metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­acetato[N,N′-bis­­(2-pyridylmethyl­­idene)cyclo­hexane-1,2-di­amine]manganese(II) hexa­hydrate

aDepartment of Chemistry, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea, and bSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 24 January 2008; accepted 1 February 2008; online 6 February 2008)

The asymmetric unit of the title compound, [Mn(C2H3O2)2(C18H20N4)]·6H2O, consists of a neutral MnII complex with six solvent water mol­ecules. In the complex, the Mn2+ ion is eight-coordinated in a distorted square-anti­prismatic environment by four N atoms from the tetra­dentate ligand N,N′-bis­(2-pyridylmethyl­idene)cyclo­hexane-1,2-diamine (bpic) and four O atoms from two acetate ligands. The compound displays inter­molecular O—H⋯O hydrogen-bond inter­actions to form various kinds of ring structures and cyclic water clusters.

Related literature

For details of some other Mn(bpic) complexes, see: Hwang & Ha (2007[Hwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2465.]); Lu et al. (2006[Lu, X.-H., Xia, Q.-H., Zhan, H.-J., Yuan, H.-X., Ye, C.-P., Su, K.-X. & Xu, G. (2006). J. Mol. Catal. A Chem. 250, 62-69.]); Schoumacker et al. (2003[Schoumacker, S., Hamelin, O., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 8110-8116.]). For related literature, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C2H3O2)2(C18H20N4)]·6H2O

  • Mr = 573.50

  • Triclinic, [P \overline 1]

  • a = 8.5124 (5) Å

  • b = 11.6768 (7) Å

  • c = 15.1971 (10) Å

  • α = 79.049 (1)°

  • β = 85.195 (1)°

  • γ = 71.484 (1)°

  • V = 1405.83 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.53 mm−1

  • T = 243 (2) K

  • 0.25 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.824, Tmax = 0.900

  • 11880 measured reflections

  • 5710 independent reflections

  • 4641 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.02

  • 5710 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3 0.922 1.793 2.705 (2) 169
O1W—H1WB⋯O2W 0.728 2.054 2.770 (3) 168
O2W—H2WA⋯O3W 0.724 2.523 2.738 (3) 100
O2W—H2WB⋯O6Wi 0.862 1.975 2.835 (3) 176
O3W—H3WA⋯O1Wii 0.846 1.972 2.807 (3) 169
O3W—H3WB⋯O5Wiii 0.929 1.915 2.821 (3) 165
O4W—H4WA⋯O2iv 0.868 1.986 2.845 (2) 170
O4W—H4WB⋯O4 0.875 1.892 2.759 (2) 171
O5W—H5WA⋯O4W 0.839 1.993 2.821 (3) 169
O5W—H5WB⋯O6Wv 0.818 2.281 2.937 (3) 138
O6W—H6WA⋯O1 0.933 1.820 2.741 (2) 169
O6W—H6WB⋯O1W 0.916 1.915 2.803 (3) 163
Symmetry codes: (i) -x, -y, -z+1; (ii) -x+1, -y, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x+1, y, z; (v) x, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure of the title compound, [Mn(CH3CO2)2(C18H20N4)].6(H2O), consists of a neutral MnII complex with six solvent water molecules (Fig. 1). In the complex, the Mn2+ ion is eight-coordinated in a distorted square antiprismatic environment by four N atoms from the tetradentate ligand N,N'-bis(2-pyridylmethylidene)cyclohexane-1,2-diamine (bpic) and four O atoms from two acetate anion ligands (Fig. 2). The four N atoms and the four O atoms lie approximately on respective coordination planes with the largest deviations 0.223 Å (N3) and 0.219 Å (O1) from the respective least-squares planes, and the dihedral angles between these planes is 87.67 (3)°. The Mn—N(pyridyl) bonds (2.4166 (16) and 2.3899 (17) Å) are slightly longer than the Mn—N(imine) bonds (2.3257 (16) and 2.2979 (16) Å). While the Mn—O3/O4 bond lengths (2.3395 (14) and 2.3232 (14) Å) are almost equal, the Mn—O2 bond (2.4997 (15) Å) is considerably longer than the Mn—O1 bond (2.2425 (15) Å). The compound displays intermolecular O—H···O hydrogen-bond interactions (Table 1) to form various kinds of ring structures (8- and 28-membered ring with consideration of H-atoms) and cyclic water clusters (Fig. 3 and Fig. 4). The water clusters consist of a water tetramer (O3w/O1wii/O6wii/O5wiii) and two kinds of water hexamers (O2w/O1w/O6w/O2wi/O1wi/O6wi and O1w/O2w/O3w/O1wii/O2wii/O3wii), forming a polycyclic and one-dimensional chain structure along the a axis (Fig. 4). In the graph set notation for the structure, the 8-, 28-membered ring, and the water tetramer can be described by R33(8), R1212(28), and R44(8), respectively (Bernstein et al., 1995). Both of the water hexamers can be represented by R66(12), the basic binary graph set is C(8), and therefore the full designation is C(8)[R66(12)].

Related literature top

For details of some other Mn(bpic) complexes, see: Hwang & Ha (2007); Lu et al. (2006); Schoumacker et al. (2003). For related literature, see: Bernstein et al. (1995).

Experimental top

A solution of Mn(CH3CO2)2.4H2O (0.42 g, 1.71 mmol) and N,N'-bis(2-pyridylmethylidene)cyclohexane-1,2-diamine (0.50 g, 1.71 mmol) in EtOH (20 ml) was stirred for 2 h at room temparature. After add of diethyl ether to the solution, the formed dark brown precipitate was removed by filtration. The solvent of the filtrate was evaporated, the residue washed with acetone and dried under vacuum, to give a yellow powder (0.38 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from an MeOH solution. MS (FAB): m/z 406 (Mn(bpic)(CH3CO2)+); IR (KBr): 3471 cm-1 (broad).

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective carrier atoms [C—H = 0.94 (aromatic CH), 0.97 (CH3), 0.98 (CH2) or 0.99 Å (CH) and Uiso(H) = 1.2Ueq(CH, CH2) or 1.5Ueq(CH3)]. The H atoms of the solvent water molecules were located from difference maps then allowed to ride on their parent O atom in the final cycles of refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with the numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms and the solvent H2O molecules have been omitted for clarity.
[Figure 2] Fig. 2. View of the distorted square antiprismatic geometry around the eight-coordinated Mn atom. Dashed lines (no bonds) are used for the clear representation of the structure.
[Figure 3] Fig. 3. The structure and hydrogen-bond connectivity in the title compound [Symmetry codes: (ii) -x + 1, -y, -z + 1, (iii) -x + 1, -y + 1, -z + 1, (v) x, y + 1, z]. Hydrogen-bond interactions are drawn with dashed lines.
Diacetato[N,N'-bis(2-pyridylmethylidene)cyclohexane-1,2-diamine]manganese(II) hexahydrate top
Crystal data top
[Mn(C2H3O2)2(C18H20N4)]·6H2OZ = 2
Mr = 573.50F(000) = 606
Triclinic, P1Dx = 1.355 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5124 (5) ÅCell parameters from 5115 reflections
b = 11.6768 (7) Åθ = 2.5–26.4°
c = 15.1971 (10) ŵ = 0.53 mm1
α = 79.049 (1)°T = 243 K
β = 85.195 (1)°Plate, yellow
γ = 71.484 (1)°0.25 × 0.25 × 0.20 mm
V = 1405.83 (15) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5710 independent reflections
Radiation source: fine-focus sealed tube4641 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1010
Tmin = 0.824, Tmax = 0.900k = 1411
11880 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
5710 reflections(Δ/σ)max < 0.001
348 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Mn(C2H3O2)2(C18H20N4)]·6H2Oγ = 71.484 (1)°
Mr = 573.50V = 1405.83 (15) Å3
Triclinic, P1Z = 2
a = 8.5124 (5) ÅMo Kα radiation
b = 11.6768 (7) ŵ = 0.53 mm1
c = 15.1971 (10) ÅT = 243 K
α = 79.049 (1)°0.25 × 0.25 × 0.20 mm
β = 85.195 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5710 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4641 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 0.900Rint = 0.015
11880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 0.44 e Å3
5710 reflectionsΔρmin = 0.20 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.10542 (3)0.36835 (2)0.246905 (18)0.03241 (11)
O10.00485 (18)0.21992 (14)0.23912 (11)0.0489 (4)
O20.17312 (19)0.40053 (14)0.18729 (11)0.0521 (4)
O30.30084 (18)0.22868 (14)0.34637 (10)0.0485 (4)
O40.33692 (17)0.40494 (13)0.29163 (10)0.0447 (3)
N10.2970 (2)0.26036 (15)0.14149 (11)0.0376 (4)
N20.1216 (2)0.49712 (14)0.11176 (11)0.0376 (4)
N30.0140 (2)0.56946 (14)0.26365 (11)0.0394 (4)
N40.0488 (2)0.38102 (15)0.38548 (11)0.0395 (4)
C10.3813 (3)0.14166 (18)0.15517 (15)0.0430 (5)
H10.36270.09300.20940.052*
C20.4955 (3)0.0858 (2)0.09360 (16)0.0472 (5)
H20.55210.00130.10590.057*
C30.5244 (3)0.1557 (2)0.01452 (16)0.0488 (5)
H30.60110.12000.02840.059*
C40.4383 (3)0.2801 (2)0.00113 (14)0.0442 (5)
H40.45650.33040.05450.053*
C50.3251 (2)0.32855 (18)0.06336 (13)0.0364 (4)
C60.2242 (3)0.45858 (18)0.05085 (13)0.0416 (5)
H60.23610.51240.00190.050*
C70.0127 (3)0.62390 (18)0.10445 (14)0.0421 (5)
H70.10190.62330.09860.051*
C80.0499 (3)0.71342 (19)0.02540 (15)0.0518 (6)
H8A0.03450.68880.03060.062*
H8B0.16580.71110.02680.062*
C90.0627 (3)0.8432 (2)0.02776 (17)0.0600 (6)
H9A0.03260.89970.02210.072*
H9B0.17780.84730.02050.072*
C100.0483 (3)0.8819 (2)0.11493 (18)0.0613 (7)
H10A0.12370.96500.11560.074*
H10B0.06500.88310.12040.074*
C110.0909 (3)0.79408 (19)0.19376 (16)0.0533 (6)
H11A0.07820.81950.24990.064*
H11B0.20670.79730.19040.064*
C120.0206 (3)0.66403 (18)0.19347 (14)0.0448 (5)
H120.13590.66250.20030.054*
C130.1067 (3)0.59486 (19)0.33081 (14)0.0476 (5)
H130.16080.67700.33650.057*
C140.1294 (3)0.49444 (19)0.40028 (14)0.0428 (5)
C150.2256 (3)0.5172 (2)0.47669 (16)0.0625 (7)
H150.28230.59810.48450.075*
C160.2375 (3)0.4208 (2)0.54085 (16)0.0628 (7)
H160.30110.43440.59370.075*
C170.1552 (3)0.3041 (2)0.52677 (15)0.0542 (6)
H170.16170.23600.56960.065*
C180.0623 (3)0.2882 (2)0.44841 (15)0.0478 (5)
H180.00590.20780.43910.057*
C190.1417 (3)0.2873 (2)0.20639 (13)0.0395 (5)
C200.2647 (3)0.2269 (2)0.18806 (15)0.0492 (5)
H20A0.37310.28760.17940.074*
H20B0.27020.16330.23850.074*
H20C0.23000.19080.13440.074*
C210.3823 (2)0.30202 (19)0.34188 (13)0.0399 (5)
C220.5335 (3)0.2686 (2)0.39741 (16)0.0576 (6)
H22A0.50280.25290.46040.086*
H22B0.58050.33570.38630.086*
H22C0.61460.19550.38130.086*
O1W0.2901 (2)0.00775 (14)0.43614 (12)0.0567 (4)
H1WA0.30310.08260.41080.070 (8)*
H1WB0.27800.01700.48260.30 (4)*
O2W0.1964 (3)0.0360 (3)0.61170 (14)0.0812 (6)
H2WA0.16710.10240.60220.13 (2)*
H2WB0.10130.03750.63680.139 (16)*
O3W0.4248 (2)0.1469 (2)0.63610 (18)0.0914 (7)
H3WA0.50880.10760.60830.091 (11)*
H3WB0.46040.16240.68750.18 (2)*
O4W0.5080 (2)0.56612 (16)0.21655 (16)0.0819 (6)
H4WA0.61030.52200.20980.085 (10)*
H4WB0.46350.50850.23890.103 (12)*
O5W0.4092 (3)0.81922 (17)0.22246 (14)0.0772 (6)
H5WA0.42970.74320.22680.080 (10)*
H5WB0.32720.82340.25540.17 (2)*
O6W0.1096 (2)0.02700 (15)0.30287 (12)0.0592 (4)
H6WA0.06270.05450.27600.082 (9)*
H6WB0.16420.00000.34000.161 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.03681 (18)0.02715 (17)0.03107 (17)0.00713 (12)0.00063 (12)0.00511 (11)
O10.0391 (8)0.0549 (9)0.0551 (9)0.0131 (7)0.0003 (7)0.0183 (7)
O20.0579 (10)0.0514 (10)0.0519 (9)0.0249 (8)0.0013 (7)0.0086 (7)
O30.0504 (9)0.0487 (9)0.0446 (9)0.0162 (7)0.0017 (7)0.0035 (7)
O40.0431 (8)0.0404 (8)0.0479 (9)0.0090 (6)0.0052 (7)0.0058 (7)
N10.0417 (9)0.0353 (9)0.0366 (9)0.0122 (7)0.0025 (7)0.0089 (7)
N20.0489 (10)0.0310 (8)0.0326 (9)0.0115 (7)0.0006 (7)0.0065 (7)
N30.0495 (10)0.0320 (9)0.0340 (9)0.0082 (8)0.0002 (8)0.0068 (7)
N40.0417 (9)0.0379 (9)0.0348 (9)0.0052 (7)0.0004 (7)0.0092 (7)
C10.0497 (12)0.0344 (11)0.0450 (12)0.0122 (9)0.0014 (10)0.0098 (9)
C20.0443 (12)0.0395 (12)0.0587 (14)0.0078 (10)0.0027 (10)0.0185 (10)
C30.0407 (12)0.0544 (14)0.0553 (14)0.0120 (10)0.0079 (10)0.0274 (11)
C40.0466 (12)0.0530 (13)0.0375 (11)0.0198 (10)0.0077 (9)0.0144 (9)
C50.0417 (11)0.0382 (11)0.0327 (10)0.0155 (9)0.0019 (8)0.0104 (8)
C60.0556 (13)0.0395 (11)0.0316 (10)0.0190 (10)0.0047 (9)0.0059 (8)
C70.0520 (13)0.0342 (11)0.0392 (11)0.0123 (9)0.0010 (9)0.0058 (8)
C80.0720 (16)0.0378 (12)0.0405 (12)0.0146 (11)0.0032 (11)0.0006 (9)
C90.0719 (16)0.0416 (13)0.0589 (16)0.0143 (12)0.0001 (12)0.0035 (11)
C100.0750 (17)0.0353 (12)0.0701 (17)0.0155 (12)0.0096 (13)0.0081 (11)
C110.0665 (15)0.0360 (12)0.0536 (14)0.0103 (11)0.0073 (11)0.0120 (10)
C120.0553 (13)0.0353 (11)0.0421 (12)0.0117 (10)0.0017 (10)0.0078 (9)
C130.0587 (14)0.0331 (11)0.0427 (12)0.0014 (10)0.0058 (10)0.0116 (9)
C140.0481 (12)0.0410 (11)0.0343 (11)0.0042 (9)0.0012 (9)0.0118 (9)
C150.0778 (18)0.0511 (14)0.0487 (14)0.0061 (13)0.0186 (12)0.0176 (11)
C160.0758 (18)0.0690 (17)0.0383 (13)0.0157 (14)0.0151 (12)0.0153 (12)
C170.0607 (15)0.0579 (15)0.0386 (12)0.0159 (12)0.0033 (11)0.0013 (10)
C180.0547 (13)0.0380 (11)0.0436 (12)0.0076 (10)0.0010 (10)0.0029 (9)
C190.0418 (12)0.0518 (13)0.0311 (10)0.0206 (10)0.0081 (9)0.0150 (9)
C200.0476 (13)0.0617 (14)0.0465 (13)0.0258 (11)0.0011 (10)0.0144 (11)
C210.0362 (11)0.0473 (12)0.0329 (10)0.0055 (9)0.0035 (8)0.0138 (9)
C220.0445 (13)0.0690 (16)0.0508 (14)0.0004 (12)0.0108 (11)0.0150 (12)
O1W0.0722 (11)0.0445 (9)0.0502 (10)0.0161 (8)0.0028 (8)0.0054 (7)
O2W0.0723 (14)0.105 (2)0.0708 (14)0.0352 (12)0.0181 (11)0.0214 (12)
O3W0.0600 (12)0.0983 (16)0.1221 (19)0.0099 (11)0.0115 (12)0.0648 (15)
O4W0.0647 (13)0.0402 (10)0.1278 (19)0.0123 (9)0.0159 (11)0.0025 (10)
O5W0.0905 (15)0.0564 (13)0.0820 (14)0.0182 (10)0.0101 (12)0.0188 (10)
O6W0.0592 (10)0.0523 (10)0.0660 (11)0.0178 (8)0.0009 (9)0.0097 (8)
Geometric parameters (Å, º) top
Mn—O12.2425 (15)C9—H9B0.9800
Mn—N32.2979 (16)C10—C111.521 (3)
Mn—O42.3232 (14)C10—H10A0.9800
Mn—N22.3257 (16)C10—H10B0.9800
Mn—O32.3395 (14)C11—C121.514 (3)
Mn—N42.3899 (17)C11—H11A0.9800
Mn—N12.4166 (16)C11—H11B0.9800
Mn—O22.4997 (15)C12—H120.9900
O1—C191.261 (2)C13—C141.472 (3)
O2—C191.244 (3)C13—H130.9400
O3—C211.251 (3)C14—C151.382 (3)
O4—C211.258 (2)C15—C161.366 (3)
N1—C11.328 (3)C15—H150.9400
N1—C51.347 (2)C16—C171.369 (3)
N2—C61.263 (3)C16—H160.9400
N2—C71.465 (2)C17—C181.382 (3)
N3—C131.258 (3)C17—H170.9400
N3—C121.466 (3)C18—H180.9400
N4—C181.330 (3)C19—C201.504 (3)
N4—C141.336 (3)C20—H20A0.9700
C1—C21.387 (3)C20—H20B0.9700
C1—H10.9400C20—H20C0.9700
C2—C31.370 (3)C21—C221.503 (3)
C2—H20.9400C22—H22A0.9700
C3—C41.388 (3)C22—H22B0.9700
C3—H30.9400C22—H22C0.9700
C4—C51.384 (3)O1W—H1WA0.922
C4—H40.9400O1W—H1WB0.728
C5—C61.473 (3)O2W—H2WA0.724
C6—H60.9400O2W—H2WB0.862
C7—C81.518 (3)O3W—H3WA0.846
C7—C121.526 (3)O3W—H3WB0.929
C7—H70.9900O4W—H4WA0.868
C8—C91.520 (3)O4W—H4WB0.875
C8—H8A0.9800O5W—H5WA0.839
C8—H8B0.9800O5W—H5WB0.818
C9—C101.505 (4)O6W—H6WA0.933
C9—H9A0.9800O6W—H6WB0.916
O1—Mn—N3131.76 (6)C9—C8—H8A109.4
O1—Mn—O4143.52 (5)C7—C8—H8B109.4
N3—Mn—O481.25 (6)C9—C8—H8B109.4
O1—Mn—N2115.12 (6)H8A—C8—H8B108.0
N3—Mn—N270.09 (6)C10—C9—C8110.9 (2)
O4—Mn—N288.15 (6)C10—C9—H9A109.5
O1—Mn—O389.34 (5)C8—C9—H9A109.5
N3—Mn—O3122.24 (6)C10—C9—H9B109.5
O4—Mn—O355.61 (5)C8—C9—H9B109.5
N2—Mn—O3134.37 (6)H9A—C9—H9B108.1
O1—Mn—N484.05 (6)C9—C10—C11110.6 (2)
N3—Mn—N469.42 (6)C9—C10—H10A109.5
O4—Mn—N497.39 (6)C11—C10—H10A109.5
N2—Mn—N4137.68 (6)C9—C10—H10B109.5
O3—Mn—N479.35 (5)C11—C10—H10B109.5
O1—Mn—N179.49 (5)H10A—C10—H10B108.1
N3—Mn—N1136.20 (6)C12—C11—C10110.97 (19)
O4—Mn—N184.34 (5)C12—C11—H11A109.4
N2—Mn—N168.30 (6)C10—C11—H11A109.4
O3—Mn—N180.28 (5)C12—C11—H11B109.4
N4—Mn—N1153.85 (6)C10—C11—H11B109.4
O1—Mn—O254.45 (5)H11A—C11—H11B108.0
N3—Mn—O281.85 (6)N3—C12—C11116.19 (18)
O4—Mn—O2162.02 (5)N3—C12—C7106.13 (16)
N2—Mn—O280.34 (5)C11—C12—C7111.00 (17)
O3—Mn—O2140.89 (5)N3—C12—H12107.7
N4—Mn—O282.32 (5)C11—C12—H12107.7
N1—Mn—O2103.87 (5)C7—C12—H12107.7
C19—O1—Mn97.99 (12)N3—C13—C14119.20 (18)
C19—O2—Mn86.39 (12)N3—C13—H13120.4
C21—O3—Mn91.80 (12)C14—C13—H13120.4
C21—O4—Mn92.38 (12)N4—C14—C15122.6 (2)
C1—N1—C5117.49 (17)N4—C14—C13115.85 (18)
C1—N1—Mn125.96 (14)C15—C14—C13121.57 (19)
C5—N1—Mn116.50 (12)C16—C15—C14119.3 (2)
C6—N2—C7123.33 (17)C16—C15—H15120.3
C6—N2—Mn120.53 (13)C14—C15—H15120.3
C7—N2—Mn116.07 (12)C15—C16—C17118.8 (2)
C13—N3—C12122.54 (17)C15—C16—H16120.6
C13—N3—Mn119.87 (14)C17—C16—H16120.6
C12—N3—Mn117.58 (12)C16—C17—C18118.8 (2)
C18—N4—C14117.34 (18)C16—C17—H17120.6
C18—N4—Mn127.12 (14)C18—C17—H17120.6
C14—N4—Mn115.54 (13)N4—C18—C17123.2 (2)
N1—C1—C2123.4 (2)N4—C18—H18118.4
N1—C1—H1118.3C17—C18—H18118.4
C2—C1—H1118.3O2—C19—O1121.13 (19)
C3—C2—C1118.9 (2)O2—C19—C20120.55 (19)
C3—C2—H2120.5O1—C19—C20118.29 (19)
C1—C2—H2120.5C19—C20—H20A109.5
C2—C3—C4118.8 (2)C19—C20—H20B109.5
C2—C3—H3120.6H20A—C20—H20B109.5
C4—C3—H3120.6C19—C20—H20C109.5
C5—C4—C3118.7 (2)H20A—C20—H20C109.5
C5—C4—H4120.6H20B—C20—H20C109.5
C3—C4—H4120.6O3—C21—O4120.18 (18)
N1—C5—C4122.72 (18)O3—C21—C22120.3 (2)
N1—C5—C6114.99 (17)O4—C21—C22119.5 (2)
C4—C5—C6122.28 (18)C21—C22—H22A109.5
N2—C6—C5119.34 (18)C21—C22—H22B109.5
N2—C6—H6120.3H22A—C22—H22B109.5
C5—C6—H6120.3C21—C22—H22C109.5
N2—C7—C8115.54 (18)H22A—C22—H22C109.5
N2—C7—C12106.62 (15)H22B—C22—H22C109.5
C8—C7—C12111.62 (17)H1WA—O1W—H1WB98
N2—C7—H7107.6H2WA—O2W—H2WB88
C8—C7—H7107.6H3WA—O3W—H3WB108
C12—C7—H7107.6H4WA—O4W—H4WB100
C7—C8—C9111.09 (19)H5WA—O5W—H5WB91
C7—C8—H8A109.4H6WA—O6W—H6WB88
N3—Mn—O1—C1928.31 (15)N3—Mn—N4—C18177.26 (18)
O4—Mn—O1—C19178.17 (11)O4—Mn—N4—C1899.54 (17)
N2—Mn—O1—C1956.78 (13)N2—Mn—N4—C18165.06 (16)
O3—Mn—O1—C19163.13 (12)O3—Mn—N4—C1846.69 (17)
N4—Mn—O1—C1983.77 (12)N1—Mn—N4—C187.3 (2)
N1—Mn—O1—C19116.63 (13)O2—Mn—N4—C1898.60 (17)
O2—Mn—O1—C191.03 (11)O1—Mn—N4—C14136.26 (15)
O1—Mn—O2—C191.03 (11)N3—Mn—N4—C142.72 (14)
N3—Mn—O2—C19157.30 (13)O4—Mn—N4—C1480.45 (15)
O4—Mn—O2—C19177.43 (15)N2—Mn—N4—C1414.95 (19)
N2—Mn—O2—C19131.64 (13)O3—Mn—N4—C14133.30 (15)
O3—Mn—O2—C1924.61 (16)N1—Mn—N4—C14172.66 (14)
N4—Mn—O2—C1987.12 (12)O2—Mn—N4—C1481.41 (15)
N1—Mn—O2—C1967.00 (12)C5—N1—C1—C20.1 (3)
O1—Mn—O3—C21170.16 (12)Mn—N1—C1—C2176.94 (15)
N3—Mn—O3—C2148.56 (14)N1—C1—C2—C30.3 (3)
O4—Mn—O3—C210.94 (11)C1—C2—C3—C40.0 (3)
N2—Mn—O3—C2144.52 (15)C2—C3—C4—C50.7 (3)
N4—Mn—O3—C21105.77 (12)C1—N1—C5—C40.9 (3)
N1—Mn—O3—C2190.71 (12)Mn—N1—C5—C4176.47 (15)
O2—Mn—O3—C21169.22 (11)C1—N1—C5—C6178.17 (18)
O1—Mn—O4—C2119.26 (17)Mn—N1—C5—C64.5 (2)
N3—Mn—O4—C21138.47 (13)C3—C4—C5—N11.2 (3)
N2—Mn—O4—C21151.39 (12)C3—C4—C5—C6177.80 (19)
O3—Mn—O4—C210.93 (11)C7—N2—C6—C5178.27 (18)
N4—Mn—O4—C2170.72 (12)Mn—N2—C6—C54.6 (3)
N1—Mn—O4—C2183.02 (12)N1—C5—C6—N20.1 (3)
O2—Mn—O4—C21158.63 (16)C4—C5—C6—N2179.21 (19)
O1—Mn—N1—C155.50 (16)C6—N2—C7—C810.0 (3)
N3—Mn—N1—C1162.74 (15)Mn—N2—C7—C8167.23 (15)
O4—Mn—N1—C191.65 (16)C6—N2—C7—C12134.7 (2)
N2—Mn—N1—C1178.08 (18)Mn—N2—C7—C1242.56 (19)
O3—Mn—N1—C135.63 (16)N2—C7—C8—C9176.28 (19)
N4—Mn—N1—C13.6 (2)C12—C7—C8—C954.2 (3)
O2—Mn—N1—C1104.60 (16)C7—C8—C9—C1056.3 (3)
O1—Mn—N1—C5127.40 (14)C8—C9—C10—C1157.9 (3)
N3—Mn—N1—C514.36 (17)C9—C10—C11—C1257.8 (3)
O4—Mn—N1—C585.44 (13)C13—N3—C12—C1113.9 (3)
N2—Mn—N1—C54.82 (13)Mn—N3—C12—C11165.37 (15)
O3—Mn—N1—C5141.47 (14)C13—N3—C12—C7137.8 (2)
N4—Mn—N1—C5179.31 (13)Mn—N3—C12—C741.4 (2)
O2—Mn—N1—C578.31 (14)C10—C11—C12—N3176.85 (19)
O1—Mn—N2—C671.18 (17)C10—C11—C12—C755.5 (3)
N3—Mn—N2—C6161.05 (17)N2—C7—C12—N351.9 (2)
O4—Mn—N2—C679.68 (16)C8—C7—C12—N3178.90 (18)
O3—Mn—N2—C644.99 (19)N2—C7—C12—C11178.96 (17)
N4—Mn—N2—C6178.64 (14)C8—C7—C12—C1154.0 (2)
N1—Mn—N2—C64.96 (15)C12—N3—C13—C14177.34 (18)
O2—Mn—N2—C6114.19 (16)Mn—N3—C13—C143.4 (3)
O1—Mn—N2—C7111.51 (14)C18—N4—C14—C150.8 (3)
N3—Mn—N2—C716.27 (13)Mn—N4—C14—C15179.20 (18)
O4—Mn—N2—C797.64 (14)C18—N4—C14—C13177.84 (19)
O3—Mn—N2—C7132.33 (13)Mn—N4—C14—C132.1 (2)
N4—Mn—N2—C71.33 (18)N3—C13—C14—N40.7 (3)
N1—Mn—N2—C7177.72 (15)N3—C13—C14—C15177.9 (2)
O2—Mn—N2—C768.49 (14)N4—C14—C15—C161.1 (4)
O1—Mn—N3—C1357.80 (19)C13—C14—C15—C16177.4 (2)
O4—Mn—N3—C13104.62 (17)C14—C15—C16—C170.9 (4)
N2—Mn—N3—C13164.18 (18)C15—C16—C17—C180.4 (4)
O3—Mn—N3—C1365.21 (19)C14—N4—C18—C170.3 (3)
N4—Mn—N3—C133.27 (16)Mn—N4—C18—C17179.74 (17)
N1—Mn—N3—C13176.88 (15)C16—C17—C18—N40.1 (4)
O2—Mn—N3—C1381.55 (17)Mn—O2—C19—O11.75 (19)
O1—Mn—N3—C12121.46 (14)Mn—O2—C19—C20179.73 (18)
O4—Mn—N3—C1276.12 (14)Mn—O1—C19—O22.0 (2)
N2—Mn—N3—C1215.08 (14)Mn—O1—C19—C20179.99 (15)
O3—Mn—N3—C12115.53 (14)Mn—O3—C21—O41.7 (2)
N4—Mn—N3—C12177.47 (15)Mn—O3—C21—C22177.48 (17)
N1—Mn—N3—C123.86 (18)Mn—O4—C21—O31.7 (2)
O2—Mn—N3—C1297.71 (14)Mn—O4—C21—C22177.47 (17)
O1—Mn—N4—C1843.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.9221.7932.705 (2)169
O1W—H1WB···O2W0.7282.0542.770 (3)168
O2W—H2WA···O3W0.7242.5232.738 (3)100
O2W—H2WB···O6Wi0.8621.9752.835 (3)176
O3W—H3WA···O1Wii0.8461.9722.807 (3)169
O3W—H3WB···O5Wiii0.9291.9152.821 (3)165
O4W—H4WA···O2iv0.8681.9862.845 (2)170
O4W—H4WB···O40.8751.8922.759 (2)171
O5W—H5WA···O4W0.8391.9932.821 (3)169
O5W—H5WB···O6Wv0.8182.2812.937 (3)138
O6W—H6WA···O10.9331.8202.741 (2)169
O6W—H6WB···O1W0.9161.9152.803 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn(C2H3O2)2(C18H20N4)]·6H2O
Mr573.50
Crystal system, space groupTriclinic, P1
Temperature (K)243
a, b, c (Å)8.5124 (5), 11.6768 (7), 15.1971 (10)
α, β, γ (°)79.049 (1), 85.195 (1), 71.484 (1)
V3)1405.83 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.25 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.824, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
11880, 5710, 4641
Rint0.015
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.02
No. of reflections5710
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.20

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O30.9221.7932.705 (2)169
O1W—H1WB···O2W0.7282.0542.770 (3)168
O2W—H2WA···O3W0.7242.5232.738 (3)100
O2W—H2WB···O6Wi0.8621.9752.835 (3)176
O3W—H3WA···O1Wii0.8461.9722.807 (3)169
O3W—H3WB···O5Wiii0.9291.9152.821 (3)165
O4W—H4WA···O2iv0.8681.9862.845 (2)170
O4W—H4WB···O40.8751.8922.759 (2)171
O5W—H5WA···O4W0.8391.9932.821 (3)169
O5W—H5WB···O6Wv0.8182.2812.937 (3)138
O6W—H6WA···O10.9331.8202.741 (2)169
O6W—H6WB···O1W0.9161.9152.803 (3)163
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z+1; (iv) x+1, y, z; (v) x, y+1, z.
 

Acknowledgements

This research was supported in part by the BK21 programme of the Ministry of Education and Human Resources Development, Republic of Korea.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SADABS (Version 2.03), SMART (Version 5.618) and SAINT (Version 6.02a). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHwang, I.-C. & Ha, K. (2007). Acta Cryst. E63, m2465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLu, X.-H., Xia, Q.-H., Zhan, H.-J., Yuan, H.-X., Ye, C.-P., Su, K.-X. & Xu, G. (2006). J. Mol. Catal. A Chem. 250, 62–69.  Web of Science CrossRef CAS Google Scholar
First citationSchoumacker, S., Hamelin, O., Pécaut, J. & Fontecave, M. (2003). Inorg. Chem. 42, 8110–8116.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds