Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The six-membered B2H4 ring of the title compound, C36H30B2N8, adopts a slightly distorted boat conformation, with the terminal B substituents in a trans orientation. One 3-­phenyl­pyrazolyl group is in an equatorial position, whereas the second is in an axial position with respect to the plane defined by the B atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105021967/dn1094sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105021967/dn1094Isup2.hkl
Contains datablock I

CCDC reference: 282215

Comment top

First introduced by Trofimenko (1967), pyrazaboles constitutes a unique class of heterocyclic compounds containing a B—N bond, mainly due to their high chemical and thermal stability (Trofimenko, 1999). In recent decades, a series of pyrazaboles have been reported in the literature (Niedenzu, 1988), and used as building blocks for discotic liquid crystals (Barberá et al., 1994) and as bridges for ansa-ferrocenes to form active container molecules for supramolecular applications (Jäkle et al., 1996; Herdtweck et al., 1996). The structural characterization of these compounds has become an important tool in order to define their conformational structures in the solid state. Fig. 1 represents the possible conformations of pyrazaboles.

Most of the pyrazabole derivatives which have been structurally characterized to date are related to symmetrical pyrazaboles, R2B(µ-Pz)2BR2 (R = H, Et, Pz, Ph, F or Br, and Pz = pyrazol-1-yl) (Barberá et al., 2000; Clarke et al., 1987; Hanecker et al., 1985; Atwood et al., 1992) or R1RB(µ-pz)2BRR1 (R = Et or Ph, and R1 = Pz or Br) (Niedenzu & Nöth, 1983; Bielawski et al., 1986) and asymmetrical ones, such as R2B(µ-pz)2BR12 (R = H or Cl, and R1 = Pz or Ph) (Clarke et al., 1987) or R2B(µ-pz)2BR1R2 (R = H, R1 = H, and R2 = Br) (Hodgkins & Powell, 1992; Niedenzu et al., 1985). On the other hand, although several papers report the synthesis and spectroscopic characterization of symmetrical disubstituted 4,8-bis(pyrazolyl-1-yl)pyrazaboles, H(Pz')B(µ-pz)2B(Pz')H (Pz'= pyrazol-1-yl or 3,5-dimethylpyrazol-1-yl) (Trofimenko, 1987; Blosch et al., 1992), only the structural characterization of H(Pz)B(µ-pz)2B(Pz)H (Pz = pyrazol-1-yl), (II) has been described to date (Kresinski, 1999). Here, we describe the crystal and molecular structure of the novel H(Pz')B(µ-Pz)2B(Pz')H compound (Pz' = 3-phenylpyrazol-1-yl), (I). Selected bond distances and angles are listed in Table 1.

Fig. 2 shows that the six-membered B2N4 ring adopts a slightly distorted boat conformation, with the terminal B substituents in a trans orientation. The B atoms are tetracoordinated, as confirmed by the almost ideal sp3-hybrydization sphere around them. The two terminal pyrazolyl groups (at the 4- and 8-positions) occupy one axial position and one equatorial position. The dihedral angles between the least-squares plane through the four central atoms of the ring (N1, N2, N5 and N6) and the N2/B2/N5 and N1/B1/N6 planes are 32.42 (2) and 24.11 (2)°, respectively. The B—N [average B—N = 1.550 Å, range 1.513 (2)–1.571 (2) Å] and N—N [average N—N = 1.367 Å, range 1.3633 (17)–1.3708 (18) Å] bond distances are comparable with those found in the related compound, (II) (average B—N = 1.541 Å and average N—N = 1.360 Å; Kresinski, 1999). In contrast with what is observed in (II), the B—H bond distances in the pseudo-equatorial (pe) and pseudo-axial (pa) positions of (I) are very similar [B—Hpe = 1.12 (2) Å and B—Hpa = 1.13 (2) Å], suggesting that the negative charges on the H atoms are equally distributed. One of the four 3-phenylpyrazolyl groups features the pyrazolyl and the phenyl rings in a coplanar orientation (torsion angle N8—C30—C31—C36 = −1.98°), while the others display torsion angles from 34.55 to 60.33°.

The overall structure of (I) is extended through self-complementary C—H···N hydrogen bonds that involve the bridging pyrazolyl group (C19—H19) of one molecule and an N atom (N8) of the terminal pyrazolyl unit of a second molecule. As shown in Fig. 3, this results in the formation of a dimer, with the pyrazabole rings in a mirror-like array across the centre of symmetry. The intermolecular C19—H19···N8 contacts of 2.60 Å (Table 2) are within the sum of the van der Waals radii for the H and N atoms (2.75 Å; Kresinski, 1999) and are longer than the C—H···N contacts [2.41 (2) and 2.52 (2) Å for the two independent molecules] observed in the related pyrazabole compound, (II), which has no phenyl substituent on the pyrazolyl rings (Kresinski, 1999). Steric crowding induced by the phenyl substituents likely accounts for the longer C—H···N contacts in (I).

Despite the presence of many aromatic rings in (I), i.e. the four phenyl substituents and the four pyrazolyl rings, only minimal ππ interactions are observed, which involve the C22–C27 phenyl ring and the N7–N8 pyrazolyl ring (Fig. 3). These observations suggest that the overall distorted-boat conformation of 4,8-disubstituted pyrazaboles, in particular the presence of pseudo-equatorial and pseudo-axial substituents, is mainly governed by the aforementioned C—H···N interactions.

Experimental top

The title compound was obtained as a co-product from the reaction of anhydrous YCl3 (0.25 g, 1.28 mmol) and potassium hydrotris(3-phenylpyrazolyl)borate (KTpph) (0.61 g, 1.28 mmol) in tetrahydrofuran. The mixture was stirred at 293 K for 7 d, over which period the amount of insoluble material decreased. Volatiles were removed under vacuum and the residue was extracted with toluene (2 × 20 ml). The resulting colourless filtrate was evaporated under vacuum and the residue washed with pentane. Crystals of (I) suitable for X-ray diffraction were grown from a 1:2 toluene–pentane solution at 239 K.

Refinement top

All H atoms were located in a difference Fourier synthesis, but those attached to C atoms were treated as riding on their parent C atoms with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atoms attached to B atoms were freely refined with a fixed Uiso value.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1999); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1998); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Possible conformations of pyrazaboles.
[Figure 2] Fig. 2. A view of the molecular structure of compound (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrry radii.
[Figure 3] Fig. 3. A view of (I), showing the dimeric aspect of the structure [symmetry code: (i) 1 − x, −y, 1 − z]
1,5-Diphenyl-4,8-bis(3-phenylpyrazol-1-yl)pyrazabole top
Crystal data top
C36H30B2N8F(000) = 1248
Mr = 596.30Dx = 1.294 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -p 2ynCell parameters from 7153 reflections
a = 11.3980 (2) Åθ = 1.0–27.5°
b = 22.6068 (4) ŵ = 0.08 mm1
c = 13.1547 (2) ÅT = 120 K
β = 115.429 (1)°Prism, colourless
V = 3061.21 (9) Å30.20 × 0.18 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
5037 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
Detector resolution: 19.24 pixels mm-1h = 014
ω scans (1.4°)k = 029
6995 measured reflectionsl = 1715
6995 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.647P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
6995 reflectionsΔρmax = 0.22 e Å3
422 parametersΔρmin = 0.27 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0085 (9)
Crystal data top
C36H30B2N8V = 3061.21 (9) Å3
Mr = 596.30Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.3980 (2) ŵ = 0.08 mm1
b = 22.6068 (4) ÅT = 120 K
c = 13.1547 (2) Å0.20 × 0.18 × 0.10 mm
β = 115.429 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5037 reflections with I > 2σ(I)
6995 measured reflectionsRint = 0.000
6995 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.22 e Å3
6995 reflectionsΔρmin = 0.27 e Å3
422 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.16807 (12)0.00717 (5)0.46082 (11)0.0224 (3)
N20.22961 (12)0.03534 (5)0.53987 (11)0.0223 (3)
N30.21546 (12)0.13469 (5)0.44796 (11)0.0228 (3)
N40.08418 (12)0.13424 (6)0.41407 (11)0.0248 (3)
N50.36303 (12)0.05384 (5)0.43539 (11)0.0228 (3)
N60.28973 (12)0.01827 (5)0.34719 (11)0.0226 (3)
N70.13913 (12)0.07096 (6)0.30016 (11)0.0241 (3)
N80.23138 (12)0.11306 (5)0.35484 (11)0.0249 (3)
C10.11774 (15)0.04722 (7)0.50608 (14)0.0252 (3)
H10.07040.08050.46940.030*
C20.14715 (15)0.03137 (7)0.61555 (14)0.0264 (3)
H20.12430.05160.66600.032*
C30.21770 (15)0.02088 (7)0.63537 (13)0.0231 (3)
C40.27322 (14)0.05548 (7)0.74008 (13)0.0242 (3)
C50.32144 (16)0.02486 (7)0.84226 (14)0.0296 (4)
H50.32170.01630.84240.036*
C60.36878 (18)0.05535 (8)0.94324 (15)0.0358 (4)
H60.40070.03471.01090.043*
C70.36857 (18)0.11677 (8)0.94346 (15)0.0367 (4)
H70.40080.13731.01130.044*
C80.32029 (18)0.14747 (8)0.84242 (15)0.0342 (4)
H80.32000.18860.84260.041*
C90.27240 (16)0.11705 (7)0.74116 (14)0.0283 (4)
H90.23960.13790.67360.034*
C100.25049 (16)0.18295 (7)0.40699 (14)0.0299 (4)
H100.33480.19270.41930.036*
C110.14206 (16)0.21505 (7)0.34474 (14)0.0300 (4)
H110.13690.25020.30640.036*
C120.03989 (15)0.18317 (7)0.35135 (13)0.0243 (3)
C130.10036 (15)0.19676 (7)0.29600 (13)0.0262 (3)
C140.18310 (17)0.18247 (7)0.34539 (16)0.0343 (4)
H140.14940.16540.41660.041*
C150.31545 (17)0.19359 (8)0.28926 (18)0.0415 (5)
H150.36990.18330.32260.050*
C160.36714 (17)0.21999 (8)0.18344 (17)0.0386 (4)
H160.45590.22720.14570.046*
C170.28563 (17)0.23537 (8)0.13509 (15)0.0343 (4)
H170.31960.25330.06470.041*
C180.15322 (16)0.22431 (7)0.19060 (14)0.0297 (4)
H180.09910.23530.15740.036*
C190.47680 (14)0.06431 (7)0.43090 (14)0.0245 (3)
H190.54450.08700.48200.029*
C200.47663 (15)0.03584 (7)0.33793 (13)0.0256 (3)
H200.54290.03590.31460.031*
C210.35755 (15)0.00713 (6)0.28624 (13)0.0235 (3)
C220.30335 (15)0.02764 (7)0.18043 (13)0.0253 (3)
C230.36595 (17)0.07816 (8)0.16874 (15)0.0355 (4)
H230.44140.09120.22850.043*
C240.31579 (19)0.10914 (9)0.06770 (16)0.0417 (5)
H240.35750.14310.06030.050*
C250.20463 (18)0.08985 (8)0.02157 (15)0.0368 (4)
H250.17100.11080.08890.044*
C260.14332 (18)0.03917 (8)0.01062 (15)0.0362 (4)
H260.06880.02580.07110.043*
C270.19214 (16)0.00817 (8)0.08963 (14)0.0316 (4)
H270.15030.02590.09630.038*
C280.02639 (15)0.09686 (7)0.22889 (14)0.0278 (4)
H280.04980.07720.18330.033*
C290.04360 (16)0.15660 (7)0.23529 (14)0.0300 (4)
H290.01710.18550.19600.036*
C300.17356 (15)0.16513 (7)0.31457 (13)0.0241 (3)
C310.24415 (15)0.22149 (7)0.35403 (13)0.0255 (3)
C320.18141 (16)0.27526 (7)0.31364 (15)0.0295 (4)
H320.09520.27530.26050.035*
C330.24523 (17)0.32873 (7)0.35133 (16)0.0341 (4)
H330.20140.36410.32380.041*
C340.37358 (18)0.32961 (7)0.42946 (15)0.0344 (4)
H340.41620.36540.45540.041*
C350.43830 (17)0.27647 (7)0.46885 (15)0.0337 (4)
H350.52520.27670.52050.040*
C360.37458 (16)0.22315 (7)0.43195 (15)0.0308 (4)
H360.41910.18790.45940.037*
B10.15716 (17)0.00705 (8)0.33798 (15)0.0239 (4)
H1A0.072 (2)0.0208 (9)0.2827 (17)0.050*
B20.30691 (17)0.08375 (7)0.51296 (15)0.0222 (4)
H2A0.393 (2)0.1003 (9)0.5896 (18)0.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0215 (6)0.0190 (6)0.0263 (7)0.0005 (5)0.0098 (5)0.0010 (5)
N20.0213 (6)0.0207 (6)0.0244 (7)0.0002 (5)0.0093 (5)0.0009 (5)
N30.0219 (6)0.0222 (6)0.0250 (7)0.0013 (5)0.0108 (6)0.0003 (5)
N40.0213 (7)0.0232 (6)0.0315 (7)0.0014 (5)0.0128 (6)0.0005 (5)
N50.0209 (6)0.0210 (6)0.0253 (7)0.0010 (5)0.0089 (5)0.0018 (5)
N60.0217 (6)0.0212 (6)0.0237 (7)0.0011 (5)0.0086 (5)0.0007 (5)
N70.0205 (6)0.0245 (7)0.0258 (7)0.0001 (5)0.0084 (6)0.0013 (5)
N80.0233 (7)0.0226 (6)0.0283 (7)0.0009 (5)0.0107 (6)0.0008 (5)
C10.0240 (8)0.0214 (7)0.0315 (9)0.0015 (6)0.0129 (7)0.0011 (6)
C20.0268 (8)0.0250 (8)0.0298 (9)0.0015 (6)0.0143 (7)0.0036 (6)
C30.0224 (7)0.0223 (7)0.0267 (8)0.0040 (6)0.0124 (6)0.0035 (6)
C40.0222 (8)0.0258 (8)0.0270 (8)0.0006 (6)0.0129 (7)0.0003 (6)
C50.0320 (9)0.0288 (8)0.0296 (9)0.0009 (7)0.0149 (7)0.0023 (7)
C60.0397 (10)0.0412 (10)0.0274 (9)0.0005 (8)0.0152 (8)0.0032 (7)
C70.0399 (10)0.0427 (10)0.0305 (10)0.0055 (8)0.0180 (8)0.0075 (8)
C80.0419 (10)0.0283 (8)0.0372 (10)0.0027 (7)0.0216 (8)0.0062 (7)
C90.0317 (9)0.0272 (8)0.0291 (9)0.0006 (7)0.0158 (7)0.0006 (7)
C100.0256 (8)0.0276 (8)0.0372 (10)0.0034 (7)0.0142 (7)0.0059 (7)
C110.0294 (8)0.0265 (8)0.0346 (9)0.0012 (7)0.0142 (7)0.0090 (7)
C120.0274 (8)0.0216 (7)0.0258 (8)0.0007 (6)0.0131 (7)0.0015 (6)
C130.0268 (8)0.0209 (7)0.0308 (9)0.0016 (6)0.0122 (7)0.0020 (6)
C140.0336 (9)0.0280 (9)0.0444 (11)0.0066 (7)0.0199 (8)0.0108 (7)
C150.0311 (9)0.0373 (10)0.0619 (13)0.0048 (8)0.0254 (9)0.0120 (9)
C160.0251 (9)0.0346 (10)0.0498 (12)0.0037 (7)0.0100 (8)0.0006 (8)
C170.0326 (9)0.0349 (9)0.0306 (9)0.0065 (7)0.0089 (8)0.0024 (7)
C180.0297 (9)0.0314 (9)0.0288 (9)0.0048 (7)0.0132 (7)0.0006 (7)
C190.0205 (8)0.0227 (7)0.0299 (9)0.0002 (6)0.0105 (7)0.0014 (6)
C200.0241 (8)0.0249 (8)0.0311 (9)0.0025 (6)0.0150 (7)0.0020 (6)
C210.0238 (8)0.0218 (7)0.0258 (8)0.0026 (6)0.0116 (7)0.0032 (6)
C220.0262 (8)0.0264 (8)0.0259 (8)0.0017 (6)0.0136 (7)0.0005 (6)
C230.0301 (9)0.0382 (10)0.0336 (10)0.0069 (7)0.0093 (8)0.0041 (8)
C240.0417 (11)0.0412 (11)0.0420 (11)0.0046 (8)0.0180 (9)0.0121 (8)
C250.0414 (10)0.0406 (10)0.0307 (9)0.0096 (8)0.0177 (8)0.0084 (8)
C260.0346 (10)0.0395 (10)0.0289 (9)0.0015 (8)0.0083 (8)0.0032 (7)
C270.0332 (9)0.0299 (9)0.0301 (9)0.0042 (7)0.0120 (8)0.0029 (7)
C280.0220 (8)0.0311 (8)0.0270 (8)0.0028 (6)0.0074 (7)0.0011 (7)
C290.0269 (8)0.0275 (8)0.0319 (9)0.0060 (7)0.0092 (7)0.0036 (7)
C300.0265 (8)0.0232 (8)0.0255 (8)0.0036 (6)0.0138 (7)0.0033 (6)
C310.0274 (8)0.0249 (8)0.0281 (9)0.0016 (6)0.0155 (7)0.0014 (6)
C320.0265 (8)0.0288 (8)0.0345 (9)0.0042 (7)0.0142 (7)0.0037 (7)
C330.0389 (10)0.0232 (8)0.0430 (11)0.0057 (7)0.0201 (9)0.0043 (7)
C340.0403 (10)0.0245 (8)0.0411 (10)0.0029 (7)0.0199 (9)0.0030 (7)
C350.0296 (9)0.0305 (9)0.0362 (10)0.0005 (7)0.0095 (8)0.0013 (7)
C360.0305 (9)0.0232 (8)0.0360 (10)0.0037 (6)0.0118 (8)0.0028 (7)
B10.0216 (8)0.0225 (8)0.0270 (9)0.0004 (7)0.0097 (7)0.0002 (7)
B20.0220 (8)0.0205 (8)0.0245 (9)0.0003 (7)0.0103 (7)0.0007 (7)
Geometric parameters (Å, º) top
N1—C11.3403 (19)C14—H140.9300
N1—N21.3677 (17)C15—C161.392 (3)
N1—B11.567 (2)C15—H150.9300
N2—C31.360 (2)C16—C171.377 (3)
N2—B21.539 (2)C16—H160.9300
N3—C101.351 (2)C17—C181.388 (2)
N3—N41.3657 (17)C17—H170.9300
N3—B21.542 (2)C18—H180.9300
N4—C121.342 (2)C19—C201.381 (2)
N5—C191.3441 (19)C19—H190.9300
N5—N61.3633 (17)C20—C211.390 (2)
N5—B21.571 (2)C20—H200.9300
N6—C211.3550 (19)C21—C221.483 (2)
N6—B11.571 (2)C22—C271.388 (2)
N7—C281.356 (2)C22—C231.390 (2)
N7—N81.3708 (18)C23—C241.390 (3)
N7—B11.513 (2)C23—H230.9300
N8—C301.3420 (19)C24—C251.377 (3)
C1—C21.378 (2)C24—H240.9300
C1—H10.9300C25—C261.381 (3)
C2—C31.389 (2)C25—H250.9300
C2—H20.9300C26—C271.382 (2)
C3—C41.470 (2)C26—H260.9300
C4—C91.392 (2)C27—H270.9300
C4—C51.398 (2)C28—C291.362 (2)
C5—C61.384 (2)C28—H280.9300
C5—H50.9300C29—C301.411 (2)
C6—C71.388 (3)C29—H290.9300
C6—H60.9300C30—C311.477 (2)
C7—C81.387 (3)C31—C321.395 (2)
C7—H70.9300C31—C361.398 (2)
C8—C91.386 (2)C32—C331.388 (2)
C8—H80.9300C32—H320.9300
C9—H90.9300C33—C341.380 (3)
C10—C111.362 (2)C33—H330.9300
C10—H100.9300C34—C351.388 (2)
C11—C121.404 (2)C34—H340.9300
C11—H110.9300C35—C361.383 (2)
C12—C131.477 (2)C35—H350.9300
C13—C141.394 (2)C36—H360.9300
C13—C181.399 (2)B1—H1A1.12 (2)
C14—C151.388 (2)B2—H2A1.13 (2)
C1—N1—N2108.33 (12)C18—C17—H17119.7
C1—N1—B1126.86 (13)C17—C18—C13120.66 (16)
N2—N1—B1124.80 (12)C17—C18—H18119.7
C3—N2—N1108.14 (12)C13—C18—H18119.7
C3—N2—B2132.66 (13)N5—C19—C20108.80 (14)
N1—N2—B2118.83 (12)N5—C19—H19125.6
C10—N3—N4110.24 (12)C20—C19—H19125.6
C10—N3—B2125.39 (13)C19—C20—C21106.28 (13)
N4—N3—B2124.08 (12)C19—C20—H20126.9
C12—N4—N3105.34 (12)C21—C20—H20126.9
C19—N5—N6108.47 (12)N6—C21—C20108.01 (13)
C19—N5—B2128.48 (13)N6—C21—C22122.71 (13)
N6—N5—B2122.34 (12)C20—C21—C22129.22 (14)
C21—N6—N5108.44 (12)C27—C22—C23119.20 (15)
C21—N6—B1131.37 (13)C27—C22—C21119.87 (14)
N5—N6—B1119.88 (12)C23—C22—C21120.85 (14)
C28—N7—N8110.41 (12)C22—C23—C24120.00 (16)
C28—N7—B1126.45 (13)C22—C23—H23120.0
N8—N7—B1121.68 (12)C24—C23—H23120.0
C30—N8—N7105.42 (12)C25—C24—C23120.40 (17)
N1—C1—C2109.27 (14)C25—C24—H24119.8
N1—C1—H1125.4C23—C24—H24119.8
C2—C1—H1125.4C24—C25—C26119.67 (17)
C1—C2—C3106.17 (14)C24—C25—H25120.2
C1—C2—H2126.9C26—C25—H25120.2
C3—C2—H2126.9C25—C26—C27120.38 (17)
N2—C3—C2108.08 (14)C25—C26—H26119.8
N2—C3—C4124.34 (14)C27—C26—H26119.8
C2—C3—C4127.58 (14)C26—C27—C22120.34 (16)
C9—C4—C5119.14 (15)C26—C27—H27119.8
C9—C4—C3122.65 (14)C22—C27—H27119.8
C5—C4—C3118.10 (14)N7—C28—C29108.47 (14)
C6—C5—C4120.44 (16)N7—C28—H28125.8
C6—C5—H5119.8C29—C28—H28125.8
C4—C5—H5119.8C28—C29—C30104.99 (14)
C5—C6—C7119.99 (16)C28—C29—H29127.5
C5—C6—H6120.0C30—C29—H29127.5
C7—C6—H6120.0N8—C30—C29110.70 (14)
C8—C7—C6119.92 (16)N8—C30—C31121.13 (14)
C8—C7—H7120.0C29—C30—C31128.17 (14)
C6—C7—H7120.0C32—C31—C36117.77 (15)
C9—C8—C7120.21 (16)C32—C31—C30120.34 (14)
C9—C8—H8119.9C36—C31—C30121.89 (14)
C7—C8—H8119.9C33—C32—C31121.24 (16)
C8—C9—C4120.29 (16)C33—C32—H32119.4
C8—C9—H9119.9C31—C32—H32119.4
C4—C9—H9119.9C34—C33—C32120.26 (16)
N3—C10—C11108.83 (14)C34—C33—H33119.9
N3—C10—H10125.6C32—C33—H33119.9
C11—C10—H10125.6C33—C34—C35119.26 (16)
C10—C11—C12104.60 (14)C33—C34—H34120.4
C10—C11—H11127.7C35—C34—H34120.4
C12—C11—H11127.7C36—C35—C34120.55 (16)
N4—C12—C11110.99 (14)C36—C35—H35119.7
N4—C12—C13121.08 (14)C34—C35—H35119.7
C11—C12—C13127.88 (14)C35—C36—C31120.91 (15)
C14—C13—C18118.40 (15)C35—C36—H36119.5
C14—C13—C12121.87 (14)C31—C36—H36119.5
C18—C13—C12119.72 (14)N7—B1—N1106.07 (12)
C15—C14—C13120.56 (17)N7—B1—N6111.31 (13)
C15—C14—H14119.7N1—B1—N6105.87 (12)
C13—C14—H14119.7N7—B1—H1A111.3 (11)
C14—C15—C16120.41 (17)N1—B1—H1A109.3 (10)
C14—C15—H15119.8N6—B1—H1A112.6 (11)
C16—C15—H15119.8N2—B2—N3109.95 (12)
C17—C16—C15119.38 (16)N2—B2—N5106.05 (12)
C17—C16—H16120.3N3—B2—N5109.15 (12)
C15—C16—H16120.3N2—B2—H2A113.3 (11)
C16—C17—C18120.55 (17)N3—B2—H2A111.7 (10)
C16—C17—H17119.7N5—B2—H2A106.4 (11)
C1—N1—N2—C30.48 (16)B1—N6—C21—C2210.0 (2)
B1—N1—N2—C3179.19 (13)C19—C20—C21—N60.15 (17)
C1—N1—N2—B2174.39 (13)C19—C20—C21—C22176.81 (15)
B1—N1—N2—B26.89 (19)N6—C21—C22—C2760.3 (2)
C10—N3—N4—C120.14 (17)C20—C21—C22—C27116.23 (19)
B2—N3—N4—C12173.90 (13)N6—C21—C22—C23122.82 (17)
C19—N5—N6—C210.86 (16)C20—C21—C22—C2360.6 (2)
B2—N5—N6—C21170.25 (13)C27—C22—C23—C241.1 (3)
C19—N5—N6—B1173.43 (13)C21—C22—C23—C24178.02 (16)
B2—N5—N6—B115.46 (19)C22—C23—C24—C250.5 (3)
C28—N7—N8—C300.84 (16)C23—C24—C25—C260.4 (3)
B1—N7—N8—C30167.89 (13)C24—C25—C26—C270.7 (3)
N2—N1—C1—C20.53 (16)C25—C26—C27—C220.0 (3)
B1—N1—C1—C2179.21 (14)C23—C22—C27—C260.9 (2)
N1—C1—C2—C30.38 (17)C21—C22—C27—C26177.82 (15)
N1—N2—C3—C20.24 (16)N8—N7—C28—C290.46 (18)
B2—N2—C3—C2172.99 (14)B1—N7—C28—C29166.76 (15)
N1—N2—C3—C4178.95 (13)N7—C28—C29—C300.09 (18)
B2—N2—C3—C46.2 (2)N7—N8—C30—C290.89 (17)
C1—C2—C3—N20.08 (17)N7—N8—C30—C31179.70 (13)
C1—C2—C3—C4179.24 (14)C28—C29—C30—N80.63 (18)
N2—C3—C4—C940.2 (2)C28—C29—C30—C31179.99 (15)
C2—C3—C4—C9140.82 (17)N8—C30—C31—C32178.16 (15)
N2—C3—C4—C5143.78 (15)C29—C30—C31—C321.1 (2)
C2—C3—C4—C535.3 (2)N8—C30—C31—C362.0 (2)
C9—C4—C5—C60.5 (2)C29—C30—C31—C36178.71 (16)
C3—C4—C5—C6176.75 (15)C36—C31—C32—C331.4 (2)
C4—C5—C6—C70.0 (3)C30—C31—C32—C33178.70 (15)
C5—C6—C7—C80.3 (3)C31—C32—C33—C340.6 (3)
C6—C7—C8—C90.1 (3)C32—C33—C34—C350.7 (3)
C7—C8—C9—C40.5 (3)C33—C34—C35—C361.2 (3)
C5—C4—C9—C80.8 (2)C34—C35—C36—C310.3 (3)
C3—C4—C9—C8176.80 (15)C32—C31—C36—C351.0 (2)
N4—N3—C10—C110.26 (19)C30—C31—C36—C35179.15 (15)
B2—N3—C10—C11173.69 (14)C28—N7—B1—N1103.45 (17)
N3—C10—C11—C120.26 (19)N8—N7—B1—N161.42 (17)
N3—N4—C12—C110.03 (17)C28—N7—B1—N6141.85 (15)
N3—N4—C12—C13177.75 (13)N8—N7—B1—N653.28 (19)
C10—C11—C12—N40.18 (19)C1—N1—B1—N726.4 (2)
C10—C11—C12—C13177.71 (15)N2—N1—B1—N7155.12 (12)
N4—C12—C13—C1434.6 (2)C1—N1—B1—N6144.77 (14)
C11—C12—C13—C14148.13 (17)N2—N1—B1—N636.75 (18)
N4—C12—C13—C18144.92 (15)C21—N6—B1—N733.8 (2)
C11—C12—C13—C1832.4 (2)N5—N6—B1—N7138.94 (13)
C18—C13—C14—C152.2 (3)C21—N6—B1—N1148.66 (14)
C12—C13—C14—C15177.33 (16)N5—N6—B1—N124.12 (17)
C13—C14—C15—C161.0 (3)C3—N2—B2—N3102.42 (18)
C14—C15—C16—C170.4 (3)N1—N2—B2—N385.45 (15)
C15—C16—C17—C180.5 (3)C3—N2—B2—N5139.71 (15)
C16—C17—C18—C130.7 (3)N1—N2—B2—N532.42 (17)
C14—C13—C18—C172.1 (2)C10—N3—B2—N2176.88 (14)
C12—C13—C18—C17177.45 (15)N4—N3—B2—N23.7 (2)
N6—N5—C19—C200.77 (17)C10—N3—B2—N560.95 (19)
B2—N5—C19—C20169.63 (14)N4—N3—B2—N5112.19 (15)
N5—C19—C20—C210.39 (17)C19—N5—B2—N2145.76 (14)
N5—N6—C21—C200.62 (16)N6—N5—B2—N245.02 (17)
B1—N6—C21—C20172.79 (14)C19—N5—B2—N395.83 (18)
N5—N6—C21—C22176.59 (13)N6—N5—B2—N373.38 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N8i0.932.603.489 (2)160
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC36H30B2N8
Mr596.30
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)11.3980 (2), 22.6068 (4), 13.1547 (2)
β (°) 115.429 (1)
V3)3061.21 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6995, 6995, 5037
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.131, 1.05
No. of reflections6995
No. of parameters422
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.27

Computer programs: KappaCCD Server Software (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor 1997), SIR97 (Altomare et al., 1998), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
N1—C11.3403 (19)N6—B11.571 (2)
N1—N21.3677 (17)N7—C281.356 (2)
N1—B11.567 (2)N7—N81.3708 (18)
N2—C31.360 (2)N7—B11.513 (2)
N2—B21.539 (2)N8—C301.3420 (19)
N3—C101.351 (2)C1—C21.378 (2)
N3—N41.3657 (17)C2—C31.389 (2)
N3—B21.542 (2)C10—C111.362 (2)
N4—C121.342 (2)C11—C121.404 (2)
N5—C191.3441 (19)C19—C201.381 (2)
N5—N61.3633 (17)C20—C211.390 (2)
N5—B21.571 (2)C28—C291.362 (2)
N6—C211.3550 (19)C29—C301.411 (2)
C1—N1—N2108.33 (12)C21—N6—N5108.44 (12)
C1—N1—B1126.86 (13)C21—N6—B1131.37 (13)
N2—N1—B1124.80 (12)N5—N6—B1119.88 (12)
C3—N2—N1108.14 (12)C28—N7—N8110.41 (12)
C3—N2—B2132.66 (13)C28—N7—B1126.45 (13)
N1—N2—B2118.83 (12)N8—N7—B1121.68 (12)
C10—N3—N4110.24 (12)C30—N8—N7105.42 (12)
C10—N3—B2125.39 (13)N1—C1—C2109.27 (14)
N4—N3—B2124.08 (12)C1—C2—C3106.17 (14)
C12—N4—N3105.34 (12)C10—C11—C12104.60 (14)
C19—N5—N6108.47 (12)C19—C20—C21106.28 (13)
C19—N5—B2128.48 (13)C28—C29—C30104.99 (14)
N6—N5—B2122.34 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···N8i0.932.603.489 (2)160
Symmetry code: (i) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds