118.0C8—C12—H12120.7
C1—C2—C3119.1 (5)C11—C12—H12120.7
C1—C2—H2120.5N5—C13—S2179.7 (4)
C3—C2—H2120.5H2WA—O2W—H2WB109.2
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2W0.851.912.762 (5)175
O2W—H2WB···N4ii0.852.002.833 (5)170
O1W—H1WA···S2iii0.852.473.303 (3)166
O2W—H2WA···S2iv0.852.923.540 (4)132
Symmetry codes: (ii) x+1, y, z1; (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C12H8N4S)2(H2O)2]·2H2O
Mr727.50
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.0555 (11), 8.3034 (13), 14.849 (2)
α, β, γ (°)104.629 (2), 93.067 (2), 112.228 (2)
V3)768.3 (2)
Z1
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.26 × 0.21 × 0.17
Data collection
DiffractometerBruker SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.789, 0.855
No. of measured, independent and
observed [I > 2σ(I)] reflections
3967, 2747, 1810
Rint0.028
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 1.06
No. of reflections2747
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.51

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Pearce et al., 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O2W0.851.912.762 (5)174.9
O2W—H2WB···N4i0.852.002.833 (5)169.5
O1W—H1WA···S2ii0.852.473.303 (3)166.3
O2W—H2WA···S2iii0.852.923.540 (4)132.2
Symmetry codes: (i) x+1, y, z1; (ii) x1, y, z; (iii) x+1, y, z+1.
 

Acknowledgements

The author is grateful to the Natural Science Foundation of Zhejiang Province (No. Y407081) for financial support.

References

First citationBruker (1998). SMART. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDong, Y.-B., Cheng, J.-Y., Huang, R.-Q., Smith, M. D. & zur Loye, H.-C. (2003). Inorg. Chem. 42, 5699–5706.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDu, M., Bu, X.-H., Guo, Y.-M., Liu, H., Batten, S. R., Ribas, J. & Mak, T. C. W. (2002). Inorg. Chem. 41, 4904–4908.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGudbjartson, H., Biradha, K., Poirier, K. M. & Zaworotko, M. J. (1991). J. Am. Chem. Soc. 121, 2599–2600.  Web of Science CSD CrossRef Google Scholar
First citationMa, W.-W. & Yang, M.-H. (2008). Acta Cryst. E64, m630.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPearce, L., Prout, C. K. & Watkin, D. J. (2000). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, C.-Y., Zheng, X.-J., Gao, S., Li, L.-C. & Jin, L.-P. (2005). Eur. J. Inorg. Chem. pp. 4150–4159.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds