metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[chloridocopper(II)]bis­­(μ-3,3′,5,5′-tetra­methyl-4,4′-methylene­di­pyrazole)[chloridocopper(II)]-di-μ-chlorido]

aCollege of Biology and Environmental Engineering, Zhejiang shuren University, Hangzhou 310015, People's Republic of China
*Correspondence e-mail: hslj2004@126.com

(Received 10 March 2008; accepted 12 March 2008; online 14 March 2008)

In the title compound, [Cu2Cl4(C11H16N4)]n, the Cu atom is coordinated by two N atoms of two 3,3′,5,5′-tetra­methyl-4,4′-methyl­enedipyrazole (H2mbdpz) ligands, two bridging Cl atoms and one terminal Cl atom, forming a square-pyramidal geometry. The bridging Cl atoms and the bridging H2mbdpz ligands connect the Cu atoms to build up an extended one-dimensional chain. The chains are further connected through N—H⋯Cl hydrogen bonds to build up a two-dimensional layer in the (011) plane. An inversion centre lies between every pair of adjacent Cu atoms.

Related literature

For related literature, see: Kaes et al. (1998[Kaes, C., Hosseini, M. W., Richard, C. E. F., Skelton, B. B. & White, A. (1998). Angew. Chem. Int. Ed. 37, 920-922.]); Yaghi et al. (1998[Yaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474-484.]); Yagi et al. (2002[Yagi, T., Hanai, H., Komorita, T., Suzuki, T. & Kaizaki, S. J. (2002). J. Chem. Soc. Dalton. Trans. pp. 1126-1131.]); Nassimbeni (2003[Nassimbeni, L. R. (2003). Acc. Chem. Res. 36, 631-637.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2Cl4(C11H16N4)]

  • Mr = 677.44

  • Triclinic, [P \overline 1]

  • a = 8.759 (3) Å

  • b = 8.879 (3) Å

  • c = 9.735 (3) Å

  • α = 79.269 (6)°

  • β = 63.584 (5)°

  • γ = 86.922 (5)°

  • V = 665.8 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.03 mm−1

  • T = 298 (2) K

  • 0.26 × 0.23 × 0.19 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.621, Tmax = 0.699

  • 3354 measured reflections

  • 2331 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.178

  • S = 0.99

  • 2331 reflections

  • 167 parameters

  • H-atom parameters constrained

  • Δρmax = 0.79 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯Cl1i 0.86 2.43 3.242 (6) 157
N4—H4⋯Cl1ii 0.86 2.34 3.172 (6) 164
Symmetry codes: (i) x+1, y+1, z-1; (ii) -x+1, -y, -z+2.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Considerable research efforts have been devoted to searching for new and better inclusion compounds. One of the main reasons is their potential for eventual applications in a variety of technologically useful processes (Nassimbeni, 2003). In the past performance, the majority of cases in one-dimensional coordination networks was focused on bis-monodentate ligand (Yaghi et al., 1998), while a few examples of bis-bidentate, bis-tridentate ones were documented(Kaes et al., 1998). Here, we reported a 1-D complexes using the bis-bidentate ligand 4,4'-methylene-bis(3,5-dimethylpyrazole) (H2mbdpz).

In the title compound (I), the copper atom is coordinated by two nitrogen atoms of the H2mbdpz ligand, two bridging chlorine atom and one terminal chlorine, forming a square-pyramidal geometry (Fig. 1). The average Cu—N bond lengths, 1.999 (3) Å, is longer than those observed in other copper complexes (Yagi et al., 2002). The average Cu—Cl bond lengths is 2.439 (3) Å. the bridging chlorine atoms and the bridging H2mbdpz ligands connect the copper atoms to build up an extended one dimensionnal chain (Fig. 1). The chains are further connected through N—H···Cl hydrogen bonds to build up a two-dimensionnal layer along the (0 1 1) plane (Table 1).

Related literature top

For related literature, see: Kaes et al. (1998); Yaghi et al. (1998); Yagi et al. (2002); Nassimbeni (2003).

Experimental top

CuCl2(0.028 g, 0.015 mmol), H2mbdpz(0.023 g, 0.012 mmol) were added to methanol. The mixture was heated for ten hours under reflux. The resultant was then filtered to give a pure solution. Two weeks later suitable single crystals for X-Ray diffraction analysis were obtained.

Refinement top

All H atoms attached to C and N atom were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene) and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of compound (I) with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, -y, 2 - z].
catena-Poly[[chloridocopper(II)]bis(µ-3,3',5,5'-tetramethyl-4,4'- methylenedipyrazole)[chloridocopper(II)]-di-µ-chlorido] top
Crystal data top
[Cu2Cl4(C11H16N4)]Z = 1
Mr = 677.44F(000) = 346
Triclinic, P1Dx = 1.689 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.759 (3) ÅCell parameters from 2334 reflections
b = 8.879 (3) Åθ = 2.3–25.2°
c = 9.735 (3) ŵ = 2.03 mm1
α = 79.269 (6)°T = 298 K
β = 63.584 (5)°Block, blue
γ = 86.922 (5)°0.26 × 0.23 × 0.19 mm
V = 665.8 (4) Å3
Data collection top
Bruker APEXII area-detector
diffractometer
2331 independent reflections
Radiation source: fine-focus sealed tube1541 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 109
Tmin = 0.621, Tmax = 0.699k = 710
3354 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.1072P)2]
where P = (Fo2 + 2Fc2)/3
2331 reflections(Δ/σ)max = 0.001
167 parametersΔρmax = 0.79 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Cu2Cl4(C11H16N4)]γ = 86.922 (5)°
Mr = 677.44V = 665.8 (4) Å3
Triclinic, P1Z = 1
a = 8.759 (3) ÅMo Kα radiation
b = 8.879 (3) ŵ = 2.03 mm1
c = 9.735 (3) ÅT = 298 K
α = 79.269 (6)°0.26 × 0.23 × 0.19 mm
β = 63.584 (5)°
Data collection top
Bruker APEXII area-detector
diffractometer
2331 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1541 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.699Rint = 0.033
3354 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.178H-atom parameters constrained
S = 0.99Δρmax = 0.79 e Å3
2331 reflectionsΔρmin = 1.14 e Å3
167 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.36691 (10)0.08450 (10)0.90150 (9)0.0298 (3)
Cl10.1132 (2)0.0034 (2)1.1136 (2)0.0345 (5)
Cl20.4814 (2)0.1536 (2)0.9274 (2)0.0355 (5)
N10.7388 (7)0.7150 (7)0.1354 (6)0.0310 (14)
N20.8962 (6)0.7124 (6)0.1260 (6)0.0301 (14)
H20.96290.79220.09310.036*
N30.5561 (7)0.1394 (7)0.6871 (6)0.0332 (14)
N40.7207 (7)0.1464 (7)0.6647 (6)0.0364 (15)
H40.75250.11840.73710.044*
C10.4005 (9)0.1972 (9)0.5280 (8)0.0386 (18)
H1A0.31680.12710.61230.058*
H1B0.42460.16730.43080.058*
H1C0.35740.29890.52840.058*
C20.5597 (8)0.1946 (7)0.5478 (8)0.0282 (15)
C30.7295 (8)0.2400 (7)0.4356 (7)0.0284 (15)
C40.8263 (9)0.2018 (8)0.5166 (8)0.0343 (17)
C51.0159 (9)0.2144 (10)0.4652 (9)0.045 (2)
H5A1.04630.31660.46550.068*
H5B1.07640.19210.36180.068*
H5C1.04550.14250.53560.068*
C60.7909 (9)0.3024 (8)0.2656 (8)0.0320 (17)
H6A0.71660.26050.23110.038*
H6B0.90390.26440.21020.038*
C70.8000 (8)0.4739 (7)0.2171 (7)0.0265 (15)
C80.6772 (8)0.5694 (7)0.1915 (7)0.0252 (15)
C90.5023 (9)0.5253 (8)0.2174 (9)0.0382 (18)
H9A0.42230.52830.32340.057*
H9B0.50270.42340.19720.057*
H9C0.46990.59590.14820.057*
C100.9385 (8)0.5715 (8)0.1735 (7)0.0267 (15)
C111.1096 (9)0.5461 (9)0.1710 (9)0.042 (2)
H11A1.19060.62100.09040.064*
H11B1.14530.44510.15080.064*
H11C1.10280.55600.27010.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0340 (5)0.0250 (5)0.0293 (5)0.0015 (4)0.0153 (4)0.0012 (4)
Cl10.0322 (9)0.0351 (11)0.0354 (10)0.0042 (8)0.0186 (8)0.0064 (8)
Cl20.0457 (11)0.0258 (10)0.0402 (10)0.0037 (8)0.0242 (9)0.0050 (8)
N10.028 (3)0.028 (3)0.033 (3)0.001 (3)0.013 (3)0.003 (3)
N20.024 (3)0.024 (3)0.038 (3)0.003 (2)0.014 (3)0.006 (3)
N30.033 (3)0.035 (4)0.029 (3)0.008 (3)0.015 (3)0.000 (3)
N40.037 (4)0.043 (4)0.034 (3)0.001 (3)0.024 (3)0.002 (3)
C10.039 (4)0.043 (5)0.036 (4)0.002 (4)0.019 (4)0.004 (4)
C20.033 (4)0.019 (3)0.037 (4)0.002 (3)0.020 (3)0.003 (3)
C30.035 (4)0.018 (4)0.029 (4)0.004 (3)0.014 (3)0.001 (3)
C40.040 (4)0.034 (4)0.028 (4)0.002 (3)0.018 (3)0.003 (3)
C50.035 (4)0.061 (6)0.041 (5)0.001 (4)0.023 (4)0.002 (4)
C60.037 (4)0.028 (4)0.029 (4)0.010 (3)0.016 (3)0.001 (3)
C70.031 (4)0.023 (4)0.026 (4)0.001 (3)0.014 (3)0.004 (3)
C80.029 (4)0.021 (3)0.021 (3)0.004 (3)0.009 (3)0.000 (3)
C90.032 (4)0.031 (4)0.060 (5)0.007 (3)0.028 (4)0.007 (4)
C100.021 (3)0.033 (4)0.022 (3)0.003 (3)0.007 (3)0.001 (3)
C110.035 (4)0.047 (5)0.041 (4)0.011 (4)0.016 (4)0.004 (4)
Geometric parameters (Å, º) top
Cu1—N31.993 (5)C3—C41.386 (9)
Cu1—N1i2.009 (6)C3—C61.495 (9)
Cu1—Cl12.2926 (19)C4—C51.510 (9)
Cu1—Cl22.310 (2)C5—H5A0.9600
Cu1—Cl2ii2.712 (2)C5—H5B0.9600
Cl2—Cu1ii2.712 (2)C5—H5C0.9600
N1—N21.340 (7)C6—C71.504 (9)
N1—C81.346 (8)C6—H6A0.9700
N1—Cu1i2.009 (6)C6—H6B0.9700
N2—C101.343 (8)C7—C101.386 (9)
N2—H20.8600C7—C81.414 (9)
N3—C21.340 (8)C8—C91.499 (9)
N3—N41.362 (7)C9—H9A0.9600
N4—C41.332 (8)C9—H9B0.9600
N4—H40.8600C9—H9C0.9600
C1—C21.489 (9)C10—C111.493 (9)
C1—H1A0.9600C11—H11A0.9600
C1—H1B0.9600C11—H11B0.9600
C1—H1C0.9600C11—H11C0.9600
C2—C31.422 (9)
N3—Cu1—N1i88.7 (2)N4—C4—C5120.3 (6)
N3—Cu1—Cl1165.01 (18)C3—C4—C5131.7 (6)
N1i—Cu1—Cl188.83 (16)C4—C5—H5A109.5
N3—Cu1—Cl289.48 (17)C4—C5—H5B109.5
N1i—Cu1—Cl2174.58 (17)H5A—C5—H5B109.5
Cl1—Cu1—Cl291.58 (7)C4—C5—H5C109.5
N3—Cu1—Cl2ii100.44 (18)H5A—C5—H5C109.5
N1i—Cu1—Cl2ii100.88 (18)H5B—C5—H5C109.5
Cl1—Cu1—Cl2ii94.55 (7)C3—C6—C7117.1 (6)
Cl2—Cu1—Cl2ii84.47 (7)C3—C6—H6A108.0
Cu1—Cl2—Cu1ii95.53 (7)C7—C6—H6A108.0
N2—N1—C8105.5 (5)C3—C6—H6B108.0
N2—N1—Cu1i120.4 (4)C7—C6—H6B108.0
C8—N1—Cu1i133.3 (5)H6A—C6—H6B107.3
N1—N2—C10112.6 (5)C10—C7—C8104.7 (6)
N1—N2—H2123.7C10—C7—C6126.9 (6)
C10—N2—H2123.7C8—C7—C6128.1 (6)
C2—N3—N4105.8 (5)N1—C8—C7110.2 (6)
C2—N3—Cu1133.1 (5)N1—C8—C9121.6 (6)
N4—N3—Cu1120.4 (4)C7—C8—C9128.3 (6)
C4—N4—N3111.6 (5)C8—C9—H9A109.5
C4—N4—H4124.2C8—C9—H9B109.5
N3—N4—H4124.2H9A—C9—H9B109.5
C2—C1—H1A109.5C8—C9—H9C109.5
C2—C1—H1B109.5H9A—C9—H9C109.5
H1A—C1—H1B109.5H9B—C9—H9C109.5
C2—C1—H1C109.5N2—C10—C7106.9 (5)
H1A—C1—H1C109.5N2—C10—C11120.3 (6)
H1B—C1—H1C109.5C7—C10—C11132.8 (7)
N3—C2—C3110.0 (6)C10—C11—H11A109.5
N3—C2—C1120.3 (6)C10—C11—H11B109.5
C3—C2—C1129.7 (6)H11A—C11—H11B109.5
C4—C3—C2104.5 (6)C10—C11—H11C109.5
C4—C3—C6127.9 (6)H11A—C11—H11C109.5
C2—C3—C6127.5 (6)H11B—C11—H11C109.5
N4—C4—C3108.0 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1iii0.862.433.242 (6)157
N4—H4···Cl1ii0.862.343.172 (6)164
Symmetry codes: (ii) x+1, y, z+2; (iii) x+1, y+1, z1.

Experimental details

Crystal data
Chemical formula[Cu2Cl4(C11H16N4)]
Mr677.44
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)8.759 (3), 8.879 (3), 9.735 (3)
α, β, γ (°)79.269 (6), 63.584 (5), 86.922 (5)
V3)665.8 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.26 × 0.23 × 0.19
Data collection
DiffractometerBruker APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.621, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
3354, 2331, 1541
Rint0.033
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.178, 0.99
No. of reflections2331
No. of parameters167
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.79, 1.14

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl1i0.862.433.242 (6)156.6
N4—H4···Cl1ii0.862.343.172 (6)163.8
Symmetry codes: (i) x+1, y+1, z1; (ii) x+1, y, z+2.
 

Acknowledgements

The author is grateful to Shuren University for financial support.

References

First citationBruker (2004). APEX2. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationKaes, C., Hosseini, M. W., Richard, C. E. F., Skelton, B. B. & White, A. (1998). Angew. Chem. Int. Ed. 37, 920–922.  CrossRef CAS Google Scholar
First citationNassimbeni, L. R. (2003). Acc. Chem. Res. 36, 631–637.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYaghi, O. M., Li, H., Davis, C., Richardson, D. & Groy, T. L. (1998). Acc. Chem. Res. 31, 474–484.  Web of Science CrossRef CAS Google Scholar
First citationYagi, T., Hanai, H., Komorita, T., Suzuki, T. & Kaizaki, S. J. (2002). J. Chem. Soc. Dalton. Trans. pp. 1126–1131.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds