organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Bis[bis­­(methyl­sulfan­yl)methyl­ene]hydrazine

aLaboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar I Tunis, Tunisia, and bLaboratoire de Chimie Analytique et Electrochimie, Faculté des Sciences de Tunis, Université de Tunis El Manar, 2092 El Manar I Tunis, Tunisia
*Correspondence e-mail: ahmed.driss@fst.rnu.tn

(Received 8 May 2008; accepted 14 May 2008; online 21 May 2008)

The title compound, C6H12N2S4, was obtained as a by-product (8%) during the reaction of the electrogenerated cyano­methyl anion with phenyl­amine, carbon disulfide and methyl iodide. The mol­ecule, with the exception of 8 H atoms, lies on a crystallographic mirror plane and is arranged around an inversion centre located at the mid-point of the N—N bond.

Related literature

For related literature, see: Pomes Hernandez et al. (1996[Pomes Hernandez, R., Gómez González, A., Rosado Pérez, A., Nápoles Frías, B. M., Toscano, R. A. & Quincoces Suárez, J. (1996). Acta Cryst. C52, 2941-2942.]); Toumi et al. (2007[Toumi, M., Ben Amor, F., Raouafi, N., Bordeau, M., Driss, A. & Boujlel, K. (2007). Acta Cryst. E63, o2735.]).

[Scheme 1]

Experimental

Crystal data
  • C6H12N2S4

  • Mr = 240.42

  • Monoclinic, C 2/m

  • a = 10.683 (2) Å

  • b = 7.193 (1) Å

  • c = 8.309 (2) Å

  • β = 117.66 (2)°

  • V = 565.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 298 (2) K

  • 0.50 × 0.29 × 0.22 mm

Data collection
  • Enraf–Nonius CAD-4 EXPRESS diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.79, Tmax = 0.84

  • 1994 measured reflections

  • 885 independent reflections

  • 701 reflections with I > 2σ(I)

  • Rint = 0.027

  • 2 standard reflections frequency: 120 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.088

  • S = 1.06

  • 885 reflections

  • 37 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure is built up of C6H12N2S4 molecules which lie on mirror planes perpendicular to [0 1 0] direction. The molecule is centrosymetric around N1—N1i bond (i: 1 - x, 1 - y, 1 - z) (figure 1).

The asymetric unit is built up by a nitrogen atom N1 bonded to C1 carbon which is bonded to sulfur atoms S1 and S2, each of them is bonded to a carbon atom. The values of the bond distance C1=N1 (1.283 Å), the bond distance average C—S (1.782 (3) Å), the angle S1C1S2 (117.6 (1)°) and the angles average CSC (103 (1)°) agree with those found in compounds having such bonds (Pomes Hernandez et al., 1996; Toumi et al., 2007). The deviations of H1 and H3 atoms from the plane of the molecule are 0.79 (2)Å and 0.71 (2)Å respectively.

Related literature top

For related literature, see: Pomes Hernandez et al. (1996); Toumi et al. (2007).

Experimental top

The title compound was obtained from the electrolysis of a mixture of acetonitrile (ACN) (70 ml) and hexamethylphosphorotriamide (HMPT) (6 ml), under galvanostatic conditions (I = 105 mA, Q = 1,2 F/mol), in the presence of tetraethylammonium hexafluorophosphate (TEAPF6) (350 mg) as supporting electrolyte. At the end of the electrolysis, the hydrazone (diarylhydrazone) was added and the solution was kept under continuous stirring for one hour, the carbon disulfide was added (20 mmol) after 15 minutes of stirring and finally the methyl iodide was introduced and the solution was kept under stirring over night. After the removal of acetonitrile under reduced pressure, the residue was quenched with water and extracted with diethyl ether. The resulting product was chromatographed on silica gel (mesh 60, ethyl acetate / cyclohexane 1 / 9) to afford a pure product (yield 8%). Crystals suitable for X-ray analysis were grown by slow evaporation of dichloromethane solution.

The title compound was characterized by 1H, 13C NMR and MS spectra analysis. 1H NMR (CDCl3, 300 MHz): 2.45 (s, 6 H, CH3) and 2.52 (s, 6 H, CH3). 13C NMR (CDCl3, 75 MHz): 13.8 (CH3); 15.3 (CH3) and 163.5 (C=N). MS (EI) (%): m/z = 240 (35 / M+.); 193 (20); (m-MeS); 120 (100); (M-(MeS)2 C=N).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) with Uiso(H) = 1.5Ueq(C).

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atom-labelling scheme. Thermal ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) 1-x, 1-y, 1-z]
1,2-Bis[bis(methylsulfanyl)methylene]hydrazine top
Crystal data top
C6H12N2S4F(000) = 252
Mr = 240.42Dx = 1.412 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 25 reflections
a = 10.683 (2) Åθ = 10–15°
b = 7.193 (1) ŵ = 0.79 mm1
c = 8.309 (2) ÅT = 298 K
β = 117.66 (2)°Plate, yellow
V = 565.5 (2) Å30.50 × 0.29 × 0.22 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4 EXPRESS
diffractometer
701 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 30.0°, θmin = 2.8°
ω/2θ scansh = 1414
Absorption correction: ψ scan
(North et al., 1968)
k = 110
Tmin = 0.79, Tmax = 0.84l = 1111
1994 measured reflections2 standard reflections every 120 min
885 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0422P)2 + 0.172P]
where P = (Fo2 + 2Fc2)/3
885 reflections(Δ/σ)max = 0.001
37 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H12N2S4V = 565.5 (2) Å3
Mr = 240.42Z = 2
Monoclinic, C2/mMo Kα radiation
a = 10.683 (2) ŵ = 0.79 mm1
b = 7.193 (1) ÅT = 298 K
c = 8.309 (2) Å0.50 × 0.29 × 0.22 mm
β = 117.66 (2)°
Data collection top
Enraf–Nonius CAD-4 EXPRESS
diffractometer
701 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.79, Tmax = 0.842 standard reflections every 120 min
1994 measured reflections intensity decay: 2%
885 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.26 e Å3
885 reflectionsΔρmin = 0.22 e Å3
37 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.83746 (5)0.50000.78339 (7)0.0648 (2)
S20.58364 (5)0.50000.85038 (7)0.0605 (2)
N10.57245 (14)0.50000.5218 (2)0.0493 (4)
C10.65298 (17)0.50000.6951 (2)0.0435 (4)
C20.7394 (3)0.50001.0710 (3)0.0695 (7)
H2A0.71090.50001.16500.104*
H2B0.79480.60901.08240.104*
C30.8586 (3)0.50000.5812 (4)0.0732 (8)
H3A0.95740.50000.61400.110*
H3B0.81480.60900.51070.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0283 (2)0.1133 (6)0.0464 (3)0.0000.01185 (19)0.000
S20.0414 (3)0.0984 (5)0.0439 (3)0.0000.0217 (2)0.000
N10.0286 (6)0.0772 (12)0.0392 (7)0.0000.0132 (6)0.000
C10.0302 (7)0.0566 (11)0.0413 (8)0.0000.0146 (6)0.000
C20.0619 (13)0.1011 (19)0.0380 (9)0.0000.0168 (9)0.000
C30.0475 (11)0.116 (2)0.0656 (13)0.0000.0339 (10)0.000
Geometric parameters (Å, º) top
S1—C11.7550 (18)N1—N1i1.417 (3)
S1—C31.796 (3)C2—H2A0.9600
S2—C11.7609 (19)C2—H2B0.9600
S2—C21.816 (2)C3—H3A0.9600
N1—C11.290 (2)C3—H3B0.9600
C1—S1—C3102.32 (10)S2—C2—H2A109.5
C1—S2—C2103.88 (10)S2—C2—H2B109.5
C1—N1—N1i111.67 (18)H2A—C2—H2B109.5
N1—C1—S1120.29 (14)S1—C3—H3A109.5
N1—C1—S2121.90 (13)S1—C3—H3B109.5
S1—C1—S2117.81 (10)H3A—C3—H3B109.5
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC6H12N2S4
Mr240.42
Crystal system, space groupMonoclinic, C2/m
Temperature (K)298
a, b, c (Å)10.683 (2), 7.193 (1), 8.309 (2)
β (°) 117.66 (2)
V3)565.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.50 × 0.29 × 0.22
Data collection
DiffractometerEnraf–Nonius CAD-4 EXPRESS
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.79, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
1994, 885, 701
Rint0.027
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.06
No. of reflections885
No. of parameters37
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPomes Hernandez, R., Gómez González, A., Rosado Pérez, A., Nápoles Frías, B. M., Toscano, R. A. & Quincoces Suárez, J. (1996). Acta Cryst. C52, 2941–2942.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToumi, M., Ben Amor, F., Raouafi, N., Bordeau, M., Driss, A. & Boujlel, K. (2007). Acta Cryst. E63, o2735.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds